

2019 NETC Symposium

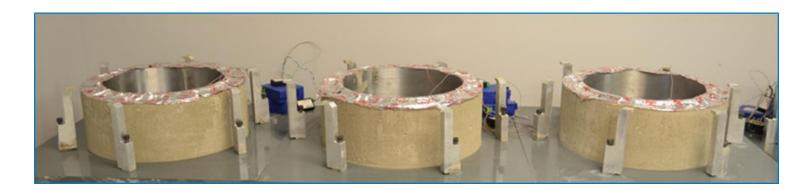
Grappone Conference Center Concord, NH

June 19,2019

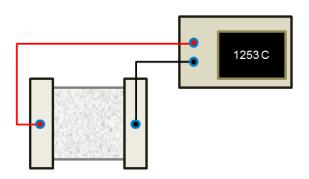
Advancements in Cement Concrete Research and Testing


John Grieco – Director of R&M

A need arises to incorporate


Different types of methods and technologies

for the evaluation of quality characteristics and mix properties of concrete used for MassDOT construction projects

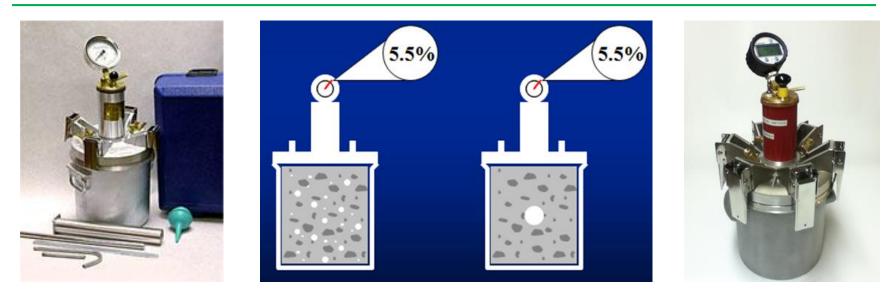


What has R&M been Focused on

RCPT – 2 day process

Freeze Thaw Damage

Freeze Thaw Testing

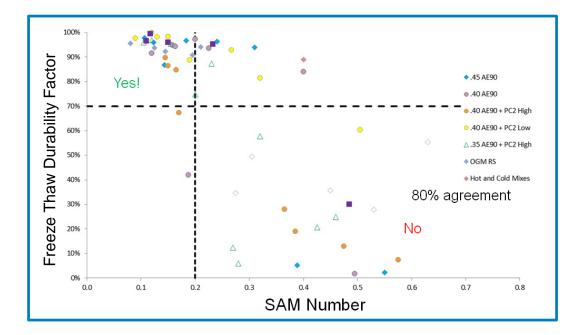


- Takes on average 100 days
- Cannot be reproduced in the field

Reference: FHWA

Super Air Meter

□ Air Meter Type B


Can only measure total air content

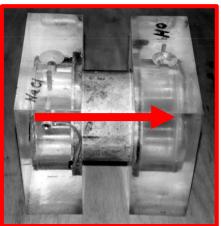
Super Air Meter

- Provides air content
- SAM number

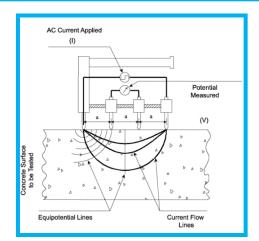
Super Air Meter / Freeze Thaw

Study by Dr. Tyler Ley, Oklahoma State University

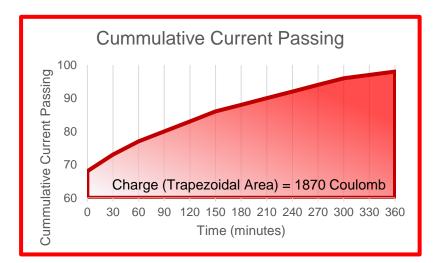
Continuing the Research

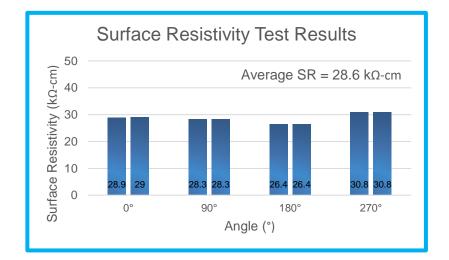


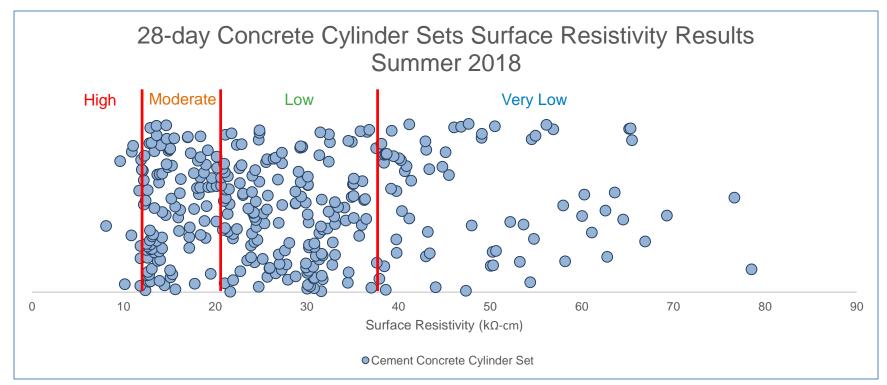
Description of the methodologies to determine the permeability of concrete


Rapid Chloride Penetrability Test AASHTO T 277

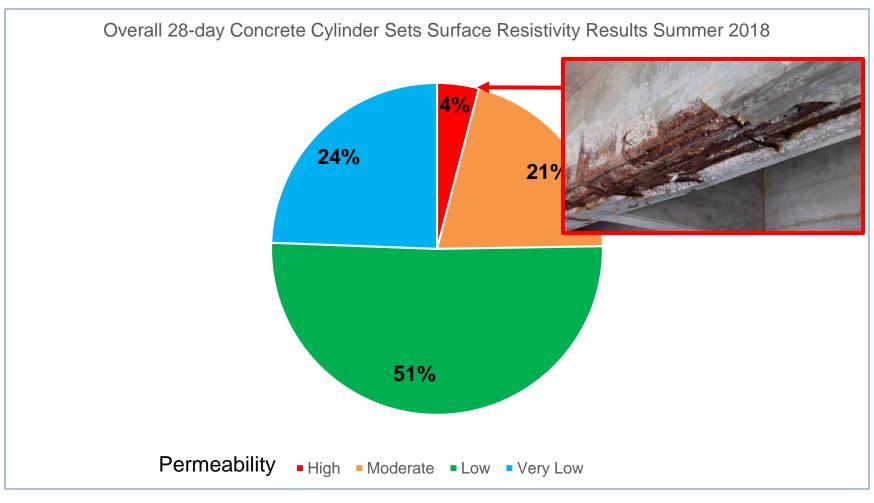
- Cumulative Current Passing
- Created in the 1970s
- Destructive
- Concrete Age: 90 days
- ✤ Aprox. 2 work days per set
- High cost

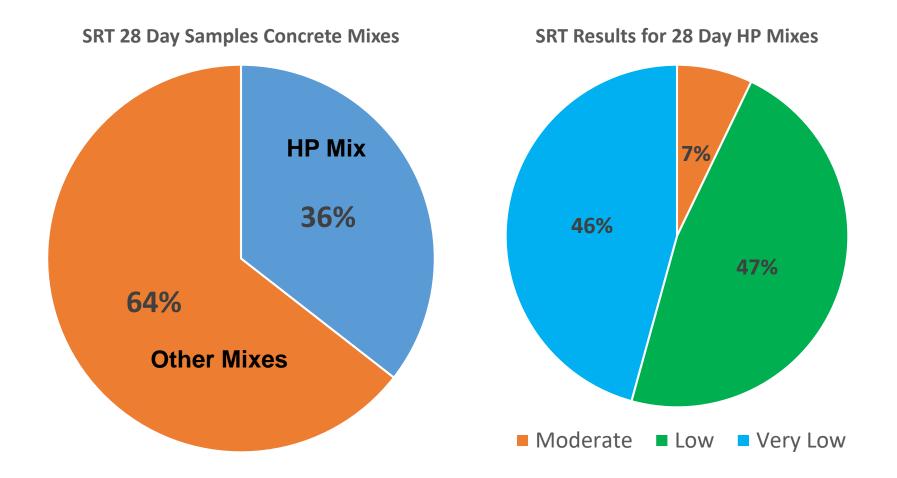



- Electrical Resistivity
- Created in the 2000s
- Non-destructive
- Concrete Age: 28 days
- Aprox. 2 minutes per set
- Low cost


Description of the methodologies to determine the permeability of concrete

Chloride Permeability	Surface Resistivity (kΩ-cm)	Charge Passed (C)	
	100 by 200 mm (4 by 8 in.)		
High	< 12	> 4000	
Moderate	12-21	2000-4000	
LOW	21-37	1000-2000	
Very Low	37 254	100 1000	
Negligible	> 254	< 100	




Chloride Permeability	Surface Resistivity Test
	100 by 200 mm (4 by 8 in.)
High	< 12
Moderate	12-21
Low	21-37
Very Low	37-254
Negligible	> 254

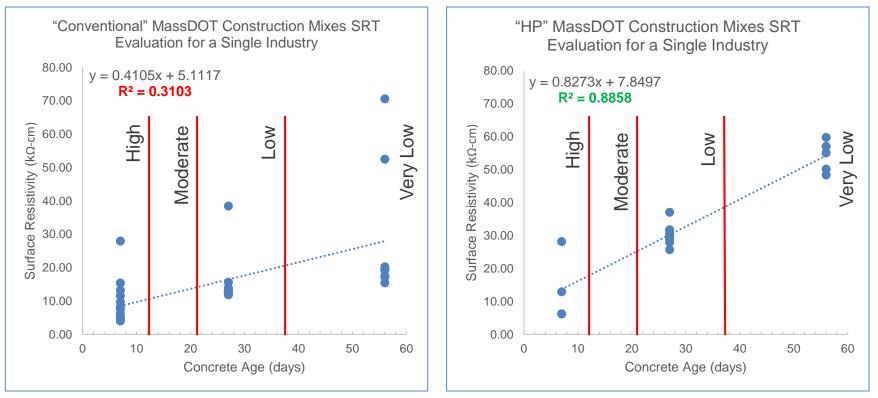
While mixes are showing low permeability, some mixes have excess of paste content

Why is the Surface Resistivity Test an alternative to the Rapid Chloride Penetrability Test?

Reliable

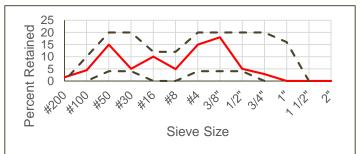
Non-Destructive

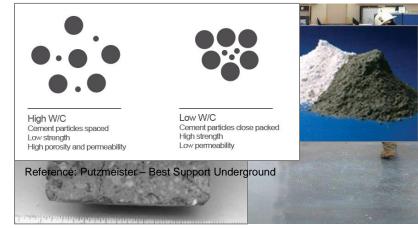
Reference: Giatec Scientific Inc.


Cost Effective

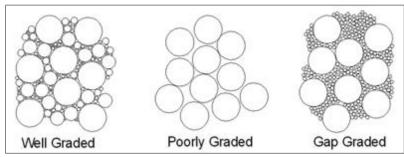
Fast Paced

How consistent are the SRT results when evaluating Concrete Mixes by Industry?

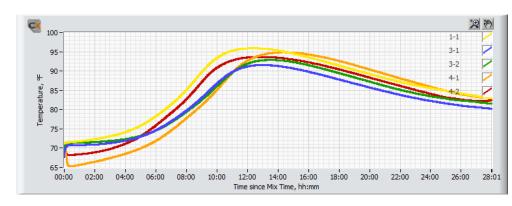


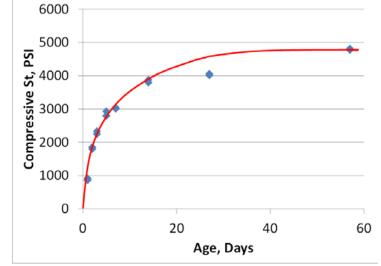


Surface Resistivity Test (SRT)


How can we lower permeability (increase durability)?

- Lower water/cement ratio
- Use Supplementary Cementitious Materials (SCMs)
- Control paste volume to minimize cracking
- Optimize the gradation of the coarse and fine aggregate (Tarantula Curve)
- Perform good curing practices


Reference: Fhb/Constructor



Reference: The Concrete Countertop Institute

- □ Time Temperature Factor (TTF)
- Mixture specific relationship
 - Thermal history
 - Strength
- ASTM C1074

Strength Tests for Maturity Curve (optional)

If you have a pre-existing curve, click Next to enter that curve's parameters.

Control Sensor 1	Trial 1	•	Guide	
Control Sensor 2	Trial 2	•	To develop a maturity curve, select 1 or 2 control sensors and add strength tests. Control sensors are the sensors in	
			the test specimens that are cured with the specimens	
			being broken.	

😳 Add 😑 Remove

	Timestamp	Age (hours)	Strength (psi)	TTF (°F-hr)
۲	Oct 10, 2018 10:15 AM 🔻	24	5000	2114
	Oct 12, 2018 10:15 AM 🔻	72	5410	5004
	Oct 16, 2018 10:15 AM 🔻	168	6480	10707
	Oct 23, 2018 10:15 AM 🔻	336	6980	20613
	Nov 06, 2018 10:15 AM 🔻	672	8080	40444

< Back Next > Cancel Help

B3-1.8 PME

massDOT

Highway Division

DJ 1.0 FML	
Dec 18, 11:45 AM	11391 psi
ВЗ-1.7 ОРМЕ	
Dec 18, 11:45 AM	11465 psi
B3-1.7 PME	
Dec 18, 11:45 AM	11420 psi
ВЗ-1.8 ОРМЕ	
Dec 18, 11:45 AM	11453 psi
🗹 ВЗ-1.6 РМЕ	
Dec 17, 1:00 PM	11429 psi
☑ B3-1.5 PME	
Dec 17, 1:00 PM	11455 psi
☑ B3-1.5 OPME	
Dec 17, 1:00 PM	11510 psi
☑ B3-1.6 OPME	
Dec 17, 1:00 PM	11476 psi
B3-1.4 OPME	
Dec 14, 1:00 PM	11444 psi
B3-1.3 PME	

massDOT SAMPLE OF ACC PRECAST CEMENT NOV 26 2018 04379 CONCRETE Rev. 04/28/201 PROJECT INFORMATION Town/City, XX. Plymouth Contract No .: 102199 Contractor: Lawrence Lynch Federal Aid. No. STP-003S(057)X Report to District: P605-038-C12 Cost Account No. Resident Engineer Dist. Mat'ls. Engr MATERIAL INFORMATION Bid Item: Specification No Bid Item Description. Sub-Item Description Bid Item Quantity Date to be Used: Today Oldcastle Precast Manufactured by: Town/City, XX: Rehoboth, MA IA Project Quantity # of IA's Required: Proposed Use: Box beam / voided deck panel Additional Information Max. Agg. Size: 3/4" Mix Strength: 8000 psi (6500 psi design) Min. Cem. Content: 840 lbs Cement + Fly Ash Specialized Mix: Mix 87 MassDOT Additives: Site Additives Added Job Water Added None Ticket & Truck No.: Ticket# 64551 Bucket SAMPLING INFORMATION (R 60 / C172) Date Sampled: Sampled by: Edward Dusseau Sampling Location: Oldcastle QC Lab Town/City, XX Rehoboth, MA Random Sample: Y Lot & Sub Lot No .: ADV6 Quantity Represented: 3 Cubic yards Weather & Temp. (°F); Indoors, 55F
 PREPARATION OF CONCRETE SPECIMENS IN THE FIELD (T 23 / C31)

 ze:
 4 x 8": 2
 6 x 12": □
 Initial Curing Method: Curing Box: □
 Field Cure
Specimen Size: Specimens Covered: Yes: 🗹 No: Curing Temp. (°F): Low: 63 High: SAMPLE PROPERTIES BY FIELD TESTS
 Slump or Spread (in.):
 25
 Air Content (%):
 6.0

 T 119 (C143):
 T 347 (C1611):
 T 152 (C231):
 T 196 (C173):
Concrete Temp (°F): 63.0 T 309 (C1064) LABORATORY PREPARATION AND COMPRESSIVE STRENGTH (T 22 / C39) Lab Preparation: Sulfur T 231 (C617): Neoprene (C1231): Cutting T 22: Grinding T 22: Break Weight Diameter Strength Average Break Type Cylinder # Age (Days Date (lbs) (in) Area (in²) Load (lbf) (psi) Strength (T 22) ADV6.1 6 98 124 3.98 ADV6.2 12.4 11-26 12-4 ADV6.3 28 3.99 12.5 32 ADV6.4 1000 10940 12-17 ADV6.5 28 ADV6.6 28 3.99 12 ADV6.7 56 CONFORMS WITH ADV6.8 56 01-14-1 SPECIFICATIONS ADV6.9 56 Break Type 6 T 22: Cone & Shear Unusua ne & Soli SPECIFICATION LIMITS & SIGNATURE Results are within specification limits: Results are outside specification limits: 1st Set 3rd Set 2nd Set Review Performed by D 13 APP 12/APP Signature: Date: 1-26-18 17-17-1

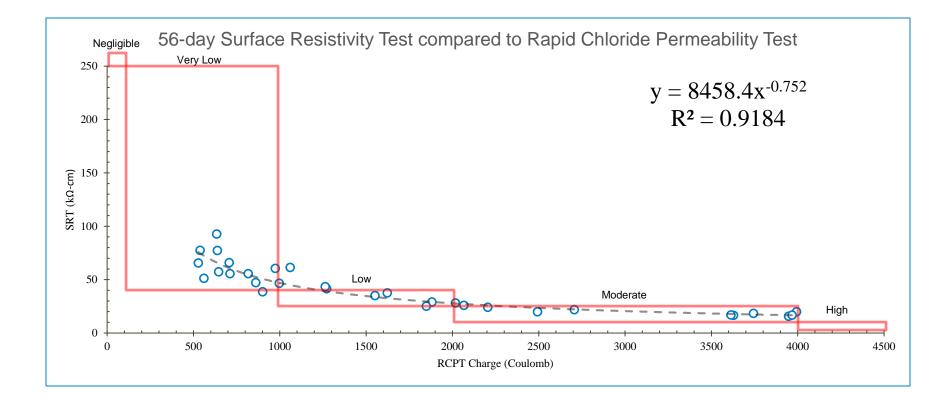
RMS 775

DATE RECEIVED:

LAB NUMBER:

SAMPLE TYPE.

Questions?


The State's Reptile Problem

SRT Compared to RCPT

