#### **Evaluation of a Field Permeameter as a Longitudinal Joint Quality Indicator**

Jo Sias Daniel, PI Rajib B. Mallick, co-PI Walaa S. Mogawer, co-PI

Prepared for The New England Transportation Consortium April 20, 2007

NETCR64

Project No. 03-5

This report, prepared in cooperation with the New England Transportation Consortium, does not constitute a standard, specification, or regulation. The contents of this report reflect the views of the authors who are responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the views of the New England Transportation Consortium or the Federal Highway Administration.

#### ACKNOWLEDGEMENTS

The following are the members of the Technical Committee that developed the scope of work for the project and provided technical oversight throughout the course of the research:

Richard Bradbury, Maine Department of Transportation, Chairperson Michael Byrne, Rhode Island Department of Transportation William Real, New Hampshire Department of Transportation Jamie Sikora, Federal Highway Administration – New Hampshire Erika B. Smith, Connecticut Department of Transportation Matthew Turo, Massachusetts Highway Department

| Page                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <sup>1. Report No.</sup> NETCR64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2. Govern                                                                                                                                                                                                                                       | ment Accession No.<br>N/A                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3. Recipient's Catalog No.                                                                                                                                                                                                                                                                                         | N/A                                                                                                                                                                                                                                                                                       |
| 4. Title and Subtitle<br>Evaluation of a Field Permean<br>Quality Indicator                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | neter as a Lo                                                                                                                                                                                                                                   | ongitudinal Joint                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5. Report Date<br>Apri<br>6. Performing Organization (                                                                                                                                                                                                                                                             | 1 20, 2007                                                                                                                                                                                                                                                                                |
| 7. Author(s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8. Performing Organization F                                                                                                                                                                                                                                                                                       | N/A<br>Report No.                                                                                                                                                                                                                                                                         |
| Jo Sias Daniel, PI<br>Rajib B. Mallick, co-PI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NETCR64                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                           |
| Walaa S. Mogawer, co-PI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                           |
| 9. Performing Organization Name and Address<br>Department of Civil Engineering                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | g, University                                                                                                                                                                                                                                   | y of New Hampshire                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10 Work Unit No. (TRAIS)                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                           | N/A<br>11. Contract or Grant No.                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                           | N/A                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                           |
| 12. Sponsoring Agency Name and Address                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 13. Type of Report and Perio                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                           |
| 12. Sponsoring Agency Name and Address<br>New England Transportation Consortium<br>C/O Advanced Technology &<br>Manufacturing Center                                                                                                                                                                                                                                                                                                                                                                                                                      | n                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                           | FINA                                                                                                                                                                                                                                                                                                               | AL REPORT                                                                                                                                                                                                                                                                                 |
| University of Massachusetts Dartmouth<br>151 Martine Street<br>Fall River, MA 02723                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 14. Sponsoring Agency Cod<br>NETC 03-5 A<br>cooperation wit                                                                                                                                                                                                                                                        | study conducted in                                                                                                                                                                                                                                                                        |
| 15 Supplementary Notes N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>I</b> = = <b>I</b>                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                           |
| <ul> <li>16. Abstract</li> <li>Premature distress along the longitudinal during construction. The objective of the longitudinal joints. As part of the study both mats, was developed. The permean Pavements that were tested as part of the and surface courses were tested, and var Field cores at most test sites were taken project was monitored for several sites. promising. However, more refinements suggests returning to a single standpipe techniques, such as joint sealants or use</li> <li>17. Key Words</li> <li>10. Rey Words</li> </ul> | ll construction ja<br>is research proj<br>, a field permean<br>meter was used<br>e study had nom<br>ious joint constri<br>for air void and<br>Results of the s<br>need to be mad<br>permeameter (a<br>of a joint heater<br>18. Distril<br>No re | ect was to evaluate a field permean<br>meter that can simultaneously test to<br>to test longitudinal construction join<br>inal maximum size aggregate (NM<br>ruction techniques were used, inclu-<br>strength testing in the laboratory a<br>tudy show that a permeability or in<br>the to the permeameter to reduce the<br>ir or water) to improve variability.<br>c, improve the short term performant<br>button Statement<br>estrictions. This documen | heter as a tool to evalua<br>three locations; along the<br>nts on pavement projec<br>(SA) raging from 9.5 m<br>ding infrared heating and<br>nd performance of the j<br>filtration criterion for lovariability in test result<br>The study also shows the<br>three of the longitudinal ju-<br>t is available to the | te the quality of<br>e joint and one foot into<br>ts around New England.<br>m to 25 mm; base, binder,<br>nd various joint sealants.<br>oints over the course of the<br>ongitudinal joint quality is<br>s. The research team<br>hat improved construction<br>oint.<br>e public through the |
| pavements, permeability 19. Security Classif. (of this report)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Inatio                                                                                                                                                                                                                                          | 20. Security Classif. (of this page)                                                                                                                                                                                                                                                                                                                                                                                                                      | 21. No. of Pages                                                                                                                                                                                                                                                                                                   | 22. Price 22. Price                                                                                                                                                                                                                                                                       |
| Unclassified                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                 | Unclassified                                                                                                                                                                                                                                                                                                                                                                                                                                              | 83                                                                                                                                                                                                                                                                                                                 | N/A                                                                                                                                                                                                                                                                                       |

# Technical Report Documentation

Form DOT F 1700.7 (8-72)

Reproduction of completed page authorized

|                                                    |                                                                       |                                          | SI* (MODERN                                                                               | I METRIC)              | CONV                    | SI* (MODERN METRIC) CONVERSION FACTORS                                  | ORS                               |                                                       |                                                    |
|----------------------------------------------------|-----------------------------------------------------------------------|------------------------------------------|-------------------------------------------------------------------------------------------|------------------------|-------------------------|-------------------------------------------------------------------------|-----------------------------------|-------------------------------------------------------|----------------------------------------------------|
| APPR(                                              | APPROXIMATE CONVER                                                    |                                          | SIONS TO SI UNITS                                                                         |                        | APPROX                  | APPROXIMATE CONVERSIONS TO SI UNITS                                     | NNS TO SI UN                      | IITS                                                  |                                                    |
| Symbol                                             | I When You Know                                                       | Multiply By                              | 3y To Find                                                                                | Symbol                 | Symbol                  | When You Know                                                           | Multiply By                       | To Find                                               | Symbol                                             |
|                                                    |                                                                       | HLUGTH                                   | HIL                                                                                       |                        |                         |                                                                         | LENGTH                            |                                                       |                                                    |
| ni<br>N<br>D<br>J<br>J<br>J<br>J                   | inches<br>feet<br>yards<br>miles                                      | 25.4<br>0.305<br>0.914<br>1.61           | millimetres<br>metres<br>metres<br>kilometres                                             | E E E E                | n n<br>n<br>n<br>n<br>s | millimetres<br>metres<br>metres<br>kilometres                           | 0.039<br>3.28<br>1.09<br>0.621    | inches<br>feet<br>yards<br>miles                      | ñ<br>yd<br>ie                                      |
|                                                    |                                                                       | AREA                                     | V.                                                                                        |                        |                         |                                                                         | AREA                              |                                                       |                                                    |
| in²<br>yd²<br>ac<br>mi²                            | square inches<br>square feet<br>square yards<br>acres<br>square miles | 645.2<br>0.093<br>0.836<br>0.405<br>2 50 | millimetres squared<br>metres squared<br>metres squared<br>hectares<br>bilometres squared | mm²<br>m²<br>ha<br>Vm² | mm²<br>m²<br>km²        | millimetres squared<br>metres squared<br>hectares<br>kilometres squared | 0.0016<br>10.764<br>2.47<br>0.386 | square inches<br>square feet<br>acres<br>square miles | in²<br>fi²<br>ac<br>mi²                            |
| 1                                                  |                                                                       | VOLUME                                   | ME                                                                                        |                        |                         |                                                                         | VOLUME                            |                                                       |                                                    |
| fl oz<br>gal<br>ft <sup>3</sup><br>yd <sup>3</sup> | fluid ounces<br>gallons<br>cubic feet<br>cubic yards                  | 29.57<br>3.785<br>0.028<br>0.765         | mililitres<br>Litres<br>metres cubed<br>metres cubed                                      | ה יל ה<br>ני ה         | ے ہے۔<br>12 میں قرب ق   | millilitres<br>litres<br>metres cubed<br>metres cubed                   | 0.034<br>0.264<br>35.315<br>1.308 | fluid ounces<br>gallons<br>cubic feet<br>cubic yards  | ព oz<br>gal<br>ភ្ល <sup>3</sup><br>yd <sup>3</sup> |
| NOTE: 1                                            | NOTE: Volumes greater than 1000 L shall be shown in $\mathfrak{m}^3$  | 10 L shall be                            | shown in m <sup>3</sup>                                                                   |                        |                         |                                                                         | MASS                              |                                                       |                                                    |
|                                                    |                                                                       | MASS                                     | <sup>2</sup>                                                                              |                        | e<br>kg<br>Mg           | grams<br>kilograms<br>megagrams                                         | 0.035<br>2.205<br>1.102 sho       | ounces<br>pounds<br>short tons (2000 lb)              | oz<br>Ib<br>T                                      |
| oz<br>비                                            | ounces<br>pounds<br>short tons (2000 lb)                              | 28.35<br>0.454<br>0.907                  | grams<br>kilograms<br>megagrams                                                           | в<br>Кв<br>Ма          |                         |                                                                         | TEMPERATURE (exact)               | act)                                                  |                                                    |
| -                                                  | TEM                                                                   | TEMPERATURE (exact)                      | RE (exact)                                                                                | 2                      | Û.                      | Celcius<br>temperature                                                  | 1.8C+32                           | Fahrenheit<br>temperature                             | Ц.<br>о                                            |
| ئ <sub>و</sub>                                     | Fahrenheit<br>temperature                                             | 5(F-32)/9                                | Celcius<br>temperature                                                                    | Ç                      |                         | 32<br>0 40                                                              |                                   | 20                                                    |                                                    |
| * SI is th                                         | * SI is the symbol for the International System of Measurement        | lational Sys                             | tem of Measurement                                                                        |                        |                         | -40 -20 0 20<br>•C                                                      | 40 60 :<br>37                     | 80 100<br>°C                                          |                                                    |

iv

## Abstract

Premature distress along the longitudinal construction joint in asphalt pavements occurs when adequate density or tightness is not achieved during construction. The objective of this research project was to evaluate a field permeameter as a tool to evaluate the quality of longitudinal joints. As part of the study, a field permeameter that can simultaneously test three locations; along the joint and one foot into both mats, was developed. The permeameter was used to test longitudinal construction joints on pavement projects around New England. Pavements that were tested as part of the study had nominal maximum size aggregate (NMSA) raging from 9.5 mm to 25 mm; base, binder, and surface courses were tested, and various joint construction techniques were used, including infrared heating and various joint sealants. Field cores at most test sites were taken for air void and strength testing in the laboratory and performance of the joints over the course of the project was monitored for several sites. Results of the study show that a permeability or infiltration criterion for longitudinal joint quality is promising. However, more refinements need to be made to the permeameter to reduce the variability in test results. The research team suggests returning to a single standpipe permeameter (air or water) to improve variability. The study also shows that improved construction techniques, such as joint sealants or use of a joint heater, improve the short term performance of the longitudinal joint.

## **Table of Contents**

| 1.0 | Introduction1                                                                                                                                                                                                                                                                                                                            |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | 1.1 Background1                                                                                                                                                                                                                                                                                                                          |
|     | 1.2 Research Objectives1                                                                                                                                                                                                                                                                                                                 |
| 2.0 | Literature Review                                                                                                                                                                                                                                                                                                                        |
| 3.0 | Development of the Longitudinal Joint Permeameter2                                                                                                                                                                                                                                                                                       |
| 4.0 | Testing                                                                                                                                                                                                                                                                                                                                  |
|     | 4.3 Core Testing10                                                                                                                                                                                                                                                                                                                       |
| 5.0 | Analysis.105.1Calculation of Permeability and Infiltration105.2Circular vs Rectangular Opening for Joint Measurement.135.3Individual Permeameter Measurements135.4Overall Test Site Permeameter Measurements185.5Core Data195.5.1Relationship with Permeability195.5.2Statistical Analysis of Core Data215.5.3Comparison of Test Sites23 |
| 6.0 | Development of Quality Control (QC) Criterion                                                                                                                                                                                                                                                                                            |
| 7.0 | Recommendations for Future Work                                                                                                                                                                                                                                                                                                          |
| 8.0 | Summary and Conclusions                                                                                                                                                                                                                                                                                                                  |
| 9.0 | References                                                                                                                                                                                                                                                                                                                               |
|     | endix A: Individual Permeability Readings                                                                                                                                                                                                                                                                                                |
|     | endix B: Average Measurements at Each Test Location44                                                                                                                                                                                                                                                                                    |
| App | endix C: Individual Core Data and Statistics65                                                                                                                                                                                                                                                                                           |

## List of Tables

| Table 1. | Summary of Longitudinal Joint Testing Sites                                                               | 8  |
|----------|-----------------------------------------------------------------------------------------------------------|----|
| Table 2. | Statistical Analysis of Permeability Measurements for 9.5 mm<br>Test Locations                            | 15 |
| Table 3. | Statistical Analysis of Permeability Measurements for 12.5 mm<br>Test Locations                           | 16 |
| Table 4. | Statistical Analysis of Permeability Measurements for 19 mm<br>Test Locations                             | 17 |
| Table 5. | Statistical Analysis of Permeability Measurements for 25 mm<br>Test Locations                             | 18 |
| Table 6. | Statistical Analysis of Permeability Data Pooled from all Testing<br>Locations for Each Project Test Site | 18 |
| Table 7. | Summary of Longitudinal Joint Performance Data                                                            | 25 |
| Table 8. | Significant Difference Between Mat and Joint Measurements                                                 | 28 |

## List of Figures

| Figure 1.  | Sketch and Photo of the WPI Permeameter                                                                                       |
|------------|-------------------------------------------------------------------------------------------------------------------------------|
| Figure 2.  | Schematic Diagram of Longitudinal Joint Permeability Trailer4                                                                 |
| Figure 3.  | <ul><li>(a) Permeameter taken down from truck; (2) Filling with water;</li><li>(c) Close-up of permeameter on joint</li></ul> |
| Figure 4.  | Relationship Between Permeability and Infiltration for All Test Locations11                                                   |
| Figure 5.  | Average joint Permeability as a Percentage of Average Mat Permeability12                                                      |
| Figure 6.  | Average Joint Infiltration as a Percentage of Average Mat Infiltration12                                                      |
| Figure 7.  | Permeability Measured Using Rectangular and Circular Base<br>Plate Opening                                                    |
| Figure 8.  | Sample Variance Versus Average Permeability for All Test Locations14                                                          |
| Figure 9.  | Standard deviation Versus Average Permeability for All Test Locations14                                                       |
| Figure 10. | COV Versus Average Permeability for All Test Locations15                                                                      |
| Figure 11. | Air Void Content Versus Permeability                                                                                          |
| Figure 12. | Indirect Tensile Strength Versus Permeability                                                                                 |
| Figure 13. | Indirect Tensile Strength Versus Air Void Content20                                                                           |
| Figure 14. | Sample Variance Versus Average Indirect Tensile Strength21                                                                    |
| Figure 15. | Sample Variance Versus Average Air Void Content                                                                               |
| Figure 16. | Coefficient of Variability Versus Average Indirect Tensile Strength22                                                         |
| Figure 17. | Coefficient of Variability Versus Average Air Void Content                                                                    |
| Figure 18. | Joint Indirect Tensile Strength as a Percentage of Mat Indirect<br>Tensile Strength                                           |
| Figure 19. | Joint Air Void Content as a Percentage of Mat Air Void Content24                                                              |
| Figure 20. | Joint Permeability as % of Mat Permeability Versus % Longitudinal<br>Joint Cracking                                           |

| Figure 21. | Joint Infiltration as % of Mat Infiltration Versus % Longitudinal<br>Joint Cracking | 26 |
|------------|-------------------------------------------------------------------------------------|----|
| Figure 22. | Joint Air Voids as % of Mat Air Voids Versus % of Longitudinal<br>Joint Cracking    | 27 |
| Figure 23. | Joint ITS as % of Mat ITS Versus % Longitudinal Joint Cracking                      | 27 |
| Figure 24. | Joint Permeability Criterial Versus % Cracking for 19 mm Sections                   | 28 |
| Figure 25. | Joint Permeability Criteria Verses % Cracking for 12.5 Sections                     | 29 |

#### **1.0 Introduction**

#### **1.1 Background**

The construction of hot mix asphalt (HMA) pavements requires the use of longitudinal joints when the width of the pavement exceeds the capability of the paver. The longitudinal joint is created between adjacent paving lanes and can be difficult to construct. During compaction of the first lane, the material along the joint cools quicker than the bulk of the mat and is unconfined, making it more difficult to compact adequately. When the next lane is constructed, the material along the joint cannot maintain adequate temperature and therefore does not get compacted as well as the mat. A poorly compacted or constructed joint will allow water and other materials to penetrate the pavement surface, leading to premature degradation. Water infiltration into the joint and subsequently freezing causing damage to the pavement is of particular concern in New England. HMA with low density will also experience more rapid aging of the asphalt binder due to oxidation and will become more susceptible to fatigue and thermal cracking. A poorly constructed or compacted joint can lead to a variety of distresses including weakening of the underlying layers, fatigue cracking, stripping, and raveling at the longitudinal joint. These premature distresses necessitate costly repairs and maintenance on the pavement. Hence, there is a need to ensure that a longitudinal joint with adequate tightness and density is achieved during construction.

Agencies and contractors have developed various joint construction techniques to achieve adequate density along longitudinal joints. Additional new and innovative methods for constructing longitudinal joints that will perform satisfactorily continue to be developed and researched around the country; these include an infrared joint heater and various joint sealants and compounds. These efforts are focused on improving the construction and resulting performance of the joint itself, however, the overall quality of the longitudinal joints needs to be evaluated in the field, regardless of construction technique.

The density of the HMA at the longitudinal joint is related to the quality and performance of the joint (1). Density can be measured using a nuclear gage or by obtaining cores from the pavement and measuring density in the laboratory. The permeability of the longitudinal joint is also a measure of quality, as a less permeable joint will not allow the intrusion of water and foreign matter that lead to some premature distresses. Studies (2-6) have shown a correlation between the field permeability and in-place density of HMA mixtures. The potential exists for the use of a field permeameter as a tool to evaluate the quality of longitudinal joints. Establishing test equipment, a test procedure, testing frequency and acceptance criteria for using a field permeameter to evaluate the quality of longitudinal joints in HMA pavements will allow agencies in New England to better estimate the overall pavement performance and more accurately plan maintenance and rehabilitation strategies, saving valuable resources and improving serviceability to the traveling public.

#### **1.2 Research Objectives**

The main objective of this research was to evaluate a field permeameter as a tool to evaluate the quality of longitudinal joints. This was accomplished by performing field permeability testing using a permeameter developed as part of the study. Permeability and core testing was performed at various construction projects around New England.

### 2.0 Literature Review

A literature review on the use of a permeameter for longitudinal joints conducted at the beginning of this project revealed only two references. Pretorius et al (7) describes the Marvil test for determination of quality of joint construction in airports. The Marvil test is essentially a flow test that is used in South Africa to determine the water permeability of asphalt and base course layers. The equipment consists of a circular weight and an acrylic tube with volume markings. A pressure head of 380 mm is used to measure flow of water through a 175 mm diameter circular area. Pretorius et al reports that untreated joints had permeabilities 10 times greater than the layers; permeability values of 30 l/h to 250 l/h have been cited. In the same paper, the authors mention a decreased permeability for joints with improved construction techniques (below 3 l/h).

Although no formal study has been done, Cooley (8) conducted some preliminary tests with the National Center for Asphalt Technology (NCAT) permeameter (5), and has commented on the feasibility of using this permeameter for determination of quality of joint construction.

### 3.0 Development of the Longitudinal Joint Permeameter

The objective was to construct a falling head permeameter suitable for use on HMA pavement longitudinal joints and capable of testing three locations simultaneously: the joint and locations on the mat one foot to either side of the joint. The longitudinal joint permeameter was developed by modifying the field permeameter developed at Worcester Polytechnic Institute (WPI) (4). The permeameter developed at WPI was based on the NCAT field permeameter (6). The WPI device (Figure 1) has three tiers, a flexible base, and five donut shaped weights. A scale is attached to the top two tiers for reading the level of water. The three tiers were recommended (5) for testing pavements with a wide range of permeability, and hence different rates of water flow. A flexible closed-cell sponge rubber is used as the base because of its non-absorptive nature and its ability to prevent flow of water through the macrostructure of the pavement surface. The donut shaped weights (total of 47 kg or 110 lb) resist the uplift forces exerted by the introduction of water into the device and maintain a good seal with the pavement surface. Use of this sealing system allows for cores to be taken at the exact spot that testing is conducted.

Figure 2 shows a schematic cross-section view of the longitudinal joint permeameter developed in this project. Two inch thick PVC plastic was chosen for the base of the permeameter due to its rigidity, ease of machining, and natural resistance to water. No painting, sealing, or other maintenance is required. This base plate was mounted to an appliance hand truck which not only allows ease of movement along the roadway but also provides some of the weight required to seal the permeameter to the pavement. Holes were cut along the center line of the base plate to accommodate three clear Lexan standpipes. The standpipe design for this permeameter deviates from the WPI device in that it is a straight pipe instead of tiered. Lack of use of the bottom two tiers in the WPI permeameter and simplified construction were the main reasons for this design change. The inside diameter of the pipe is 2.5 inches and the length of each pipe is 24 inches, resulting in a volume of roughly 60 in<sup>3</sup> which is sufficient for the increased flow rates over the longitudinal joint.




Figure 1. Sketch and photo of the WPI permeameter

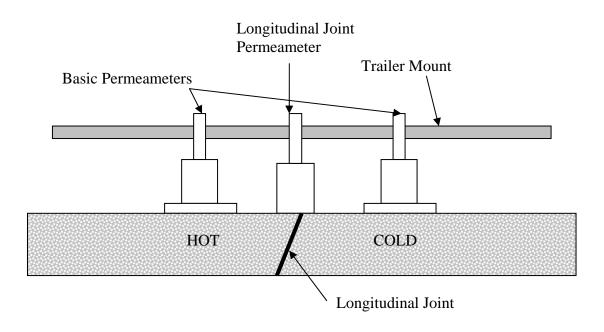



Figure 2. Schematic Diagram of Longitudinal Joint Permeability Trailer

The WPI permeameter used a 55 gallon drum to feed the device, relying on natural pressure and gravity heads to fill the permeameter. While this system was adequate, it was a slow process that took even longer when the drum was nearly empty or when the pavement was highly permeable. It was theorized that the pavement could become saturated to varying degrees that would be difficult to measure in the field. To remedy this, the longitudinal joint permeameter was designed with a 2 inch PVC ball valve at the bottom of the standpipe so that the water flow could be stopped while the pipe was filled with water and opened instantly when flow was desired. However, it was found that valves of this size and construction are difficult to operate quickly and it would be nearly impossible to operate three of them simultaneously via a linkage system. Brass ball valves were considered but the cost was deemed to be too high. A simple, low cost solution was found in the rubber ball flaps used in toilet tanks. These flaps are cheap, easy to use, and maintenance free. The conical-shaped piece of soft rubber seals perfectly against a 3 inch to 2 inch PVC reducing coupling, and three of them were easily mounted to a linkage to allow simultaneous operation.

Included in the revised design was a twelve volt water pump to assist the flow of water from the 55 gallon drum to the permeameter. To power the pump a twelve volt tractor battery was strapped to the bottom of the hand truck. Also, an automatic timing system was designed to make timing measurements more consistent and repeatable. The design employed two liquid-level float switches and a digital timer for each standpipe. When the water level dropped below the top switch the timer was activated. The timer ran until the water level dropped below the bottom switch at which point the timer stopped and held the elapsed time until the timer was manually reset by the operator. This allowed all three locations to be tested at the same time by one operator, even if the permeability of the pavement under each standpipe was vastly different.

The distance between the two level switches was also adjustable so that the operator could shorten or lengthen the test time if required. The only drawback to this setup was the switches and their associated holders occupied some of the volume inside the standpipe. The revised design of the longitudinal joint permeameter also included different profiles under the center standpipe that could be swapped in a matter of minutes in the field. An area under the center standpipe was milled to a depth of 0.5 inch and four PVC plastic plates were machined with different sized slots and designed to bolt into this area. One of the plates employed a circular hole that is the same size as the side standpipes. The other three plates had rectangular slots of various dimensions milled in them so that the water would flow over the longitudinal joint and nowhere else.

During preliminary testing, it was found that additional weight, beyond the self weight of the device, was required to achieve an adequate seal with the pavement surface. An adequate seal is achieved when no leaking is observed around the foam ring in contact with the pavement surface. Steel weights were placed on top of the hand truck once it had been put in place over the measurement location. Different thicknesses of foam base are needed under each of the standpipes to account for any crown or slope in the road. A method of quickly attaching various thicknesses of base foam was developed to allow for adjusting to different pavement profiles at each measurement location. After preliminary tests, the automatic timing system was abandoned due to operational problems. It was just as efficient to manually open and close the standpipe valves with the system linkage for a specified length of time and record the water head before and after in each standpipe. Figure 3 shows the completed permeameter being used in the field.





(b)



(c)

Figure 3. (a) Permeameter taken down from truck; (b) Filling with water; (c) close-up of permeameter on joint

## 4.0 Testing

#### 4.1 Longitudinal Joint Testing Sites

Over the course of this project, longitudinal joint testing was performed on joints in all New England states except RI, on mixtures with NMSA ranging from 25 mm down to 9.5 mm, and joint types that included conventional construction methods and improved techniques such as heating the joint and joint sealers. There were several opportunities to test in RI, however malfunctioning equipment and conflicting schedules prevented testing from actually taking place for this project. Table 1 provides a summary of each testing site. The sites were selected with the assistance of DOT personnel in each state. One of the biggest challenges in this project was finding sites that had appropriate traffic control to allow the joint testing to take place. This was the limiting factor in the number of sites that could be tested.

#### 4.2 Testing Procedure

At each testing site, three to five testing locations were selected for each joint type (if more than one joint type was represented at that site). At each testing location, three to five replicate measurements were performed. The procedure for performing the test at each location was as follows:

- 1. Place permeameter at testing location and determine the approximate crown in the road.
- 2. Attach appropriate thickness foam disks under each standpipe to account for crown.
- 3. Replace permeameter on testing location and add steel weights.
- 4. Fill standpipes with water and open valves to make sure there is no leaking at pavement surface.
- 5. Refill standpipes if needed and record initial head.
- 6. Open valves for specified time (30-60 seconds).
- 7. Record final head, check for leaks.
- 8. Repeat steps 5-7 for desired number of replicates.
- 9. Unload weights, mark coring locations (if applicable) and move permeameter to next testing location.
- 10. Repeat steps 1-9 for desired number of test locations.

| State | Site Details                                                                           | Date<br>Tested | Date<br>Paved    | NMSA<br>(mm) | Joint Type(s)                                                                                                          | Cores<br>Taken           | Notes                                                                                                            |
|-------|----------------------------------------------------------------------------------------|----------------|------------------|--------------|------------------------------------------------------------------------------------------------------------------------|--------------------------|------------------------------------------------------------------------------------------------------------------|
| NH    | Intermediate course on I-<br>93 Southbound Lanes<br>between Exits 26&27 in<br>Plymouth | 6/9/04         | June 2003        | 19           | Conventional,<br>Infrared Heater                                                                                       | At the test locations    | Initial Testing with<br>permeameter, both circular<br>and rectangular bottom plates<br>were used for the joint   |
| NH    | Intermediate course on I-<br>93 Southbound Lanes<br>between Exits 26&27 in<br>Plymouth | 7/29/04        | June 2003        | 19           | Conventional,<br>Infrared Heater                                                                                       | At other locations       | Testing with the circular plate<br>only. Testing done as close as<br>possible to the cores taken in<br>June 2003 |
| NH    | Surface course on I-93<br>Southbound Lanes<br>between Exits 26&27 in<br>Plymouth       | 8/10/04        | 8/2/04           | 12.5         | Conventional,<br>Infrared Heater                                                                                       | At other locations       | Testing with the circular plate<br>only. Testing done as close as<br>possible to the cores taken on<br>8/2/04    |
| NH    | Base course on Rt 153 in Farmington                                                    | 7/12/04        | 7/12/04          | 25           | Conventional                                                                                                           | At the test locations    | Testing with the circular plate only.                                                                            |
| NH    | Base course on Rt 25 in<br>Effingham                                                   | 8/4/04         | 8/4/04           | 19           | Conventional                                                                                                           | At the test locations    | Testing with the circular plate only.                                                                            |
| ME    | Surface course on I-95                                                                 | 9/1/04         | Aug/Sept<br>1999 | 12.5         | Rubberized joint<br>sealer, Emulsified<br>asphalt sealer HFMS-<br>1, Koch SealerProduct<br># 900S-HV<br>Joint Adhesive | At the test<br>locations | Circular plate                                                                                                   |
| СТ    | Surface course on Rt 44<br>in Pomfret                                                  | 11/19/04       | 7/27/04          | 12.5         | Pinched joint                                                                                                          | At the test locations    |                                                                                                                  |
| СТ    | Surface course on Rt 17<br>in Glastonbury                                              | 11/18/04       | 7/26/04          | 12.5         | Pinched joint                                                                                                          | At the test locations    |                                                                                                                  |
| СТ    | Surface course on Rt 17<br>in Middletown                                               | 11/18/04       | 7/27/04          | 12.5         | Pinched joint                                                                                                          | At the test locations    |                                                                                                                  |
| ME    | Surface course I-95                                                                    | 6/9/05         | 6/9/05           | 19           | Rubber joint sealer<br>with overlapping joint                                                                          | At the test locations    |                                                                                                                  |

 Table 1. Summary of Longitudinal Joint Testing Sites

| State | Site Details                                | Date<br>Tested | Date<br>Paved | NMSA<br>(mm) | Joint Type(s)                         | Cores<br>Taken           | Notes                                |
|-------|---------------------------------------------|----------------|---------------|--------------|---------------------------------------|--------------------------|--------------------------------------|
| MA    | Surface course I-95<br>North                | 7/13/05        | 7/18/05       | 12.5         | Pinched joint                         | At the test<br>locations |                                      |
| СТ    | Middletown                                  | 8/8/05         | 7/27/04       | 12.5         | Pinched joint                         | At the test locations    | 10ft north of original sites         |
| СТ    | Glastonbury                                 | 8/8/05         | 7/26/04       | 12.5         | Pinched Joint                         | At the test locations    | 10ft north of original sites         |
| СТ    | Pomfret                                     | 8/10/05        | 7/27/04       | 12.5         | Pinched Joint                         | At the test locations    | 10ft east of original test sites     |
| VT    | Surface course on I91,<br>north of mile 101 | 9/28/05        | 9/27/05       | 12.5         | 1/3 taper with tack                   | QC/QA cores              |                                      |
| ME    | Rt 5 in Lovell                              | 10/17/05       | 10/17/05      | 9.5          | 1" overlap,<br>conventional with tack | At the test locations    | Nuke gage readings at test locations |

#### 4.3 Core Testing

In most cases, cores were taken at the longitudinal permeameter test locations after testing was complete. For other cases, cores were obtained at other locations or results from QC/QA cores taken by the state were used. The volumetric properties of the core samples were evaluated in the laboratory using the following test procedures:

- ASTM D 3549 Method for Determining Thickness or Height of Compacted Bituminous Paving Mixture Specimens.
- AASHTO T 166 Bulk Specific Gravity of Compacted Bituminous Mixtures Using Saturated Surface Dry Specimens.
- AASHTO T 269 Percent Air Voids in Compacted Dense and Open Bituminous Paving Mixtures.

In addition, the Modified AASHTO TP 9 – Standard Test Method for Determining the Creep Compliance and Strength of Hot Mix Asphalt using the Indirect Tension Test Device was performed on some of the cores to determine the Indirect Tensile Strength (ITS). Cores were aligned such that the joint was vertical, testing the strength of the joint.

## 5.0 Analysis

#### 5.1 Calculation of Permeability and Infiltration

The permeability of the HMA for each replicate test was calculated using equation (1).

$$k = \left(\frac{aL}{At}\right) \ln\left(\frac{h_1}{h_2}\right) \tag{1}$$

where:

k = coefficient of permeability, cm/s

a = inside cross sectional area of standpipe, cm<sup>2</sup>

L = thickness of HMA course, cm

A = cross sectional area of hole through which water flows,  $cm^2$ 

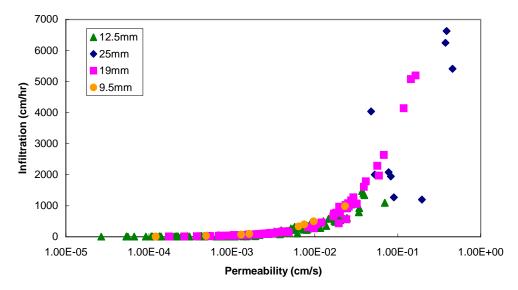
 $t = elapsed time between h_1 and h_2, s$ 

- $h_1$  = initial head in permeameter, cm
- $h_2 = final head in permeameter, cm$

The thickness of the HMA course for sites where a core was not taken at the same location as the permeameter testing was determined by averaging the thickness of up to 5 cores closest to that station. The averages of the replicate readings for the joint and both mat standpipes at each location were calculated and used in further analysis. This data is summarized in Appendix A.

The flow of water into the pavement from the permeameter is not restricted to one-dimensional flow, as assumed in equation (1). The water from the permeameter can flow in all three dimensions, so that a measure of infiltration may be more appropriate for analysis. Infiltration values from replicate measurements at each test location were calculated using equation (2).

$$Inf = \frac{a(h_1 - h_2)}{At} \tag{2}$$


where:

Inf = infiltration, cm/hr a = inside cross sectional area of standpipe,  $cm^2$ h<sub>1</sub> = initial head in permeameter, cm  $h_2$  = final head in permeameter, cm A = cross sectional area of hole through which water flows, cm<sup>2</sup>

 $t = elapsed time between h_1 and h_2, hr$ 

The average infiltration measurements at each location are summarized in Appendix B.

A relationship exists between the permeability and infiltration values, as shown in Figure 4.



#### Figure 4. Relationship between Permeability and Infiltration for all Test Locations

In addition to calculating the average permeability and infiltration values under each standpipe at each location, the joint measurements as a percentage of the average mat measurements were calculated, as shown in equation (3). This was done to normalize the data and allow for comparison between different projects.

$$\frac{Jt}{Mat}\% = \frac{Jt.measurement}{\left(\frac{Mat_1 meas + Mat_2 meas}{2}\right)} *100\%$$
(3)

Figure 5 shows the average joint permeability as a percentage of the mat permeability for each test site (average of all testing locations at each site). The different patterns indicate the different NMSA mixtures; starting with the 25 mm mixture on the left and decreasing to the 9.5 mm mixture on the right. The smaller the bar, the closer the joint permeability is to the mat permeability. A value of 100 indicates the permeability of the joint and the mat are the same. The 12.5 mm Maine sites where various joint sealers were used have values below 100, indicating that the joint is less permeable than the mat. The graph also shows the effect of improved construction technique; the 19mm and 12.5mm NH I 93S sites have higher permeabilities than the NH I 93S heat sites, where the infrared joint heater was used.

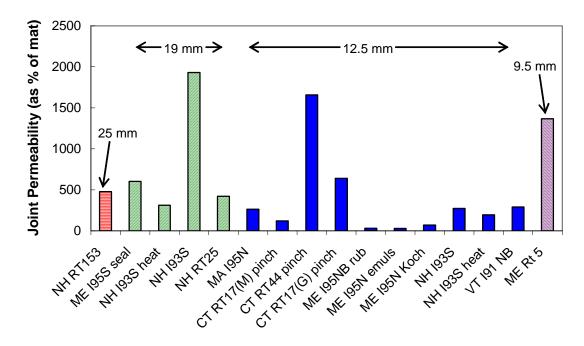



Figure 5. Average Joint Permeability as a Percentage of Average Mat Permeability

The average joint infiltration as a percentage of the mat infiltration for each test site is shown in Figure 6. The same patterns and trends observed from the permeability measurements can be seen with the infiltration measurements. The relative ranking among all of the sites is the same whether permeability or infiltration measurements are used.

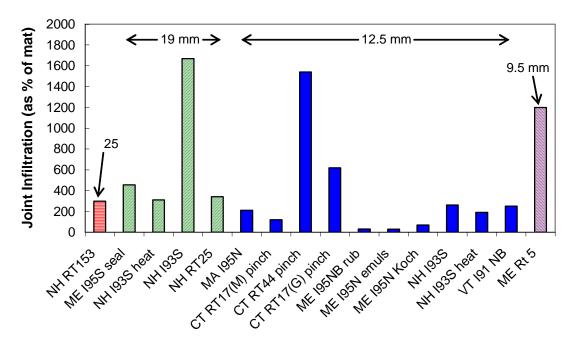



Figure 6. Average Joint Infiltration as a Percentage of Average Mat Infiltration

#### 5.2 Circular vs Rectangular Opening for Joint Measurement

Preliminary tests were conducted with rectangular (6 inch by 0.5 inch) and circular (2.5 inch diameter) base plate openings under the center standpipe at the same locations along the 19 mm NH I93S test site. The results are shown in Figure 7. In all but one case, the permeabilities are very similar, with the circular plates measuring a slightly higher permeability than the rectangular plates. The measurement on the joint at station 76+10 with the rectangular plate is higher, likely due to inadequate seal with the pavement surface. In the field, it was difficult to consistently place the rectangular base plate to make the opening center coincide with the center of the joint. Also, the circular plate opening not only covered part of the "joint" but a small area on the sides, which are equally important. Therefore, the plate with the circular opening was used exclusively for the remainder of the project testing.

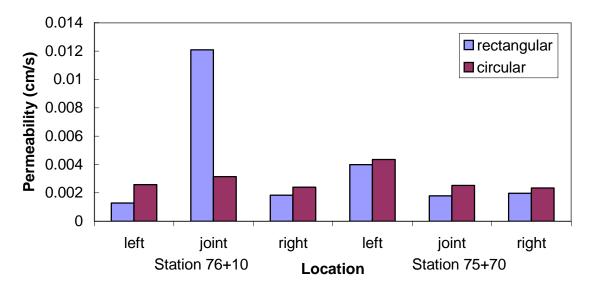



Figure 7. Permability Measured using Rectangular and Circular Base Plate Opening

#### **5.3 Individual Permeameter Measurements**

At each test location, three to five replicate measurements were made. From these individual measurements, the average (mean), standard deviation and sample variance were calculated for each location. This statistical analysis was performed on the permeability measurements. The data is summarized in Appendix A.

Figure 8 shows the relationship between the average permeability and the sample variance at all testing locations. The filled symbols represent the measurements on the mat and the open symbols represent the measurements on the joint. Sites where the average permeability was measured as zero have zero variance and are not plotted on the graph. The general trend shows that the sample variance increases with higher permeability measurements. Also, the coarse mixtures show higher permeability measurements, as would be expected.



Figure 8. Sample Variance versus Average Permeability for All Test Locations

The standard deviation as a function of the average permability is shown in Figure 9. The same trends observed with the sample variance are seen. It is also important to determine the magnitude of the standard deviation with respect to the mean value by looking at the coefficient of variability (COV). Figure 10 shows this data. There are no trends with respect to gradation size or mat versus joint measurements. However, there is a large range of values; with COV ranging from less than 10% to over 100%.

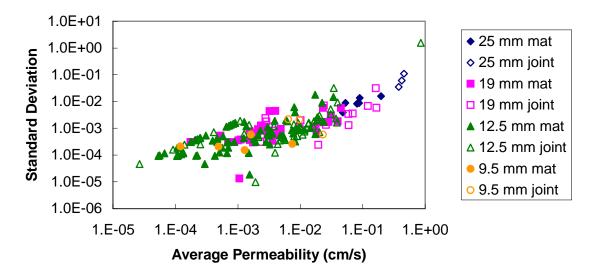



Figure 9. Standard Deviation versus Average Permeability for All Test Locations

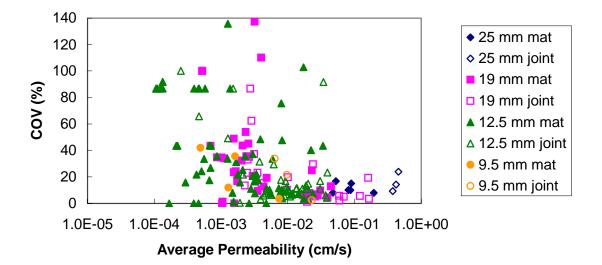



Figure 10. COV versus Average Permeability for All Test Locations

Statistical analysis using a t-test with 95% confidence was performed to determine if there was a statistical difference between the mat and joint measurements at each test location. This data is summarized in Tables 2-5 for the different NMSA mixtures. A "S" indicates that the replicate measurements from the two different standpipes are from a different population, or that the measured permeabilities are different. A "NS" indicates that they are from the same population, or the measured permeabilities are statistically the same. There are only a few tests sites where the statistical analysis of all the test locations agree as to whether there is a statistical difference between the measurements. This could be due to variability in the replicate measurements, or could reflect true construction variability along the site. If there is a significant difference between the mat and joint measurements, one may expect performance problems with the joint. However, these measurements must be related to the actual performance of the joint over time to develop criteria for acceptance. This is discussed further in section 6.

| Test Site | Location | U              | ference Between<br>ficant; NS = not s |   |
|-----------|----------|----------------|---------------------------------------|---|
|           |          | Mat 1 vs Joint | Mat 2 vs Joint                        |   |
|           | 1 S      | S              | NS                                    |   |
| ME Rt 5   | 2        | S              | S                                     | S |
|           | 3        | S              | S                                     | S |

 Table 2. Statistical Analysis of Permeability Measurements for 9.5 mm Test Locations

|                  |          | Significant Difference Between Measurements? |                                      |                |  |  |  |
|------------------|----------|----------------------------------------------|--------------------------------------|----------------|--|--|--|
| Test Site        | Location | _                                            | S= Significant; NS = not significant |                |  |  |  |
|                  |          |                                              |                                      | Mat 1 vs Mat 2 |  |  |  |
|                  | 1        | NS                                           | NS                                   | NS             |  |  |  |
| MA 95NB          | 2        | S                                            | NS                                   | S              |  |  |  |
|                  | 3        | NS                                           | NS                                   | S              |  |  |  |
| CT Rt 17         | 1        | S                                            | NS                                   | S              |  |  |  |
|                  | 2        | NS                                           | NS                                   | NS             |  |  |  |
| Middletown       | 3        | NS                                           | NS                                   | NS             |  |  |  |
| 2004             | 4        | NS                                           | NS                                   | NS             |  |  |  |
|                  | 5        | NS                                           | NS                                   | NS             |  |  |  |
|                  | 1        | NS                                           | NS                                   | NS             |  |  |  |
| CT Rt 17         | 2        | NS                                           | NS                                   | NS             |  |  |  |
| Middletown       | 3        | NS                                           | NS                                   | NS             |  |  |  |
| 2005             | 4        | NS                                           | NS                                   | NS             |  |  |  |
|                  | 5        | NS                                           | NS                                   | NS             |  |  |  |
|                  | 1        | S                                            | S                                    | NS             |  |  |  |
| CT D4 44         | 2        | S                                            | S                                    | S              |  |  |  |
| CT Rt 44         | 3        | S                                            | S                                    | NS             |  |  |  |
| 2004             | 4        | S                                            | S                                    | NS             |  |  |  |
|                  | 5        | S                                            | S                                    | NS             |  |  |  |
|                  | 1        | S                                            | S                                    | NS             |  |  |  |
| CT D4 44         | 2        | S                                            | S                                    | S              |  |  |  |
| CT Rt 44<br>2005 | 3        | S                                            | S                                    | NS             |  |  |  |
| 2003             | 4        | S                                            | S                                    | NS             |  |  |  |
|                  | 5        | S                                            | S                                    | NS             |  |  |  |
|                  | 1        | S                                            | S                                    | S              |  |  |  |
| CT Rt 17         | 2        | S                                            | S                                    | S              |  |  |  |
| Glastonbury      | 3        | S                                            | S                                    | NS             |  |  |  |
| 2004             | 4        | NS                                           | NS                                   | S              |  |  |  |
|                  | 5        | S                                            | S                                    | S              |  |  |  |
|                  | 1        | NS                                           | NS                                   | NS             |  |  |  |
| CT Rt 17         | 2        | S                                            | S                                    | NS             |  |  |  |
| Glastonbury      | 3        | NS                                           | NS                                   | NS             |  |  |  |
| 2005             | 4        | S                                            | S                                    | NS             |  |  |  |
|                  | 5        | S                                            | S                                    | NS             |  |  |  |
| ME I95 NB        | 1        | NS                                           | NS                                   | NS             |  |  |  |
| Rubberized       | 2        | NS                                           | NS                                   | NS             |  |  |  |
| Kubbelizeu       | 3        | S                                            | NS                                   | NS             |  |  |  |
| ME I95 NB        | 1        | S                                            | NS                                   | S              |  |  |  |
| Emulsified       | 2        | S                                            | S                                    | S              |  |  |  |
|                  | 3        | NS                                           | NS                                   | NS             |  |  |  |
| ME I95 NB        | 1        | NS                                           | NS                                   | S              |  |  |  |
| Koch             | 2        | NS                                           | NS                                   | NS             |  |  |  |

Table 3. <u>Statistical Analysis of Permeability Measurements for 12.5 mm Test Locat</u>ions

|                      | 3 | NS | NS | NS |
|----------------------|---|----|----|----|
| NH 193 SB<br>Control | 1 | S  | S  | S  |
|                      | 2 | S  | S  | S  |
|                      | 3 | S  | S  | S  |
|                      | 4 | S  | S  | NS |
|                      | 5 | S  | S  | S  |
|                      | 1 | NS | S  | NS |
| NH I93 SB<br>Heater  | 2 | S  | S  | S  |
|                      | 3 | S  | NS | S  |
|                      | 4 | NS | S  | S  |
|                      | 5 | S  | S  | S  |
| VT I91 NB            | 1 | S  | S  | S  |
|                      | 2 | S  | S  | S  |
|                      | 3 | S  | S  | S  |

 Table 4. Statistical Analysis of Permeability Measurements for 19 mm Test Locations

|                                   |          | Significant Difference Between Measurements? |                   |                |  |  |
|-----------------------------------|----------|----------------------------------------------|-------------------|----------------|--|--|
| Test Site                         | Location | S= Signif                                    | icant; NS = not s | significant    |  |  |
|                                   |          | Mat 1 vs Joint                               | Mat 2 vs Joint    | Mat 1 vs Mat 2 |  |  |
|                                   | 1        | S                                            | S                 | NS             |  |  |
| ME I95 SB<br>NH I93 SB<br>Control | 2        | S                                            | S                 | NS             |  |  |
|                                   | 3        | S                                            | S                 | NS             |  |  |
|                                   | 4        | NS                                           | S                 | S              |  |  |
|                                   | 5        | NS                                           | NS                | S              |  |  |
|                                   | 1        | NS                                           | NS                | S              |  |  |
|                                   | 2        | S                                            | S                 | S              |  |  |
|                                   | 3        | S                                            | S                 | NS             |  |  |
| Control                           | 4        | S                                            | S                 | NS             |  |  |
|                                   | 5        | S                                            | S                 | S              |  |  |
|                                   | 1        | S                                            | NS                | S              |  |  |
| NH I93 SB                         | 2        | S                                            | NS                | NS             |  |  |
| Heater                            | 3        | S                                            | S                 | NS             |  |  |
| Heater                            | 4        | S                                            | S                 | S              |  |  |
|                                   | 5        | S                                            | S                 | S              |  |  |
|                                   | 1        | S                                            | S                 | NS             |  |  |
|                                   | 2        | S                                            | S                 | S              |  |  |
| NH Rt 25                          | 3        | S                                            | S                 | NS             |  |  |
|                                   | 4        | S                                            | S                 | S              |  |  |
|                                   | 5        | S                                            | S                 | S              |  |  |

|  | Test Site | Location | Significant Difference Between Measurements?<br>S= Significant; NS = not significant |                |                |
|--|-----------|----------|--------------------------------------------------------------------------------------|----------------|----------------|
|  |           |          | Mat 1 vs Joint                                                                       | Mat 2 vs Joint | Mat 1 vs Mat 2 |
|  | NH Rt 153 | 1        | S                                                                                    | S              | S              |
|  |           | 2        | S                                                                                    | S              | NS             |
|  |           | 3        | S                                                                                    | S              | S              |

 Table 5. Statistical Analysis of Permeability Measurements for 25 mm Test Locations

#### 5.4 Overall Test Site Permeameter Measurements

In addition to the statistical analysis in section 5.3, all permeability measurements made from each standpipe on a particular test site were pooled to determine if there was a significant difference in the permeabilities measured on each mat and on the joint on an overall basis for that site. This analysis includes construction variability that happens along the area of the project spanned by the permeability test locations. The t-test was used with 95% confidence to determine if the measurements were statistically different or not. The data for all project sites is summarized in Table 6 below. A "S" indicates a significant difference, a "NS" indicates there is not a significant difference between the two data sets. A significant difference between the mat and joint measurements could be an indicator of potential joint problems, depending upon the magnitude of the difference. This information of significant difference in permeability measurements should be combined with the quantitative measurements and observations of field performance over time to develop quality control criteria.

| NMSA    | Project<br>Test Site | Significant Difference Between Measurements?<br>S= Significant; NS = not significant |                |                |
|---------|----------------------|--------------------------------------------------------------------------------------|----------------|----------------|
|         | Test Site            | Mat 1 vs Joint                                                                       | Mat 2 vs Joint | Mat 1 vs Mat 2 |
| 9.5 mm  | ME Rt 5              | S                                                                                    | S              | NS             |
|         | MA I95 NB            | NS                                                                                   | NS             | NS             |
|         | CT Rt 17 (M) '04     | NS                                                                                   | NS             | NS             |
|         | CT Rt 17 (M) '05     | NS                                                                                   | NS             | NS             |
|         | CT Rt 44 '04         | S                                                                                    | S              | NS             |
|         | CT Rt 44 '05         | S                                                                                    | S              | NS             |
|         | CT Rt 17 (G) '04     | S                                                                                    | S              | S              |
| 12.5 mm | CT Rt 17 (G) '05     | S                                                                                    | S              | NS             |
|         | ME I95 NB Rubber     | NS                                                                                   | S              | NS             |
|         | ME I95 NB Emuls      | S                                                                                    | NS             | NS             |
|         | ME I95 NB Koch       | NS                                                                                   | NS             | S              |
|         | NH I93 SB Contr      | S                                                                                    | S              | S              |
|         | NH I93 SB Heater     | S                                                                                    | S              | NS             |
|         | VT I91 NB            | S                                                                                    | S              | S              |
| 19 mm   | ME I95 SB            | S                                                                                    | S              | S              |
|         | NH I93 SB Contr      | S                                                                                    | S              | S              |
|         | NH I93 SB Heater     | S                                                                                    | S              | NS             |

 Table 6. Statistical Analysis of Permeability Data Pooled from all Testing Locations for each Project Test Site

|       | NH Rt 25  | S | S | NS |
|-------|-----------|---|---|----|
| 25 mm | NH Rt 153 | S | S | NS |

#### 5.5 Core Data

The indirect tensile strength (ITS) and the air void content of cores taken from the testing sites were measured and the data is presented in this section. The core data for each site is summarized in Appendix B.

#### 5.5.1 Relationship with Permeability

Figure 11 shows the air void content as a function of the measured permeability values. The permeability values are the average of the replicate values measured at that particular location. Only test sites where the cores were taken at the permeability test locations are shown on this graph. Due to the logarithmic scale in the figure, permeability measurements of zero are plotted as  $1.0 \times 10^{-6}$ ; these points all appear on the y-axis. There is a very general trend of increasing permeability with increasing air void content, as would be expected. However, the scatter in this relationship is significant. The 25 mm, 19 mm, and 9.5 mm NMSA data appear to be clustered together whereas the 12.5 mm data is more scattered. This could be due to the fact that there are more 12.5 mm testing sites. The 25 mm and 9.5 mm points each only represent one testing site. There is also a wide range of air void contents measured at locations where permeability was measured as zero. This indicates that air content by itself cannot explain the variation in permeability, since both surface voids/texture as well as air voids are known to affect permeability.

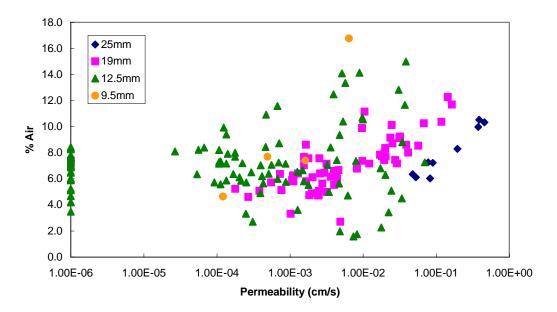



Figure 11. Air Void Content versus Permeability

The ITS measured from each core as a function of the average permeability at that location is shown in Figure 12. Permeability measurements of zero are plotted as values of  $1.0 \times 10^{-6}$  on the logarithmic scale. The expected trend of decreasing ITS with increasing permeability is seen,

with a significant amount of scatter. Also, there is a wide range of ITS strengths measured for locations at which the permeability was measured as zero.

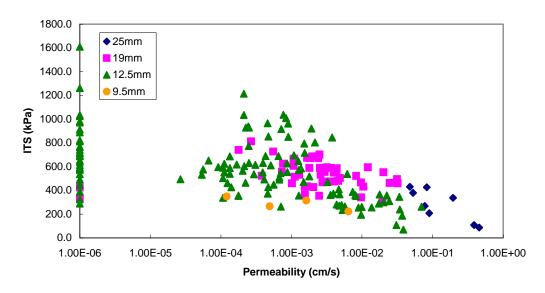



Figure 12. Indirect Tensile Strength versus Permeability

Figure 13 shows the relationship between ITS and air void content for the cores. The higher air void content cores have lower ITS strength, as expected. There is one 12.5 mm core that measured exceptionally high strength; the reason for this is unknown.

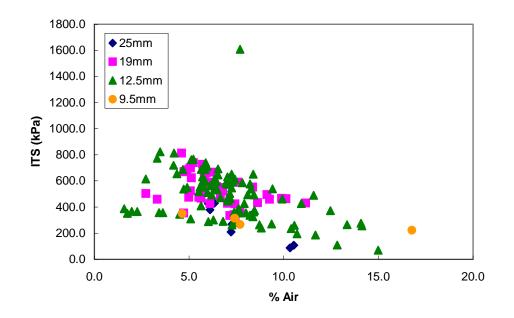



Figure 13. Indirect Tensile Strength versus Air Void Content

#### 5.5.2. Statistical Analysis of Core Data

Statistical analysis of the ITS and air void data was performed and the data can be found in Appendix C. The sample variance as a function of the average values for the ITS and air void data are shown in Figures 14 and 15, respectively. The 12.5 mm mixtures show a trend of increasing variance with increasing ITS, but the other mixtures do not show that trend or do have enough data points to determine a trend. The air void data does not show any trend with sample variance for any of the mixtures.

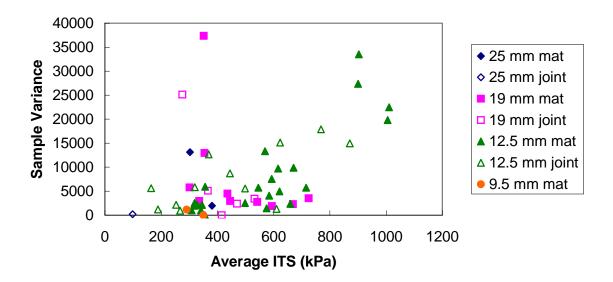



Figure 14. Sample Variance versus Average Indirect Tensile Strength

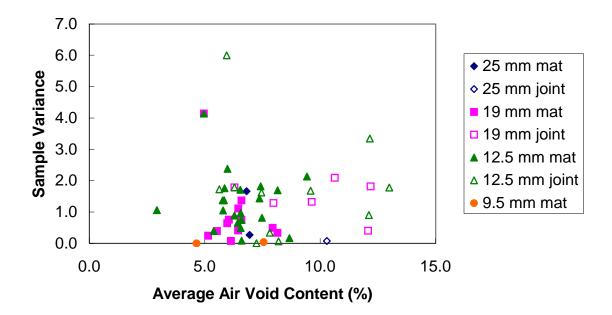



Figure 15. Sample Variance versus Average Air Void Content

Figures 16 and 17 show the relationship between COV and ITS and air void content, respectively. There are no trends for the various mixtures. The COV for the ITS data ranges from 0% to 60% and from 0% to 40% for the air void data. These COV ranges are smaller than those reported for the permeability measurements.

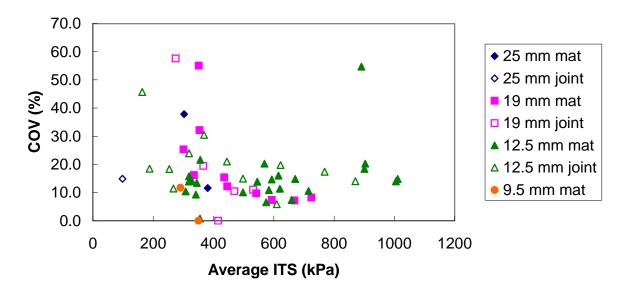



Figure 16. Coefficient of Variability versus Average Indirect Tensile Strength

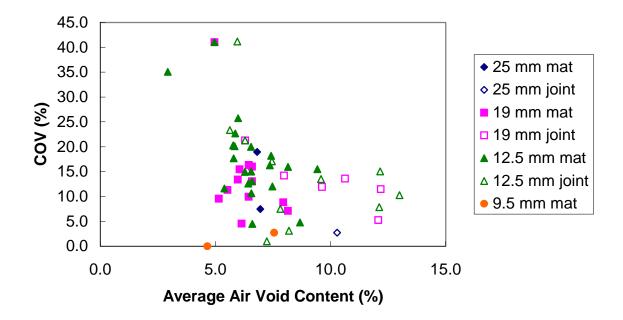



Figure 17. Coefficient of Variability versus Average Air Void Content

#### 5.5.3. Comparison of Test Sites

The average ITS measured from the joint cores as a percentage of the mat cores for each project was calculated using equation (3) on pg XX. The data is presented in Figure 18. There are two sites (NH Rt 25 and VT I91) where ITS test data was not available. All but one of the sites have values below 100, indicating that the joint cores were weaker than the mat cores. One site, 19 mm NH I93S, has a value greater than 100. Only one joint core (of 8) at this site survived the coring and transportation process, so this value only represents the results of one test.

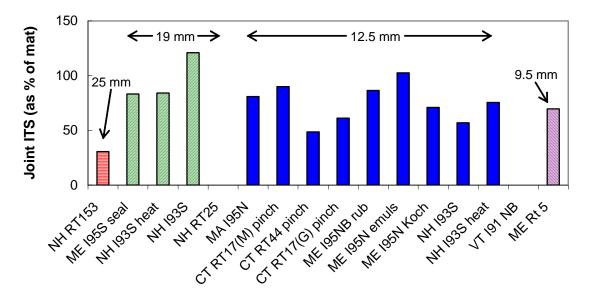



Figure 18. Joint Indirect Tensile Strength as a Percentage of Mat Indirect Tensile Strength

Figure 19 shows the average air voids measured from the joint cores as a percentage of the mat cores for each project, calculated using equation (3). The closer the values are to 100, the more similar the mat and joint air void contents. The ranking between the various projects for the ITS and air void data are not the same; also these rankings are different than the rankings determined from the permeability and infiltration analysis presented in section 5.1.

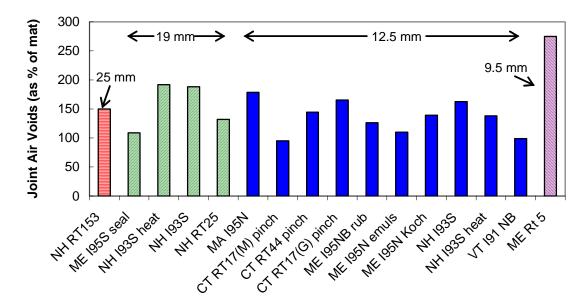



Figure 19. Joint Air Void Content as a Percentage of Mat Air Void Content

## 6.0 Development of Quality Control (QC) Criterion

One of the objectives of this project was to develop acceptance criteria for use of the permeameter as a quality control tool. To accomplish this objective, the performance of the longitudinal joints must be monitored over time. Within the time and logistical constraints of this project, there were seven test sites for which performance data was available. These are the 19mm NH I 93 SB control and joint heater sections, the 12.5 mm NH I 93 SB control and joint heater sections, and the three 12.5 mm ME I 95 joint sealer sections.

For the available sites, performance was measured in terms of the linear length of longitudinal joint cracking observed as a percentage of the overall section length. The performance data and timing of the permeameter testing for the various test sites is summarized in Table 7 below. At five of the test sites, the permeameter testing was performed at least one year after construction. Therefore, the permeability measurements may be different than those that would have been measured immediately after construction; particularly if the joint has shown some deterioration. In the case of the 19 mm NH control mix, locations away from the cracked joint were tested because it is difficult to obtain a good seal with the pavement surface along a cracked section. However, because so much of the joint was cracked, the sections that were tested likely are not a true representation of the overall permeability of that joint. The Maine sections showed very little cracking even after 5 years in service, so random locations along the sections has been attributed to construction issues and is not indicative of the true joint performance (9).

| Test Site                 | Age of Pavement when<br>Permeameter Testing<br>Was Performed | % cracking of longitudinal<br>Joint & age of pavement |
|---------------------------|--------------------------------------------------------------|-------------------------------------------------------|
| 19 mm NH I93 SB control   | 1 yr                                                         | 93% at 1 yr                                           |
| 19 mm NH I93 SB heater    | 1 yr                                                         | 17% at 1 yr                                           |
| 12.5 mm NH I93 SB control | 1 week                                                       | 42.4% at 2 yrs                                        |
| 12.5 mm NH I93 SB heater  | 1 week                                                       | 1.7% at 2 yrs                                         |
| 12.5 mm ME I95 rubberized | 5 yrs                                                        | 1.9% at 5 yrs                                         |
| 12.5 mm ME I95 emulsion   | 5 yrs                                                        | 0.5% at 5 yrs                                         |
| 12.5 mm ME I95 Koch       | 5 yrs                                                        | 1.7% at 5 yrs                                         |

 Table 7. Summary of Longitudinal Joint Performance Data

In developing a permeability criterion for quality control use, the data from different sites need to be normalized to a unitless parameter because the permeability value itself may not give enough information with respect to the overall pavement. For example; a performance difference would be expected between two sites where the permeability of the joints were the same value but the permeabilites of the corresponding mats were different. If the joint permeability is significantly greater than that measured in the mat, joint cracking could be expected. If the mat and joint permeabilities are similar; there may be overall good or bad performance expected of the whole pavement. Therefore, the criterion examined in this project is the joint permeability as a percentage of the mat permeability, as calculated using equation (3). In addition to permeability, criteria using infiltration, air void content, and ITS strength were investigated.

Another important component to developing a quality control criterion is the definition of an unacceptable level of performance, i.e. cracking, at a certain point in time. Different agencies may have different tolerances for the amount of longitudinal cracking for different types of projects. It is also important to monitor the condition of the longitudinal joints over a period of several years to determine the best criterion; good performance after one year is not sufficient. The long term monitoring of the joints tested was beyond the scope of this project, but is strongly recommended for future work.

Figures 20 through 23 show the joint/mat permeability, infiltration, air void content, and ITS strength as a function of the percentage of longitudinal joint cracking observed, respectively. The criteria for joint permeability, infiltration, and air void content should be a maximum value whereas the criteria for ITS should be a minimum value. The permeability and infiltration figures (20 and 21, respectively) are very similar and appear to indicate that a criteria could be established; particularly for the 19 mm mixtures. The air void and ITS figures (22 and 23, respectively) show that the joints with different performance have similar values, making it difficult to establish a quality control criterion.

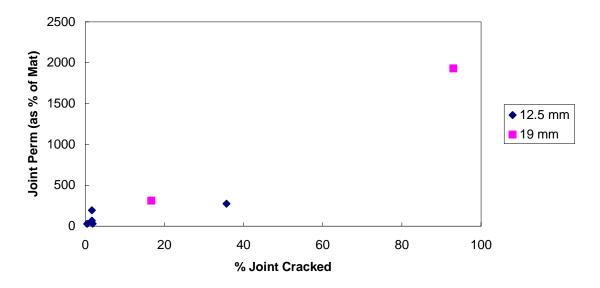



Figure 20. Joint Permeability as % of Mat Permeability versus % Longitudinal Joint Cracking

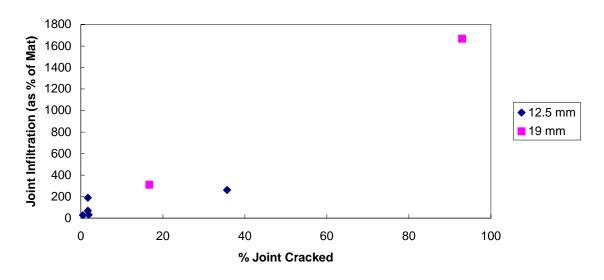



Figure 21. Joint Infiltration as % of Mat Infiltration versus % Longitudinal Joint Cracking

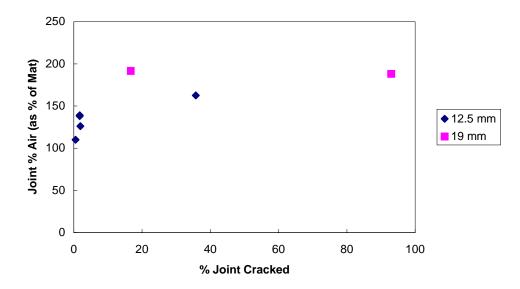



Figure 22. Joint Air Voids as % of Mat Air Voids versus % Longitudinal Joint Cracking

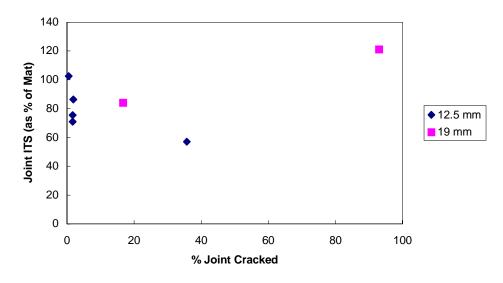



Figure 23. Joint ITS as % of Mat ITS versus % Longitudinal Joint Cracking

Table 8 presents the numerical values shown in Figures 20-23 as well as the statistical analysis of the mat versus joint measurements for permeability, air voids, and ITS. A significant difference in the mat and joint measurements would be expected to indicate possible performance problems with the joint if that criteria were directly related to the joint performance and the magnitude of the difference between the mat and joint measurements were significant. The ITS clearly does not identify the difference in performance between the two 19 mm sections, however there was only one joint core tested for the control section and this will impact the results. The air void measurements indicate there should be performance problems with two of the Maine sections when there is not. The Maine sites in particular show the advantage of using the permeameter

measurement as a quality control criterion for sealed joints. The sealing of the joint during construction does not necessarily improve the density of the joint but improves the water tightness of the joint and hence the performance.

|                           |            |        | Compa             | arison of [ | Mat an | d Joint   |          |
|---------------------------|------------|--------|-------------------|-------------|--------|-----------|----------|
| Test Site                 | % cracking | Perme  | ability           | Air V       | oids   | IT        | S        |
|                           |            | Jt/Mat | Diff?             | Jt/Mat      | Diff?  | Jt/Mat    | Diff?    |
| 19 mm NH I93 SB control   | 93         | 1930   | S                 | 188         | S      | $121^{2}$ | NS       |
| 19 mm NH I93 SB heater    | 17         | 313    | S                 | 192         | S      | 84        | NS       |
| 12.5 mm NH I93 SB control | 42.4       | 275    | S                 | 162         | S      | 57        | S        |
| 12.5 mm NH I93 SB heater  | 1.7        | 194    | S                 | 138         | S      | 75        | $S/NS^1$ |
| 12.5 mm ME I95 rubberized | 1.9        | 30     | $S/NS^1$          | 126         | S      | 86        | NS       |
| 12.5 mm ME I95 emulsion   | 0.5        | 28     | S/NS <sup>1</sup> | 110         | NS     | 102       | NS       |
| 12.5 mm ME I95 Koch       | 1.7        | 69     | NS                | 139         | S      | 71        | $S/NS^1$ |

 Table 8. Significant Difference between Mat and Joint Measurements

<sup>1</sup>Difference seen with one mat and not the other mat

<sup>2</sup>Represents results of only one core

In addition to the average value of the permeability criteria, the variability of the value must also be considered. Figures 24 and 25 show the average joint permeability criteria values versus the percent cracking for the 19 mm and 12.5 mm test sections, respectively. The error bars on each data point represent one standard deviation. When the variability of the data is considered, it is apparent that a quality control criterion cannot be established with statistical confidence at this time. Even though the average values show a difference, the variation is too high (for example in Figure 24, the low error bar for the control section incorporates the average value for the heater section). Further refinements in the permeameter measurements must be made to reduce the variability. Regardless, the use of the permeameter as a quality control tool for longitudinal joints shows great promise. Recommendations for further research and development are discussed below.

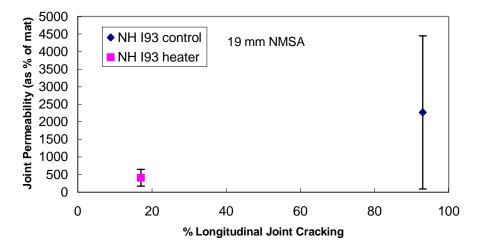
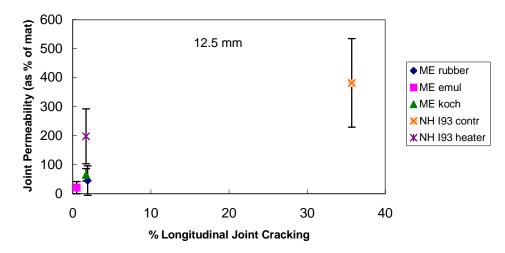
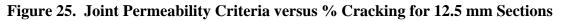





Figure 24. Joint Permeability Criteria versus % Cracking for 19 mm Sections





#### 7.0 Recommendations for Future Work

The major recommendation for future work is to refine the permeameter to reduce the variability in measurements and allow for easier and more efficient testing. Several issues that arose during the course of this project are as follows:

- It is difficult to achieve an adequate seal to the pavement surface with all three standpipes when there is a crown in the road.
- The permeameter overhangs the joint on both sides. Typically, one lane is open to traffic so there needs to be adequate traffic control and extra care must be taken by the operator of the permeameter.
- The additional weights required to resist the uplift pressure necessitate more than one operator for timely measurements to be taken at several locations along a site.

The research team recommends returning to a single standpipe permeameter that can truly be setup and run by a single operator. The single standpipe would eliminate the problems in testing pavements with a crown, most traffic control issues, and the complications of additional weights. Testing of one mat could be done prior to construction of the joint and then testing of the joint and second mat could be done within the typical traffic control setup for compaction. The amount of time required to test the three locations separately would likely be about the same as that needed to use the existing permeameter because of the additional time to adjust to the crown of the road and add all the additional weights.

Recent research in Wisconsin (10) has investigated the use of an air permeability device on pavements. The results indicate that air permameters are promising, although more work must be done. The researchers in Wisconsin also report a decreasing trend in subsequent permeability measurements made using an NCAT permeameter; indicating that steady state flow was not obtained. This needs to be investigated further before a water permeameter can be implemented as a quality control tool.

In addition to improvements to the testing device, long term monitoring of longitudinal joint performance and quantification of acceptable joint performance (i.e. percent cracking at x number of years) must be done to develop a quality control criterion. It is recommended that more testing be done on a larger number of sites and the performance monitored annually. Some testing can be performed on joints that have shown good performance over time, however joints with good and poor performance need to be tested to establish acceptable permeability or infiltration ranges for QC/QA purposes. The testing will be easier to accomplish with a single standpipe permeameter (air or water), but the issue of annual condition assessment will have to be addressed.

#### 8.0 Summary and Conclusions

The objective of this research was to evaluate a field permeameter as a tool to evaluate the quality of longitudinal joints. As part of the project, a field permeameter that can simultaneously test three locations, the longitudinal joint and one foot into both mats, was developed. The field permeameter was then used to test various longitudinal joints around New England. At most test locations, field cores were taken for additional laboratory testing that included measurement of air void content and indirect tensile strength. Where possible, the performance of the longitudinal joints that were tested during construction was monitored over the course of the project so that quality control criteria based on the permeameter testing could be developed.

The main conclusions from this project are:

- The use of a water tightness criterion for longitudinal joint quality control/quality acceptance is promising.
- Density and/or strength criteria can not identify the improvement in joint performance when joint sealants are used.
- There are construction techniques/methods that produce longitudinal joints that perform well in New England. Specifically, the longitudinal joints tested in this project where the joint was heated or joint sealers were used performed well.
- More equipment development and refinement is necessary to reduce the amount of variability in the results obtained with the field permeameter. Single standpipe air or water permeameters should be explored further.
- Long term performance data and a quantification of what constitutes acceptable joint performance is necessary before a quality control/quality assurance criterion can be established.

#### 9.0 References

1. Kandhal, P. S. and Rajib B. Mallick. Longitudinal Joint Construction Techniques for Asphalt Pavements, Presented and Published at the Eighth International Conference on Asphalt Pavements in Seattle, Washington August, 1997

- 2. Zube, E. Compaction Studies of Asphalt Concrete Pavements as Related to the Water Permeability Test. Bulletin 358. Highway Research Board, National Research Council, Washington, D.C., 1962.
- 3. Choubane, B., G.C. Page, and J.A. Musselman. Investigation of Water Permeability of Coarse Graded Superpave Pavements. Journal of the Association of Asphalt Paving Technologists, Volume 67. 1998.
- 4. Mallick, Rajib B., Allen Cooley, Matthew R. Teto and Richard L. Bradbury. Development of A Simple Test for Evaluation of In-Place Permeability of Asphalt Mixes, International Journal of Pavement Engineering, July, 2001.
- Cooley, Jr., L.A. and E.R. Brown. "Selection and Evaluation of a Field Permeability Device for Asphalt Pavements." Presented at the 79<sup>th</sup> Annual Meeting of the Transportation Research Board. Washington, D.C., 2000.
- Mallick, R.B., L.A. Cooley, Jr., M.R. Teto, R.L. Bradbury, D. Peabody. "An Evaluation of Factors Affecting Permeability of Superpave Designed Pavements." Paper 01-2763, Annual Meeting of the Transportation Research Board. Washington, D.C., 2001.
- 7. Pretorius, FJ Gibb Arcus, Jenkins, K. Sanral, J, Hugo, F., and Vietze, D. "Innovative Asphalt Mix Design and Construction: Case Studies on Cape Town International Airport and Kromboom Parkway." Proceedings of the CAPSA, 1999.
- 8. Cooley, Jr, L. Allen, personal conversation, 2003.
- 9. Colson, S. "Longitudinal Joint Treatment Final Report", Maine DOT Technical Report 00-18, March 2006.
- Menard, J. and J.A. Crovetti. "Comparative Analysis of Field Permeability Testing of Compacted Hot-Mix Asphalt Pavements Using Air and Water Permeameters." Paper 06-0777, Annual Meeting of the Transportation Research Board, Washington, D.C., 2006.

# Appendix A: Individual Permeability Readings

# NETC 03-5 NMAS 25mm

| Project:                                                | NH Rt153                                                                                          | _                                                                                                                              |                                                                            |
|---------------------------------------------------------|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
| Joint Type:                                             | Control                                                                                           | -                                                                                                                              |                                                                            |
|                                                         |                                                                                                   |                                                                                                                                |                                                                            |
|                                                         | STA. 603+75                                                                                       |                                                                                                                                |                                                                            |
|                                                         |                                                                                                   | K (cm/s)                                                                                                                       | <b>-</b>                                                                   |
| Reading Number                                          | Cold                                                                                              | Center                                                                                                                         | Hot                                                                        |
| #1                                                      | 1.017E-01                                                                                         | 5.755E-01                                                                                                                      | 6.188E-02                                                                  |
| #2                                                      | 9.192E-02                                                                                         | 4.344E-01                                                                                                                      | 5.219E-02                                                                  |
| #3                                                      | 7.493E-02                                                                                         | 3.604E-01                                                                                                                      | 4.419E-02                                                                  |
| Average                                                 | 8.952E-02                                                                                         | 4.568E-01                                                                                                                      | 5.276E-02                                                                  |
| Std Dev                                                 | 1.355E-02                                                                                         | 1.093E-01                                                                                                                      | 8.856E-03                                                                  |
| Sample Variance                                         | 1.836E-04                                                                                         | 1.194E-02                                                                                                                      | 7.843E-05                                                                  |
|                                                         | STA. 603+45                                                                                       |                                                                                                                                |                                                                            |
|                                                         | STA. 603+45                                                                                       | K (cm/s)                                                                                                                       |                                                                            |
| Reading Number                                          |                                                                                                   | K (cm/s)<br>Center                                                                                                             | Hot                                                                        |
| Reading Number<br>#1                                    |                                                                                                   |                                                                                                                                | Hot<br>9.708E-02                                                           |
| _                                                       | Cold                                                                                              | Center                                                                                                                         |                                                                            |
| #1                                                      | <b>Cold</b><br>8.861E-02                                                                          | <b>Center</b><br>4.862E-01                                                                                                     | 9.708E-02                                                                  |
| #1<br>#2                                                | Cold<br>8.861E-02<br>8.238E-02                                                                    | <b>Center</b><br>4.862E-01<br>4.071E-01                                                                                        | 9.708E-02<br>8.445E-02                                                     |
| #1<br>#2<br>#3                                          | Cold<br>8.861E-02<br>8.238E-02<br>7.224E-02                                                       | Center<br>4.862E-01<br>4.071E-01<br>3.687E-01                                                                                  | 9.708E-02<br>8.445E-02<br>8.033E-02                                        |
| #1<br>#2<br>#3<br><u>Average</u><br>Std Dev             | Cold<br>8.861E-02<br>8.238E-02<br>7.224E-02<br>8.108E-02                                          | Center           4.862E-01           4.071E-01           3.687E-01           4.207E-01                                         | 9.708E-02<br>8.445E-02<br>8.033E-02<br>8.729E-02                           |
| #1<br>#2<br>#3<br><u>Average</u><br>Std Dev             | Cold<br>8.861E-02<br>8.238E-02<br>7.224E-02<br>8.108E-02<br>8.261E-03                             | Center           4.862E-01           4.071E-01           3.687E-01           4.207E-01           5.991E-02                     | 9.708E-02<br>8.445E-02<br>8.033E-02<br>8.729E-02<br>8.727E-03              |
| #1<br>#2<br>#3<br><u>Average</u><br>Std Dev             | Cold<br>8.861E-02<br>8.238E-02<br>7.224E-02<br>8.108E-02<br>8.261E-03<br>6.824E-05                | Center           4.862E-01           4.071E-01           3.687E-01           4.207E-01           5.991E-02                     | 9.708E-02<br>8.445E-02<br>8.033E-02<br>8.729E-02<br>8.727E-03              |
| #2<br>#3<br>Average                                     | Cold<br>8.861E-02<br>8.238E-02<br>7.224E-02<br>8.108E-02<br>8.261E-03<br>6.824E-05<br>STA. 603+25 | Center           4.862E-01           4.071E-01           3.687E-01           4.207E-01           5.991E-02           3.589E-03 | 9.708E-02<br>8.445E-02<br>8.033E-02<br>8.729E-02<br>8.727E-03              |
| #1<br>#2<br>#3<br>Average<br>Std Dev<br>Sample Variance | Cold<br>8.861E-02<br>8.238E-02<br>7.224E-02<br>8.108E-02<br>8.261E-03<br>6.824E-05<br>STA. 603+25 | Center<br>4.862E-01<br>4.071E-01<br>3.687E-01<br>4.207E-01<br>5.991E-02<br>3.589E-03<br>K (cm/s)                               | 9.708E-02<br>8.445E-02<br>8.033E-02<br>8.729E-02<br>8.727E-03<br>7.616E-05 |

| 0010      | Ocifici                                                       | 1101                                                                                                                                                                                |
|-----------|---------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4.901E-02 | 4.071E-01                                                     | 2.093E-01                                                                                                                                                                           |
| 5.089E-02 | 3.826E-01                                                     | 1.978E-01                                                                                                                                                                           |
| 4.343E-02 | 3.381E-01                                                     | 1.785E-01                                                                                                                                                                           |
| 4.777E-02 | 3.760E-01                                                     | 1.952E-01                                                                                                                                                                           |
| 3.881E-03 | 3.498E-02                                                     | 1.558E-02                                                                                                                                                                           |
| 1.506E-05 | 1.224E-03                                                     | 2.428E-04                                                                                                                                                                           |
|           | 4.901E-02<br>5.089E-02<br>4.343E-02<br>4.777E-02<br>3.881E-03 | 4.901E-02         4.071E-01           5.089E-02         3.826E-01           4.343E-02         3.381E-01           4.777E-02         3.760E-01           3.881E-03         3.498E-02 |

#### NETC 03-5 NMAS 19mm

| Project:                   | Maine S95              |                                     |                                     |
|----------------------------|------------------------|-------------------------------------|-------------------------------------|
| Joint Type:                | Rubber Joi             | nt Sealer                           |                                     |
|                            |                        |                                     | •                                   |
|                            | STA. 1745              | K (cm/s)                            |                                     |
|                            |                        |                                     |                                     |
| Reading Number             | Cold                   | Center                              | Hot                                 |
| #1                         | 8.708E-03              | 2.603E-02                           | 8.279E-03                           |
| #2                         | 0.000E+00              | 1.602E-02                           | 6.612E-04                           |
| #3                         | 3.270E-03              | 2.967E-02                           | 6.648E-04                           |
| Average                    | 3.993E-03              | 2.391E-02                           | 3.202E-03                           |
| Std Dev<br>Sample Variance | 4.399E-03<br>1.935E-05 | 7.066E-03<br>4.993E-05              | 4.397E-03<br>1.934E-05              |
| Sample Valiance            | 1.9352-05              | 4.3332-03                           | 1.3342-03                           |
|                            | STA. 1740              |                                     |                                     |
|                            |                        | K (cm/s)                            |                                     |
| Reading Number             | Cold                   | Center                              | Hot                                 |
| #1                         | 1.326E-03              | 1.075E-02                           | 1.973E-03                           |
| #2                         | 1.341E-03              | 9.735E-03                           | 2.006E-03                           |
| #3                         | 6.761E-04              | 8.763E-03                           | 6.761E-04                           |
| Average                    | 1.114E-03              | 9.751E-03                           | 1.551E-03                           |
| Std Dev                    | 3.796E-04              | 9.953E-04                           | 7.583E-04                           |
| Sample Variance            | 1.441E-07              | 9.906E-07                           | 5.750E-07                           |
|                            | STA. 1735              |                                     |                                     |
|                            |                        | K (cm/s)                            |                                     |
| Reading Number             | Cold                   | Center                              | Hot                                 |
| #1                         | 1.973E-03              | 1.914E-02                           | 2.682E-03                           |
| #2                         | 1.333E-03              | 1.956E-02                           | 1.364E-03                           |
| #3                         | 1.348E-03              | 1.956E-02                           | 2.075E-03                           |
| Average                    | 1.551E-03              | 1.942E-02                           | 2.040E-03                           |
| Std Dev                    | 3.649E-04<br>1.331E-07 | 2.421E-04                           | 6.597E-04<br>4.352E-07              |
| Sample Variance            | 1.331E-07              | 5.861E-08                           | 4.302E-07                           |
|                            | STA. 1730              |                                     |                                     |
|                            |                        | K (cm/s)                            |                                     |
| Reading Number             | Cold                   | Center                              | Hot                                 |
| #1                         | 0.000E+00              | 3.023E-03                           | 1.212E-03                           |
| #2                         | 0.000E+00              | 2.474E-03                           | 6.107E-04                           |
| #3                         | 0.000E+00              | 1.890E-03                           | 1.231E-03                           |
| Average                    | 0.000E+00              | 2.462E-03                           | 1.018E-03                           |
| Std Dev                    | 0.000E+00              | 5.666E-04                           | 3.527E-04                           |
| Sample Variance            | 0.000E+00              | 3.210E-07                           | 1.244E-07                           |
|                            | STA. 1725              |                                     |                                     |
|                            |                        | K (cm/s)                            |                                     |
| Reading Number             | Cold                   | Center                              | Hot                                 |
| #1                         | 0.000E+00              | 4.068E-03                           | 5.615E-03                           |
| #2                         | 0.000E+00              | 4.211E-03                           | 5.138E-03                           |
|                            | 0.000E+00              | 0.000E+00                           | 3.810E-03                           |
| #3                         | 0.0001100              |                                     |                                     |
|                            |                        | 0 7005                              |                                     |
| Average                    | 0.000E+00              | 2.760E-03                           | 4.854E-03                           |
|                            |                        | 2.760E-03<br>2.391E-03<br>5.717E-06 | 4.854E-03<br>9.355E-04<br>8.752E-07 |

| Project:<br>Joint Type:                                                                                                                     | NH 393 (7                                                                                                                                                                                | 7-29-04)                                                                                                                                                                         |                                                                                                                                 |
|---------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                             | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                    | Heater                                                                                                                                                                           |                                                                                                                                 |
|                                                                                                                                             |                                                                                                                                                                                          |                                                                                                                                                                                  |                                                                                                                                 |
|                                                                                                                                             | STA. 92+13                                                                                                                                                                               | 3<br>K (cm/s)                                                                                                                                                                    |                                                                                                                                 |
|                                                                                                                                             |                                                                                                                                                                                          |                                                                                                                                                                                  |                                                                                                                                 |
| Reading Number                                                                                                                              | Cold                                                                                                                                                                                     | Center                                                                                                                                                                           | Hot                                                                                                                             |
| #1                                                                                                                                          |                                                                                                                                                                                          | 4.790E-03                                                                                                                                                                        |                                                                                                                                 |
| #2                                                                                                                                          | 0.000E+00                                                                                                                                                                                | 3.709E-03                                                                                                                                                                        | 2.637E-03                                                                                                                       |
| #3                                                                                                                                          | 5.229E-04                                                                                                                                                                                | 3.709E-03                                                                                                                                                                        | 2.637E-03                                                                                                                       |
| Average                                                                                                                                     | 1.743E-04                                                                                                                                                                                | 4.069E-03                                                                                                                                                                        | 2.995E-03                                                                                                                       |
| Std Dev                                                                                                                                     | 3.019E-04                                                                                                                                                                                | 6.242E-04                                                                                                                                                                        | 6.186E-04                                                                                                                       |
| Sample Variance                                                                                                                             |                                                                                                                                                                                          | 3.896E-07                                                                                                                                                                        | 3.827E-07                                                                                                                       |
|                                                                                                                                             | STA. 78+43                                                                                                                                                                               | ,                                                                                                                                                                                |                                                                                                                                 |
|                                                                                                                                             | 51A. /0+4.                                                                                                                                                                               | K (cm/s)                                                                                                                                                                         |                                                                                                                                 |
| Reading Number                                                                                                                              | Cold                                                                                                                                                                                     | Center                                                                                                                                                                           | Hot                                                                                                                             |
| -                                                                                                                                           |                                                                                                                                                                                          |                                                                                                                                                                                  |                                                                                                                                 |
| #1                                                                                                                                          |                                                                                                                                                                                          | 3.709E-03                                                                                                                                                                        |                                                                                                                                 |
| #2                                                                                                                                          |                                                                                                                                                                                          | 2.105E-03                                                                                                                                                                        |                                                                                                                                 |
| #3                                                                                                                                          |                                                                                                                                                                                          | 2.105E-03                                                                                                                                                                        |                                                                                                                                 |
| Average                                                                                                                                     | 8.730E-04                                                                                                                                                                                | 2.640E-03                                                                                                                                                                        | 2.108E-03                                                                                                                       |
| Std Dev                                                                                                                                     |                                                                                                                                                                                          | 9.258E-04                                                                                                                                                                        |                                                                                                                                 |
| Sample Variance                                                                                                                             | 9.193E-08                                                                                                                                                                                | 8.572E-07                                                                                                                                                                        | 8.496E-07                                                                                                                       |
|                                                                                                                                             | STA. 74+62                                                                                                                                                                               | 2<br>K (cm/s)                                                                                                                                                                    |                                                                                                                                 |
| Reading Number                                                                                                                              | Cold                                                                                                                                                                                     | Center                                                                                                                                                                           | Hot                                                                                                                             |
| #1                                                                                                                                          |                                                                                                                                                                                          | 4.248E-03                                                                                                                                                                        |                                                                                                                                 |
| #2                                                                                                                                          | 0.000E+00                                                                                                                                                                                | 3.709E-03                                                                                                                                                                        | 0.000E+00                                                                                                                       |
| #3                                                                                                                                          | 5.229E-04                                                                                                                                                                                | 2.637E-03                                                                                                                                                                        | 5.229E-04                                                                                                                       |
| Average                                                                                                                                     | 5.236E-04                                                                                                                                                                                | 3.532E-03                                                                                                                                                                        | 5.236E-04                                                                                                                       |
| rivorugo                                                                                                                                    |                                                                                                                                                                                          | 8 199E-04                                                                                                                                                                        | 5.240E-04                                                                                                                       |
| Std Dev                                                                                                                                     | 5.240E-04                                                                                                                                                                                |                                                                                                                                                                                  |                                                                                                                                 |
|                                                                                                                                             |                                                                                                                                                                                          | 6.722E-07                                                                                                                                                                        | 2.746E-07                                                                                                                       |
| Std Dev                                                                                                                                     |                                                                                                                                                                                          | 6.722E-07                                                                                                                                                                        | 2.746E-07                                                                                                                       |
| Std Dev<br>Sample Variance<br>Reading Number                                                                                                | 2.746E-07<br>STA. 68+5:<br>Cold                                                                                                                                                          | 6.722E-07<br>3<br>K (cm/s)<br>Center                                                                                                                                             | Hot                                                                                                                             |
| Std Dev<br>Sample Variance<br>Reading Number<br>#1                                                                                          | 2.746E-07<br>STA. 68+5:<br>Cold<br>1.048E-03                                                                                                                                             | 6.722E-07<br>3<br>K (cm/s)<br>Center<br>1.576E-03                                                                                                                                | Hot<br>0.000E+00                                                                                                                |
| Std Dev<br>Sample Variance<br>Reading Number                                                                                                | 2.746E-07<br>STA. 68+53<br>Cold<br>1.048E-03<br>1.048E-03                                                                                                                                | 6.722E-07<br><b>K (cm/s)</b><br><b>Center</b><br>1.576E-03<br>2.105E-03                                                                                                          | Hot<br>0.000E+00<br>5.229E-04                                                                                                   |
| Std Dev<br>Sample Variance<br>Reading Number<br>#1                                                                                          | 2.746E-07<br>STA. 68+53<br>Cold<br>1.048E-03<br>1.048E-03                                                                                                                                | 6.722E-07<br>3<br>K (cm/s)<br>Center<br>1.576E-03                                                                                                                                | Hot<br>0.000E+00<br>5.229E-04                                                                                                   |
| Std Dev<br>Sample Variance<br>Reading Number<br>#1<br>#2                                                                                    | 2.746E-07<br>STA. 68+53<br>Cold<br>1.048E-03<br>1.048E-03                                                                                                                                | 6.722E-07<br><b>K (cm/s)</b><br><b>Center</b><br>1.576E-03<br>2.105E-03                                                                                                          | Hot<br>0.000E+00<br>5.229E-04                                                                                                   |
| Std Dev<br>Sample Variance<br>Reading Number<br>#1<br>#2<br>#3                                                                              | 2.746E-07<br>STA. 68+5:<br>Cold<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03                                                                                                      | 6.722E-07<br>3<br>K (cm/s)<br>Center<br>1.576E-03<br>2.105E-03<br>1.576E-03                                                                                                      | Hot<br>0.000E+00<br>5.229E-04<br>0.000E+00<br>1.743E-04                                                                         |
| Std Dev<br>Sample Variance<br>Reading Number<br>#1<br>#2<br>#3<br>Average                                                                   | 2.746E-07<br>STA. 68+5:<br>Cold<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>0.000E+00                                                                                         | 6.722E-07<br>3<br>K (cm/s)<br>Center<br>1.576E-03<br>2.105E-03<br>1.576E-03<br>1.576E-03<br>1.752E-03                                                                            | Hot<br>0.000E+00<br>5.229E-04<br>0.000E+00<br>1.743E-04<br>3.019E-04                                                            |
| Std Dev<br>Sample Variance<br>Reading Number<br>#1<br>#2<br>#3<br>Average<br>Std Dev                                                        | 2.746E-07<br>STA. 68+5:<br>Cold<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>0.000E+00                                                                                         | 6.722E-07<br>3<br>K (cm/s)<br>Center<br>1.576E-03<br>2.105E-03<br>1.752E-03<br>3.059E-04<br>9.356E-08<br>3                                                                       | Hot<br>0.000E+00<br>5.229E-04<br>0.000E+00<br>1.743E-04<br>3.019E-04                                                            |
| Std Dev<br>Sample Variance<br>Reading Number<br>#1<br>#2<br>#3<br>Average<br>Std Dev<br>Sample Variance                                     | 2.746E-07<br>STA. 68+5:<br>Cold<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>0.000E+00<br>0.000E+00<br>STA. 62+03                                                                           | 6.722E-07<br><b>K (cm/s)</b><br><b>Center</b><br>1.576E-03<br>1.576E-03<br>1.752E-03<br>1.752E-03<br>3.059E-04<br>9.356E-08<br><b>K (cm/s)</b>                                   | Hot<br>0.000E+00<br>5.229E-04<br>0.000E+00<br>1.743E-04<br>3.019E-04<br>9.113E-08                                               |
| Std Dev<br>Sample Variance<br>Reading Number<br>#1<br>#2<br>#3<br>Average<br>Std Dev<br>Sample Variance<br>Reading Number                   | 2.746E-07<br>STA. 68+5:<br>Cold<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>0.000E+00<br>0.000E+00<br>STA. 62+0:<br>Cold                                                                   | 6.722E-07<br><b>K (cm/s)</b><br><b>Center</b><br>1.576E-03<br>2.105E-03<br>1.576E-03<br>1.576E-03<br>3.059E-04<br>9.356E-08<br><b>K (cm/s)</b><br><b>Center</b>                  | Hot<br>0.000E+00<br>5.229E-04<br>0.000E+00<br>1.743E-04<br>3.019E-04<br>9.113E-08<br>Hot                                        |
| Std Dev<br>Sample Variance<br>Reading Number<br>#1<br>#2<br>#3<br>Average<br>Std Dev<br>Sample Variance<br>Reading Number<br>#1             | 2.746E-07<br>STA. 68+5:<br>Cold<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>0.000E+00<br>0.000E+00<br>STA. 62+0:<br>Cold                                                                   | 6.722E-07<br><b>K (cm/s)</b><br><b>Center</b><br>1.576E-03<br>2.105E-03<br>1.576E-03<br>1.576E-03<br>3.059E-04<br>9.356E-08<br><b>K (cm/s)</b><br><b>Center</b>                  | Hot<br>0.000E+00<br>5.229E-04<br>0.000E+00<br>1.743E-04<br>3.019E-04<br>9.113E-08<br>Hot                                        |
| Std Dev<br>Sample Variance<br>Reading Number<br>#1<br>#2<br>#3<br>Average<br>Std Dev<br>Sample Variance<br>Reading Number<br>#1<br>#2       | 2.746E-07<br>STA. 68+53<br>Cold<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>0.000E+00<br>0.000E+00<br>STA. 62+03<br>STA. 62+03<br>Cold<br>1.048E-03<br>5.229E-04                           | 6.722E-07<br>K (cm/s)<br>Center<br>1.576E-03<br>2.105E-03<br>1.752E-03<br>1.752E-03<br>3.059E-04<br>9.356E-08<br>K (cm/s)<br>Center<br>2.637E-03<br>2.105E-03                    | Hot<br>0.000E+00<br>5.229E-04<br>0.000E+00<br>1.743E-04<br>3.019E-04<br>9.113E-08<br>Hot<br>0.000E+00<br>0.000E+00              |
| Std Dev<br>Sample Variance<br>Reading Number<br>#1<br>#2<br>#3<br>Average<br>Std Dev<br>Sample Variance<br>Reading Number<br>#1             | 2.746E-07<br>STA. 68+53<br>Cold<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>0.000E+00<br>0.000E+00<br>STA. 62+03<br>STA. 62+03<br>Cold<br>1.048E-03<br>5.229E-04                           | 6.722E-07<br><b>K (cm/s)</b><br><b>Center</b><br>1.576E-03<br>2.105E-03<br>1.576E-03<br>1.576E-03<br>3.059E-04<br>9.356E-08<br><b>K (cm/s)</b><br><b>Center</b>                  | Hot<br>0.000E+00<br>5.229E-04<br>0.000E+00<br>1.743E-04<br>3.019E-04<br>9.113E-08<br>Hot<br>0.000E+00<br>0.000E+00              |
| Std Dev<br>Sample Variance<br>Reading Number<br>#1<br>#2<br>#3<br>Average<br>Std Dev<br>Sample Variance<br>Reading Number<br>#1<br>#2       | 2.746E-07<br>STA. 68+5:<br>Cold<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>0.000E+00<br>0.000E+00<br>STA. 62+0:<br>STA. 62+0:<br>Cold<br>1.048E-03<br>5.229E-04<br>5.229E-04              | 6.722E-07<br>K (cm/s)<br>Center<br>1.576E-03<br>2.105E-03<br>1.576E-03<br>1.576E-03<br>1.576E-03<br>3.059E-04<br>9.356E-08<br>K (cm/s)<br>Center<br>2.637E-03<br>2.105E-03       | Hot<br>0.000E+00<br>5.229E-04<br>0.000E+00<br>1.743E-04<br>9.113E-08<br>Hot<br>0.000E+00<br>0.000E+00<br>0.000E+00              |
| Std Dev<br>Sample Variance<br>Reading Number<br>#1<br>#2<br>#3<br>Average<br>Std Dev<br>Sample Variance<br>Reading Number<br>#1<br>#2<br>#3 | 2.746E-07<br>STA. 68+5:<br>Cold<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>0.000E+00<br>0.000E+00<br>STA. 62+03<br>STA. 62+03<br>Cold<br>1.048E-03<br>5.229E-04<br>5.229E-04<br>6.979E-04 | 6.722E-07<br>K (cm/s)<br>Center<br>1.576E-03<br>2.105E-03<br>3.1576E-03<br>1.752E-03<br>3.059E-04<br>9.356E-08<br>3<br>K (cm/s)<br>Center<br>2.637E-03<br>2.105E-03<br>2.105E-03 | Hot<br>0.000E+00<br>5.229E-04<br>0.000E+00<br>1.743E-04<br>3.019E-04<br>9.113E-08<br>Hot<br>0.000E+00<br>0.000E+00<br>0.000E+00 |

| Project:                                                                                                                                                     | NH S93 (7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -29-04)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Project:                                                                                                                                                                                  | NH Rt 25                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                                                                                                                                                                                                          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| loint Type:                                                                                                                                                  | Conve                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ntional                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Joint Type:                                                                                                                                                                               | Co                                                                                                                                                                                                                                    | ntrol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                                                                                                                                                          |
|                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                           | OT 1                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                            |
|                                                                                                                                                              | STA. 131+5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 57<br>K (cm/s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                           | STA. 1033                                                                                                                                                                                                                             | +45<br>K (cm/s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                            |
| Reading Number                                                                                                                                               | Cold                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Center                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Hot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Reading Number                                                                                                                                                                            | Cold                                                                                                                                                                                                                                  | Center                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Hot                                                                                                                                                                                                                        |
| #1                                                                                                                                                           | 0.000E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4.899E-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.611E-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | #1                                                                                                                                                                                        | 1.863E-02                                                                                                                                                                                                                             | 7.181E-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.863E-02                                                                                                                                                                                                                  |
| #2                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.105E-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | #2                                                                                                                                                                                        |                                                                                                                                                                                                                                       | 7.045E-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                            |
| #3                                                                                                                                                           | 0.000E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.576E-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.576E-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | #3                                                                                                                                                                                        |                                                                                                                                                                                                                                       | 6.510E-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                            |
| Average                                                                                                                                                      | 0.000E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.860E-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.764E-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Average                                                                                                                                                                                   | 1.827E-02                                                                                                                                                                                                                             | 6.912E-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.756E-02                                                                                                                                                                                                                  |
| Std Dev                                                                                                                                                      | 0.000E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.785E-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.962E-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Std Dev                                                                                                                                                                                   | 6.211E-04                                                                                                                                                                                                                             | 3.545E-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.073E-03                                                                                                                                                                                                                  |
| Sample Variance                                                                                                                                              | 0.000E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.188E-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8.775E-08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Sample Variance                                                                                                                                                                           | 3.858E-07                                                                                                                                                                                                                             | 1.256E-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.152E-06                                                                                                                                                                                                                  |
|                                                                                                                                                              | STA 122.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <b>.</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                           | STA 1024                                                                                                                                                                                                                              | . 95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                            |
|                                                                                                                                                              | STA. 122+8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | K (cm/s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                           | STA. 1034                                                                                                                                                                                                                             | K (cm/s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                            |
|                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                           |                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                            |
| Reading Number<br>#1                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Center                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Hot<br>3.793E-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Reading Number<br>#1                                                                                                                                                                      | Cold<br>2.967E-02                                                                                                                                                                                                                     | Center<br>6.247E-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Hot                                                                                                                                                                                                                        |
| #1                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.172E-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | #1                                                                                                                                                                                        | 2.967E-02<br>2.855E-02                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.296E-02<br>2.080E-02                                                                                                                                                                                                     |
| #2                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.709E-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | #2                                                                                                                                                                                        | 2.630E-02                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.971E-02                                                                                                                                                                                                                  |
| Average                                                                                                                                                      | 1.056E-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.007E-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Average                                                                                                                                                                                   | 2.818E-02                                                                                                                                                                                                                             | 5.861E-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.116E-02                                                                                                                                                                                                                  |
| Std Dev                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.991E-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Std Dev                                                                                                                                                                                   | 1.715E-03                                                                                                                                                                                                                             | 3.410E-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.667E-03                                                                                                                                                                                                                  |
| Sample Variance                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.134E-07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Sample Variance                                                                                                                                                                           |                                                                                                                                                                                                                                       | 1.163E-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                            |
|                                                                                                                                                              | OTA 400.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                           | 4004.00                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                            |
|                                                                                                                                                              | STA. 120+3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 54<br>K (cm/s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                           | 1024+00                                                                                                                                                                                                                               | K (cm/s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                            |
| Reading Number                                                                                                                                               | Cold                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Center                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Hot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                           |                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                            |
|                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Center                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | HOT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Reading Number                                                                                                                                                                            | Cold                                                                                                                                                                                                                                  | Center                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Hot                                                                                                                                                                                                                        |
| #1                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.000E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Reading Number<br>#1                                                                                                                                                                      | Cold<br>3.425E-02                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Hot<br>2.967E-02                                                                                                                                                                                                           |
| #2                                                                                                                                                           | 1.576E-03<br>1.576E-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.798E-02<br>1.617E-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.000E+00<br>0.000E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | #1<br>#2                                                                                                                                                                                  |                                                                                                                                                                                                                                       | 1.269E-01<br>1.135E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.967E-02<br>1.971E-02                                                                                                                                                                                                     |
| #2<br>#3                                                                                                                                                     | 1.576E-03<br>1.576E-03<br>1.576E-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.798E-02<br>1.617E-02<br>1.617E-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.000E+00<br>0.000E+00<br>0.000E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | #1<br>#2<br>#3                                                                                                                                                                            | 3.425E-02<br>2.967E-02<br>2.855E-02                                                                                                                                                                                                   | 1.269E-01<br>1.135E-01<br>1.218E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.967E-02<br>1.971E-02<br>1.971E-02                                                                                                                                                                                        |
| #2<br>#3<br>Average                                                                                                                                          | 1.576E-03<br>1.576E-03<br>1.576E-03<br>1.576E-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.798E-02<br>1.617E-02<br>1.617E-02<br>1.677E-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | #1<br>#2<br>#3<br>Average                                                                                                                                                                 | 3.425E-02<br>2.967E-02<br>2.855E-02<br>3.082E-02                                                                                                                                                                                      | 1.269E-01<br>1.135E-01<br>1.218E-01<br>1.207E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.967E-02<br>1.971E-02<br>1.971E-02<br>2.303E-02                                                                                                                                                                           |
| #2<br>#3<br>Average<br>Std Dev                                                                                                                               | 1.576E-03<br>1.576E-03<br>1.576E-03<br>1.576E-03<br>0.000E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.798E-02<br>1.617E-02<br>1.617E-02<br><u>1.677E-02</u><br>1.042E-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | #1<br>#2<br>#3<br>Average<br>Std Dev                                                                                                                                                      | 3.425E-02<br>2.967E-02<br>2.855E-02<br>3.082E-02<br>3.019E-03                                                                                                                                                                         | 1.269E-01<br>1.135E-01<br>1.218E-01<br>1.207E-01<br>6.788E-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.967E-02<br>1.971E-02<br>1.971E-02<br>2.303E-02<br>5.753E-03                                                                                                                                                              |
| #2<br>#3<br>Average<br>Std Dev                                                                                                                               | 1.576E-03<br>1.576E-03<br>1.576E-03<br>1.576E-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.798E-02<br>1.617E-02<br>1.617E-02<br><u>1.677E-02</u><br>1.042E-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | #1<br>#2<br>#3<br>Average                                                                                                                                                                 | 3.425E-02<br>2.967E-02<br>2.855E-02<br>3.082E-02                                                                                                                                                                                      | 1.269E-01<br>1.135E-01<br>1.218E-01<br>1.207E-01<br>6.788E-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.967E-02<br>1.971E-02<br>1.971E-02<br>2.303E-02<br>5.753E-03                                                                                                                                                              |
| #2<br>#3<br>Average<br>Std Dev                                                                                                                               | 1.576E-03<br>1.576E-03<br>1.576E-03<br>1.576E-03<br>0.000E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.798E-02<br>1.617E-02<br>1.617E-02<br>1.677E-02<br>1.042E-03<br>1.085E-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | #1<br>#2<br>#3<br>Average<br>Std Dev                                                                                                                                                      | 3.425E-02<br>2.967E-02<br>2.855E-02<br>3.082E-02<br>3.019E-03                                                                                                                                                                         | 1.269E-01<br>1.135E-01<br>1.218E-01<br>1.207E-01<br>6.788E-03<br>4.607E-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.967E-02<br>1.971E-02<br>1.971E-02<br>2.303E-02<br>5.753E-03                                                                                                                                                              |
| #2<br>#3<br>Average<br>Std Dev                                                                                                                               | 1.576E-03<br>1.576E-03<br>1.576E-03<br>1.576E-03<br>0.000E+00<br>0.000E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.798E-02<br>1.617E-02<br>1.617E-02<br>1.677E-02<br>1.042E-03<br>1.085E-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | #1<br>#2<br>#3<br>Average<br>Std Dev                                                                                                                                                      | 3.425E-02<br>2.967E-02<br>2.855E-02<br>3.082E-02<br>3.019E-03<br>9.113E-06                                                                                                                                                            | 1.269E-01<br>1.135E-01<br>1.218E-01<br>1.207E-01<br>6.788E-03<br>4.607E-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.967E-02<br>1.971E-02<br>1.971E-02<br>2.303E-02<br>5.753E-03                                                                                                                                                              |
| #2<br>#3<br>Average<br>Std Dev<br>Sample Variance                                                                                                            | 1.576E-03<br>1.576E-03<br>1.576E-03<br>1.576E-03<br>0.000E+00<br>0.000E+00<br>STA. 114+3<br>Cold                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.798E-02<br>1.617E-02<br>1.617E-02<br>1.677E-02<br>1.042E-03<br>1.042E-03<br>1.085E-06<br>34<br>K (cm/s)<br>Center                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>Hot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | #1<br>#2<br>#3<br>Average<br>Std Dev                                                                                                                                                      | 3.425E-02<br>2.967E-02<br>2.855E-02<br>3.082E-02<br>3.019E-03<br>9.113E-06<br>STA. 1025<br>Cold                                                                                                                                       | 1.269E-01<br>1.135E-01<br>1.218E-01<br>1.207E-01<br>6.788E-03<br>4.607E-05<br>+00<br>K (cm/s)<br>Center                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.967E-02<br>1.971E-02<br>1.971E-02<br>2.303E-02<br>5.753E-03<br>3.310E-05                                                                                                                                                 |
| #2<br>#3<br>Average<br>Std Dev<br>Sample Variance<br>Reading Number<br>#1                                                                                    | 1.576E-03<br>1.576E-03<br>1.576E-03<br>1.576E-03<br>0.000E+00<br>0.000E+00<br>STA. 114+3<br>Cold<br>1.048E-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.798E-02<br>1.617E-02<br>1.617E-02<br>1.677E-02<br>1.042E-03<br>1.085E-06<br>34<br>K (cm/s)<br>Center<br>6.043E-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>Hot<br>1.048E-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | #1<br>#2<br>#3<br>Average<br>Std Dev<br>Sample Variance                                                                                                                                   | 3.425E-02<br>2.967E-02<br>2.855E-02<br>3.082E-02<br>3.019E-03<br>9.113E-06<br>STA. 1025<br>Cold<br>2.742E-02                                                                                                                          | 1.269E-01<br>1.135E-01<br>1.218E-01<br>1.207E-01<br>6.788E-03<br>4.607E-05<br>+00<br>K (cm/s)<br>Center<br>1.686E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.967E-02<br>1.971E-02<br>1.971E-02<br>2.303E-02<br>5.753E-03<br>3.310E-05<br>Hot<br>5.101E-02                                                                                                                             |
| #2<br>#3<br>Average<br>Std Dev<br>Sample Variance<br>Reading Number<br>#1<br>#2                                                                              | 1.576E-03<br>1.576E-03<br>1.576E-03<br>1.576E-03<br>0.000E+00<br>0.000E+00<br>STA. 114+3<br>Cold<br>1.048E-03<br>1.048E-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.798E-02<br>1.617E-02<br>1.617E-02<br>1.677E-02<br>1.042E-03<br>1.085E-06<br>34<br>K (cm/s)<br>Center<br>6.043E-02<br>5.957E-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br><b>Hot</b><br>1.048E-03<br>1.048E-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | #1<br>#2<br>#3<br>Average<br>Std Dev<br>Sample Variance<br>Reading Number<br>#1<br>#2                                                                                                     | 3.425E-02<br>2.967E-02<br>2.855E-02<br>3.082E-02<br>3.019E-03<br>9.113E-06<br>STA. 1025<br>Cold<br>2.742E-02<br>2.630E-02                                                                                                             | 1.269E-01<br>1.135E-01<br>1.218E-01<br>1.207E-01<br>6.788E-03<br>4.607E-05<br>+00<br>K (cm/s)<br>Center<br>1.686E-01<br>1.686E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.967E-02<br>1.971E-02<br>1.971E-02<br>2.303E-02<br>5.753E-03<br>3.310E-05<br>Hot<br>5.101E-02<br>4.248E-02                                                                                                                |
| #2<br>#3<br>Average<br>Std Dev<br>Sample Variance<br>Reading Number<br>#1<br>#2<br>#3                                                                        | 1.576E-03<br>1.576E-03<br>1.576E-03<br>1.576E-03<br>0.000E+00<br>0.000E+00<br>STA. 114+3<br>Cold<br>1.048E-03<br>1.048E-03<br>1.048E-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.798E-02<br>1.617E-02<br>1.617E-02<br>1.677E-02<br>1.042E-03<br>1.085E-06<br>34<br>K (cm/s)<br>Center<br>6.043E-02<br>5.957E-02<br>5.787E-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>Hot<br>1.048E-03<br>1.048E-03<br>1.048E-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | #1<br>#2<br>#3<br>Average<br>Std Dev<br>Sample Variance<br>Reading Number<br>#1<br>#2<br>#3                                                                                               | 3.425E-02<br>2.967E-02<br>2.855E-02<br>3.082E-02<br>3.019E-03<br>9.113E-06<br><b>STA. 1025</b><br>Cold<br>2.742E-02<br>2.630E-02<br>2.409E-02                                                                                         | 1.269E-01<br>1.218E-01<br>1.218E-01<br>1.207E-01<br>6.788E-03<br>4.607E-05<br>+00<br>K (cm/s)<br>Center<br>1.686E-01<br>1.686E-01<br>1.585E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.967E-02<br>1.971E-02<br>1.971E-02<br>2.303E-02<br>5.753E-03<br>3.310E-05<br>Hot<br>5.101E-02<br>4.248E-02<br>4.009E-02                                                                                                   |
| #2<br>#3<br>Average<br>Std Dev<br>Sample Variance<br>Reading Number<br>#1<br>#2<br>#3<br>Average                                                             | 1.576E-03<br>1.576E-03<br>1.576E-03<br>1.576E-03<br>0.000E+00<br>0.000E+00<br>STA. 114+3<br>Cold<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.798E-02<br>1.617E-02<br>1.617E-02<br>1.042E-03<br>1.042E-03<br>1.085E-06<br>34<br>K (cm/s)<br>Center<br>6.043E-02<br>5.957E-02<br>5.787E-02<br>5.929E-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>1.000E+00<br>Hot<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | #1<br>#2<br>#3<br>Average<br>Std Dev<br>Sample Variance<br>Reading Number<br>#1<br>#2<br>#3<br>Average                                                                                    | 3.425E-02<br>2.967E-02<br>2.855E-02<br>3.082E-02<br>3.019E-03<br>9.113E-06<br><b>STA.1025</b><br>Cold<br>2.742E-02<br>2.630E-02<br>2.409E-02<br>2.594E-02                                                                             | 1.269E-01<br>1.218E-01<br>1.218E-01<br>1.218E-01<br>6.788E-03<br>4.607E-05<br><b>+00</b><br><b>K (cm/s)</b><br><b>Center</b><br>1.686E-01<br>1.686E-01<br>1.585E-01<br>1.652E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.967E-02<br>1.971E-02<br>1.971E-02<br>2.303E-02<br>5.753E-03<br>3.310E-05<br>Hot<br>5.101E-02<br>4.248E-02<br>4.248E-02<br>4.453E-02                                                                                      |
| #2<br>#3<br>Average<br>Std Dev<br>Sample Variance<br>Reading Number<br>#1<br>#2<br>#3<br>Average<br>Std Dev                                                  | 1.576E-03<br>1.576E-03<br>1.576E-03<br>1.576E-03<br>0.000E+00<br>0.000E+00<br>STA. 114+3<br>Cold<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>0.000E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.798E-02<br>1.617E-02<br>1.617E-02<br>1.647E-02<br>1.042E-03<br>1.085E-06<br>34<br>K (cm/s)<br>Center<br>6.043E-02<br>5.957E-02<br>5.787E-02<br>5.787E-02<br>5.929E-02<br>1.304E-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>0.000E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | #1<br>#2<br>#3<br>Average<br>Std Dev<br>Sample Variance<br>#1<br>#2<br>#3<br>Average<br>Std Dev                                                                                           | 3.425E-02<br>2.967E-02<br>2.855E-02<br>3.082E-02<br>3.019E-03<br>9.113E-06<br><b>STA. 1025</b><br><b>Cold</b><br>2.742E-02<br>2.630E-02<br>2.409E-02<br>1.699E-03                                                                     | 1.269E-01<br>1.218E-01<br>1.218E-01<br>1.207E-01<br>6.788E-03<br>4.607E-05<br><b>*00</b><br><b>K (cm/s)</b><br><b>Center</b><br>1.686E-01<br>1.686E-01<br>1.685E-01<br>1.652E-01<br>5.867E-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.967E-02<br>1.971E-02<br>1.971E-02<br>5.753E-03<br>3.310E-05<br>Hot<br>5.101E-02<br>4.248E-02<br>4.453E-02<br>5.740E-03                                                                                                   |
| #2<br>#3<br>Average<br>Std Dev<br>Sample Variance<br>Reading Number<br>#1<br>#2<br>#3<br>Average<br>Std Dev                                                  | 1.576E-03<br>1.576E-03<br>1.576E-03<br>1.576E-03<br>0.000E+00<br>0.000E+00<br>STA. 114+3<br>Cold<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>0.000E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.798E-02<br>1.617E-02<br>1.617E-02<br>1.647E-02<br>1.042E-03<br>1.085E-06<br>34<br>K (cm/s)<br>Center<br>6.043E-02<br>5.957E-02<br>5.787E-02<br>5.787E-02<br>5.929E-02<br>1.304E-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>0.000E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | #1<br>#2<br>#3<br>Average<br>Std Dev<br>Sample Variance<br>Reading Number<br>#1<br>#2<br>#3<br>Average                                                                                    | 3.425E-02<br>2.967E-02<br>2.855E-02<br>3.082E-02<br>3.019E-03<br>9.113E-06<br><b>STA. 1025</b><br><b>Cold</b><br>2.742E-02<br>2.630E-02<br>2.409E-02<br>1.699E-03                                                                     | 1.269E-01<br>1.218E-01<br>1.218E-01<br>1.218E-01<br>6.788E-03<br>4.607E-05<br><b>+00</b><br><b>K (cm/s)</b><br><b>Center</b><br>1.686E-01<br>1.686E-01<br>1.585E-01<br>1.652E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.967E-02<br>1.971E-02<br>1.971E-02<br>5.753E-03<br>3.310E-05<br>Hot<br>5.101E-02<br>4.248E-02<br>4.453E-02<br>5.740E-03                                                                                                   |
| #2<br>#3<br>Average<br>Std Dev<br>Sample Variance<br>Reading Number<br>#1<br>#2<br>#3<br>Average<br>Std Dev                                                  | 1.576E-03<br>1.576E-03<br>1.576E-03<br>1.576E-03<br>0.000E+00<br>0.000E+00<br>STA. 114+3<br>Cold<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>0.000E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.798E-02<br>1.617E-02<br>1.617E-02<br>1.677E-02<br>1.042E-03<br>1.085E-06<br>34<br>K (cm/s)<br>Center<br>6.043E-02<br>5.957E-02<br>5.957E-02<br>5.957E-02<br>1.304E-03<br>1.701E-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>0.000E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | #1<br>#2<br>#3<br>Average<br>Std Dev<br>Sample Variance<br>#1<br>#2<br>#3<br>Average<br>Std Dev                                                                                           | 3.425E-02<br>2.967E-02<br>2.855E-02<br>3.082E-02<br>3.019E-03<br>9.113E-06<br><b>STA. 1025</b><br><b>Cold</b><br>2.742E-02<br>2.630E-02<br>2.409E-02<br>1.699E-03                                                                     | 1.269E-01<br>1.218E-01<br>1.218E-01<br>1.207E-01<br>6.788E-03<br>4.607E-05<br><b>*00</b><br><b>K (cm/s)</b><br><b>Center</b><br>1.686E-01<br>1.686E-01<br>1.585E-01<br>1.682E-01<br>5.867E-03<br>3.442E-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.967E-02<br>1.971E-02<br>1.971E-02<br>5.753E-03<br>3.310E-05<br>Hot<br>5.101E-02<br>4.248E-02<br>4.453E-02<br>5.740E-03                                                                                                   |
| #2<br>#3<br>Average<br>Std Dev<br>Sample Variance<br>Reading Number<br>#1<br>#2<br>#3<br>Average<br>Std Dev                                                  | 1.576E-03<br>1.576E-03<br>1.576E-03<br>1.576E-03<br>1.576E-03<br>0.000E+00<br><b>STA. 114+3</b><br><b>Cold</b><br>1.048E-03<br>1.048E-03<br>1.048E-03<br>0.000E+00<br>0.000E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.798E-02<br>1.617E-02<br>1.617E-02<br>1.677E-02<br>1.042E-03<br>1.085E-06<br>34<br>K (cm/s)<br>Center<br>6.043E-02<br>5.957E-02<br>5.957E-02<br>5.957E-02<br>1.304E-03<br>1.701E-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>0.000E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | #1<br>#2<br>#3<br>Average<br>Std Dev<br>Sample Variance<br>#1<br>#2<br>#3<br>Average<br>Std Dev                                                                                           | 3.425E-02<br>2.967E-02<br>2.855E-02<br>3.019E-03<br>9.113E-06<br><b>STA. 1025</b><br><b>Cold</b><br>2.742E-02<br>2.630E-02<br>2.409E-02<br>2.630E-02<br>2.409E-03<br>2.885E-06                                                        | 1.269E-01<br>1.218E-01<br>1.218E-01<br>1.207E-01<br>6.788E-03<br>4.607E-05<br><b>*00</b><br><b>K (cm/s)</b><br><b>Center</b><br>1.686E-01<br>1.686E-01<br>1.585E-01<br>1.682E-01<br>5.867E-03<br>3.442E-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.967E-02<br>1.971E-02<br>1.971E-02<br>5.753E-03<br>3.310E-05<br>Hot<br>5.101E-02<br>4.248E-02<br>4.453E-02<br>5.740E-03                                                                                                   |
| #2<br>#3<br>Average<br>Std Dev<br>Sample Variance<br>#1<br>#2<br>#3<br>Average<br>Std Dev<br>Sample Variance                                                 | 1.576E-03<br>1.576E-03<br>1.576E-03<br>1.576E-03<br>0.000E+00<br>0.000E+00<br>STA. 114+3<br>Cold<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>0.000E+00<br>0.000E+00<br>STA. 108+8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.798E-02<br>1.617E-02<br>1.617E-02<br>1.617E-02<br>1.042E-03<br>1.085E-06<br>34<br>K (cm/s)<br>Center<br>6.043E-02<br>5.957E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02 | 0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>0.000E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | #1<br>#2<br>#3<br>Average<br>Std Dev<br>Sample Variance<br>#1<br>#2<br>#3<br>Average<br>Std Dev                                                                                           | 3.425E-02<br>2.967E-02<br>2.855E-02<br>3.019E-03<br>9.113E-06<br>STA. 1025<br>Cold<br>2.742E-02<br>2.630E-02<br>2.409E-03<br>2.409E-03<br>2.885E-06<br>STA. 1026                                                                      | 1.269E-01<br>1.218E-01<br>1.218E-01<br>1.218E-03<br>4.607E-05<br>+00<br>K (cm/s)<br>Center<br>1.686E-01<br>1.686E-01<br>1.686E-01<br>1.585E-01<br>1.652E-01<br>5.867E-03<br>3.442E-05<br>+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.967E-02<br>1.971E-02<br>1.971E-02<br>5.753E-03<br>3.310E-05<br>Hot<br>5.101E-02<br>4.248E-02<br>4.453E-02<br>5.740E-03                                                                                                   |
| #2<br>#3<br>Average<br>Std Dev<br>Sample Variance<br>#1<br>#2<br>#3<br>Average<br>Std Dev<br>Sample Variance                                                 | 1.576E-03<br>1.576E-03<br>1.576E-03<br>1.576E-03<br>0.000E+00<br>0.000E+00<br>STA. 114+3<br>Cold<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>0.000E+00<br>STA. 108+8<br>Cold<br>0.000E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.798E-02<br>1.617E-02<br>1.617E-02<br>1.617E-02<br>1.042E-03<br>1.085E-06<br>34<br>K (cm/s)<br>Center<br>6.043E-02<br>5.957E-02<br>5.957E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02<br>5.787E-02 | 0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00 | #1<br>#2<br>#3<br>Average<br>Std Dev<br>Sample Variance<br>#1<br>#2<br>#3<br>Average<br>Std Dev<br>Sample Variance                                                                        | 3.425E-02<br>2.967E-02<br>2.855E-02<br>3.082E-02<br>3.019E-03<br>9.113E-06<br><b>STA. 1025</b><br><b>Cold</b><br>2.742E-02<br>2.630E-02<br>2.409E-03<br>2.885E-06<br><b>STA. 1026</b><br><b>STA. 1026</b><br><b>Cold</b><br>4.128E-02 | 1.269E-01<br>1.218E-01<br>1.218E-01<br>1.218E-03<br>4.607E-05<br>+00<br>K (cm/s)<br>Center<br>1.686E-01<br>1.686E-01<br>1.686E-01<br>1.685E-01<br>1.652E-01<br>5.867E-03<br>3.442E-05<br>+00<br>K (cm/s)<br>Center<br>1.950E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.967E-02<br>1.971E-02<br>1.971E-02<br>2.303E-02<br>5.753E-03<br>3.310E-05<br>Hot<br>5.101E-02<br>4.248E-02<br>4.248E-02<br>4.248E-02<br>4.453E-02<br>5.740E-03<br>3.295E-05<br>Hot<br>2.630E-02                           |
| #2<br>#3<br>Average<br>Std Dev<br>Sample Variance<br>Reading Number<br>#1<br>#2<br>#3<br>Average<br>Std Dev<br>Sample Variance<br>Reading Number<br>#1<br>#2 | 1.576E-03<br>1.576E-03<br>1.576E-03<br>1.576E-03<br>1.576E-03<br>0.000E+00<br>0.000E+00<br>STA. 114+5<br>Cold<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>0.000E+00<br>0.000E+00<br>STA. 108+6<br>Cold<br>0.000E+00<br>5.229E-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.798E-02<br>1.617E-02<br>1.617E-02<br>1.617E-02<br>1.6477E-02<br>1.042E-03<br>1.085E-06<br>34<br>K (cm/s)<br>Center<br>6.043E-02<br>5.987E-02<br>5.987E-02<br>5.987E-02<br>5.929E-02<br>1.304E-03<br>1.701E-06<br>30<br>K (cm/s)<br>Center<br>2.678E-02<br>2.613E-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>1.000E+00<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>1.048E-03<br>1.048E-03<br>1.576E-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | #1<br>#2<br>#3<br>Average<br>Std Dev<br>Sample Variance<br>#1<br>#2<br>#3<br>Average<br>Std Dev<br>Sample Variance<br>Reading Number<br>#1<br>#2                                          | 3.425E-02<br>2.967E-02<br>2.855E-02<br>3.082E-02<br>3.019E-03<br>9.113E-06<br>STA.1025<br>Cold<br>2.742E-02<br>2.630E-02<br>2.409E-02<br>2.594E-02<br>1.699E-03<br>2.885E-06<br>STA.1026<br>Cold<br>4.128E-02<br>4.009E-02            | 1.269E-01<br>1.218E-01<br>1.218E-01<br>1.207E-01<br>6.788E-03<br>4.607E-05<br>+00<br>K (cm/s)<br>Center<br>1.686E-01<br>1.686E-01<br>1.686E-01<br>1.686E-01<br>1.686E-01<br>1.686E-01<br>1.585E-01<br>5.867E-03<br>3.442E-05<br>+00<br>K (cm/s)<br>Center<br>1.950E-01<br>1.545E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.967E-02<br>1.971E-02<br>1.971E-02<br>2.303E-02<br>5.753E-03<br>3.310E-05<br>Hot<br>5.101E-02<br>4.248E-02<br>4.248E-02<br>5.740E-03<br>3.295E-05<br>Hot<br>2.630E-02<br>2.409E-02                                        |
| #2<br>#3<br>Average<br>Std Dev<br>Sample Variance<br>#1<br>#2<br>#3<br>Average<br>Std Dev<br>Sample Variance<br>Reading Number<br>#1                         | 1.576E-03<br>1.576E-03<br>1.576E-03<br>1.576E-03<br>1.576E-03<br>0.000E+00<br>0.000E+00<br>STA. 114+5<br>Cold<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>0.000E+00<br>0.000E+00<br>STA. 108+6<br>Cold<br>0.000E+00<br>5.229E-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.798E-02<br>1.617E-02<br>1.617E-02<br>1.617E-02<br>1.6477E-02<br>1.042E-03<br>1.085E-06<br>34<br>K (cm/s)<br>Center<br>6.043E-02<br>5.987E-02<br>5.987E-02<br>5.987E-02<br>5.929E-02<br>1.304E-03<br>1.701E-06<br>30<br>K (cm/s)<br>Center<br>2.678E-02<br>2.613E-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00 | #1<br>#2<br>#3<br>Average<br>Std Dev<br>Sample Variance<br>#1<br>#2<br>#3<br>Average<br>Std Dev<br>Sample Variance                                                                        | 3.425E-02<br>2.967E-02<br>2.855E-02<br>3.082E-02<br>3.019E-03<br>9.113E-06<br><b>STA. 1025</b><br><b>Cold</b><br>2.742E-02<br>2.630E-02<br>2.409E-03<br>2.885E-06<br><b>STA. 1026</b><br><b>STA. 1026</b><br><b>Cold</b><br>4.128E-02 | 1.269E-01<br>1.218E-01<br>1.218E-01<br>1.207E-01<br>6.788E-03<br>4.607E-05<br>+00<br>K (cm/s)<br>Center<br>1.686E-01<br>1.686E-01<br>1.686E-01<br>1.686E-01<br>1.686E-01<br>1.686E-01<br>1.585E-01<br>5.867E-03<br>3.442E-05<br>+00<br>K (cm/s)<br>Center<br>1.950E-01<br>1.545E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.967E-02<br>1.971E-02<br>1.971E-02<br>2.303E-02<br>5.753E-03<br>3.310E-05<br>Hot<br>5.101E-02<br>4.248E-02<br>4.248E-02<br>5.740E-03<br>3.295E-05<br>Hot<br>2.630E-02<br>2.409E-02                                        |
| #2<br>#3<br>Average<br>Std Dev<br>Sample Variance<br>#1<br>#2<br>#3<br>Average<br>Std Dev<br>Sample Variance<br>Reading Number<br>#1<br>#2                   | 1.576E-03<br>1.576E-03<br>1.576E-03<br>1.576E-03<br>1.576E-03<br>1.576E-03<br>1.576E-03<br>1.078E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03 | 1.798E-02<br>1.617E-02<br>1.617E-02<br>1.617E-02<br>1.042E-03<br>1.085E-06<br>34<br>K (cm/s)<br>Center<br>6.043E-02<br>5.957E-02<br>5.957E-02<br>5.929E-02<br>1.304E-03<br>1.701E-06<br>30<br>K (cm/s)<br>Center<br>2.678E-02<br>2.420E-02<br>2.420E-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.040E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>1.040E-03<br>1.576E-03<br>1.311E-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | #1<br>#2<br>#3<br>Average<br>Std Dev<br>Sample Variance<br>#1<br>#2<br>#3<br>Average<br>Std Dev<br>Sample Variance<br>Reading Number<br>#1<br>#3<br>Average<br>Std Dev<br>Sample Variance | 3.425E-02<br>2.967E-02<br>2.855E-02<br>3.082E-02<br>3.019E-03<br>9.113E-06<br>STA.1025<br>Cold<br>2.742E-02<br>2.630E-02<br>2.409E-02<br>2.594E-02<br>1.699E-03<br>2.885E-06<br>STA.1026<br>Cold<br>4.128E-02<br>4.009E-02            | 1.269E-01<br>1.218E-01<br>1.218E-01<br>1.218E-01<br>1.207E-01<br>6.788E-03<br>4.607E-05<br>*00<br>K (cm/s)<br>Center<br>1.686E-01<br>1.686E-01<br>1.685E-01<br>1.652E-01<br>5.867E-03<br>3.442E-05<br>*00<br>K (cm/s)<br>Center<br>1.950E-01<br>1.545E-01<br>1.340E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.967E-02<br>1.971E-02<br>1.971E-02<br>2.303E-02<br>5.753E-03<br>3.310E-05<br>Hot<br>5.101E-02<br>4.248E-02<br>4.453E-02<br>4.453E-02<br>5.740E-03<br>3.295E-05<br>Hot<br>2.630E-02<br>2.409E-02<br>2.298E-02              |
| #2<br>#3<br>Average<br>Std Dev<br>Sample Variance<br>#1<br>#2<br>#3<br>Average<br>Std Dev<br>Sample Variance<br>Reading Number<br>#1<br>#2<br>#3             | 1.576E-03<br>1.576E-03<br>1.576E-03<br>1.576E-03<br>1.576E-03<br>1.576E-03<br>1.576E-03<br>1.576E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03 | 1.798E-02<br>1.617E-02<br>1.617E-02<br>1.617E-02<br>1.042E-03<br>1.085E-06<br>34<br>K (cm/s)<br>Center<br>6.043E-02<br>5.957E-02<br>5.957E-02<br>5.957E-02<br>5.929E-02<br>1.304E-03<br>1.701E-06<br>30<br>K (cm/s)<br>Center<br>2.678E-02<br>2.613E-02<br>2.420E-02<br>2.570E-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.048E-03<br>1.040E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>1.040E-03<br>1.576E-03<br>1.311E-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | #1<br>#2<br>#3<br>Average<br>Std Dev<br>Sample Variance<br>#1<br>#2<br>#3<br>Average<br>Std Dev<br>Sample Variance<br>Reading Number<br>#1<br>#2                                          | 3.425E-02<br>2.967E-02<br>2.855E-02<br>3.082E-02<br>3.019E-03<br>9.113E-06<br>STA. 1025<br>Cold<br>2.742E-02<br>2.630E-02<br>2.594E-02<br>1.699E-03<br>2.885E-06<br>STA. 1026<br>Cold<br>4.128E-02<br>4.009E-02<br>3.774E-02          | 1.269E-01<br>1.218E-01<br>1.218E-01<br>1.218E-01<br>1.218E-03<br>4.607E-05<br>*00<br>K (cm/s)<br>Center<br>1.686E-01<br>1.686E-01<br>1.686E-01<br>1.685E-01<br>1.652E-01<br>5.867E-03<br>3.442E-05<br>*00<br>K (cm/s)<br>Center<br>1.950E-01<br>1.545E-01<br>1.545E-01<br>1.545E-01<br>1.545E-01<br>1.545E-01<br>1.545E-01<br>1.545E-01<br>1.545E-01<br>1.545E-01<br>1.545E-01<br>1.545E-01<br>1.545E-01<br>1.545E-01<br>1.545E-01<br>1.545E-01<br>1.545E-01<br>1.545E-01<br>1.545E-01<br>1.545E-01<br>1.545E-01<br>1.545E-01<br>1.545E-01<br>1.545E-01<br>1.545E-01<br>1.545E-01<br>1.545E-01<br>1.545E-01<br>1.545E-01<br>1.545E-01<br>1.545E-01<br>1.545E-01<br>1.545E-01<br>1.545E-01<br>1.545E-01<br>1.545E-01<br>1.545E-01<br>1.545E-01<br>1.545E-01<br>1.545E-01<br>1.545E-01<br>1.545E-01<br>1.545E-01<br>1.545E-01<br>1.545E-01<br>1.545E-01<br>1.545E-01<br>1.545E-01<br>1.545E-01<br>1.545E-01<br>1.545E-01<br>1.545E-01<br>1.545E-01<br>1.545E-01<br>1.545E-01<br>1.545E-01<br>1.545E-01<br>1.545E-01<br>1.545E-01<br>1.545E-01<br>1.545E-01<br>1.545E-01<br>1.545E-01<br>1.545E-01<br>1.545E-01<br>1.545E-01<br>1.545E-01<br>1.545E-01<br>1.545E-01<br>1.545E-01<br>1.545E-01<br>1.545E-01<br>1.545E-01<br>1.545E-01<br>1.545E-01<br>1.545E-01<br>1.545E-01<br>1.545E-01<br>1.545E-01<br>1.545E-01<br>1.545E-01<br>1.545E-01<br>1.545E-01<br>1.545E-01<br>1.545E-01<br>1.545E-01<br>1.545E-01<br>1.545E-01<br>1.545E-01<br>1.545E-01<br>1.545E-01<br>1.545E-01<br>1.545E-01<br>1.545E-01<br>1.545E-01<br>1.545E-01<br>1.545E-01<br>1.545E-01<br>1.545E-01<br>1.545E-01<br>1.545E-01<br>1.545E-01<br>1.545E-01<br>1.545E-01<br>1.545E-01<br>1.545E-01<br>1.545E-01<br>1.545E-01<br>1.545E-01<br>1.545E-01<br>1.545E-01<br>1.545E-01<br>1.545E-01<br>1.545E-01<br>1.545E-01<br>1.545E-01<br>1.545E-01<br>1.545E-01<br>1.545E-01<br>1.545E-01<br>1.545E-01<br>1.545E-01<br>1.545E-01<br>1.545E-01<br>1.545E-01<br>1.545E-01<br>1.545E-01<br>1.545E-01<br>1.545E-01<br>1.545E-01<br>1.545E-01<br>1.545E-01<br>1.545E-01<br>1.545E-01<br>1.555E-01<br>1.555E-01<br>1.555E-01<br>1.555E-01<br>1.555E-01<br>1.555E-01<br>1.555E-01<br>1.555E-01<br>1.555E-01<br>1.555E-01<br>1.555E-01<br>1.555E-01<br>1.555E-01<br>1.555E-01<br>1.555E-01<br>1.555E-01<br>1.555E-01<br>1.555E-01<br>1.555E-01<br>1.555E-01<br>1.555E-01<br>1.555E-01<br>1.555E-01<br>1.555E-01<br>1.555E-01<br>1.555E-01<br>1.555E-01<br>1.555E-01<br>1.555E-01<br>1.555E-01<br>1.555E-01<br>1.555E-01<br>1.555E-01<br>1.555E-01<br>1.555E-01 | 2.967E-02<br>1.971E-02<br>1.971E-02<br>2.303E-02<br>5.753E-03<br>3.310E-05<br>Hot<br>5.101E-02<br>4.248E-02<br>4.248E-02<br>4.453E-02<br>5.740E-03<br>3.295E-05<br>Hot<br>2.630E-02<br>2.409E-02<br>2.298E-02<br>2.446E-02 |

| Project:             | NH I-93 (6                                  | 5-9-04) (Ci                                               | rcle)                                                            |
|----------------------|---------------------------------------------|-----------------------------------------------------------|------------------------------------------------------------------|
| Joint Type:          | Joint                                       | Heater                                                    |                                                                  |
|                      | STA. 76+10                                  |                                                           |                                                                  |
|                      |                                             | K (cm/s)                                                  |                                                                  |
| Reading Number       | Left                                        | Center                                                    | Right                                                            |
| #1                   | 3.888E-03                                   | 4.454E-03                                                 | 3.325E-03                                                        |
| #2                   | 2.206E-03                                   | 2.764E-03                                                 | 2.206E-03                                                        |
| #3                   | 1.651E-03                                   | 2.206E-03                                                 | 1.651E-03                                                        |
| Average              | 2.582E-03                                   | 3.141E-03                                                 | 2.394E-03                                                        |
| Std Dev              | 1.165E-03                                   | 1.170E-03                                                 | 8.526E-04                                                        |
| Sample Variance      | 1.357E-06                                   | 1.370E-06                                                 | 7.269E-07                                                        |
|                      |                                             |                                                           |                                                                  |
|                      | <u>STA. 75+70</u>                           | )<br>K (cm/s)                                             |                                                                  |
| Reading Number       |                                             | -                                                         | Right                                                            |
| Reading Number<br>#1 | Left                                        | K (cm/s)                                                  |                                                                  |
| -                    | Left                                        | K (cm/s)<br>Center                                        | 1.611E-03                                                        |
| #1                   | Left<br>4.902E-03                           | K (cm/s)<br>Center<br>3.245E-03                           | 1.611E-03<br>1.611E-03                                           |
| #1<br>#2             | Left<br>4.902E-03<br>4.347E-03              | K (cm/s)<br>Center<br>3.245E-03<br>2.698E-03              | <b>Right</b><br>1.611E-03<br>1.611E-03<br>3.795E-03<br>2.339E-03 |
| #1<br>#2<br>#3       | Left<br>4.902E-03<br>4.347E-03<br>3.795E-03 | K (cm/s)<br>Center<br>3.245E-03<br>2.698E-03<br>1.611E-03 | 1.611E-03<br>1.611E-03<br>3.795E-03                              |

#### NETC 03-5

#### NMAS 12.5mm

|                                                                                                                                                         | STA. 3,4,5                                                                                                                                                                                                                                 |                                                                                                                                                                                                                       |                                                                                                                                                                                               |                                                                                                     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
|                                                                                                                                                         |                                                                                                                                                                                                                                            | K (cm/s)                                                                                                                                                                                                              |                                                                                                                                                                                               | ]                                                                                                   |
| Reading Number                                                                                                                                          | Cold (3)                                                                                                                                                                                                                                   | Center (4)                                                                                                                                                                                                            | Hot (5)                                                                                                                                                                                       |                                                                                                     |
| #1                                                                                                                                                      | 4.078E-02                                                                                                                                                                                                                                  | 7.422E-02                                                                                                                                                                                                             | 0.000E+00                                                                                                                                                                                     |                                                                                                     |
| #2                                                                                                                                                      | 7.430E-04                                                                                                                                                                                                                                  | 0.000E+00                                                                                                                                                                                                             | 1.429E-03                                                                                                                                                                                     | 1                                                                                                   |
| #3                                                                                                                                                      | 6.903E-03                                                                                                                                                                                                                                  | 2.204E-02                                                                                                                                                                                                             | 0.000E+00                                                                                                                                                                                     | 1                                                                                                   |
| #4                                                                                                                                                      | 2.062E-02                                                                                                                                                                                                                                  | 4.115E-02                                                                                                                                                                                                             | 3.648E-03                                                                                                                                                                                     | 1                                                                                                   |
| Average                                                                                                                                                 | 1.726E-02                                                                                                                                                                                                                                  | 3.435E-02                                                                                                                                                                                                             | 1.269E-03                                                                                                                                                                                     |                                                                                                     |
| Std Dev                                                                                                                                                 | 1.774E-02                                                                                                                                                                                                                                  | 3.145E-02                                                                                                                                                                                                             | 1.723E-03                                                                                                                                                                                     | 1                                                                                                   |
| Sample Variance                                                                                                                                         | 3.148E-04                                                                                                                                                                                                                                  | 9.892E-04                                                                                                                                                                                                             | 2.968E-06                                                                                                                                                                                     | ]                                                                                                   |
|                                                                                                                                                         | STA. 6,7,8                                                                                                                                                                                                                                 |                                                                                                                                                                                                                       |                                                                                                                                                                                               | _                                                                                                   |
|                                                                                                                                                         |                                                                                                                                                                                                                                            | K (cm/s)                                                                                                                                                                                                              |                                                                                                                                                                                               |                                                                                                     |
| Reading Number                                                                                                                                          | Cold (6)                                                                                                                                                                                                                                   | Center (7)                                                                                                                                                                                                            | Hot (8)                                                                                                                                                                                       |                                                                                                     |
| #1                                                                                                                                                      | 0.000E+00                                                                                                                                                                                                                                  | 2.381E-02                                                                                                                                                                                                             | 2.225E-02                                                                                                                                                                                     | 4                                                                                                   |
| #1                                                                                                                                                      | 0.000E+00                                                                                                                                                                                                                                  | 1.728E-02                                                                                                                                                                                                             | 1.581E-02                                                                                                                                                                                     | 1                                                                                                   |
| #2<br>#3                                                                                                                                                | 0.000E+00<br>0.000E+00                                                                                                                                                                                                                     | 1.822E-02                                                                                                                                                                                                             | 1.627E-02                                                                                                                                                                                     | 1                                                                                                   |
| #3                                                                                                                                                      | 0.000E+00                                                                                                                                                                                                                                  | 2.149E-02                                                                                                                                                                                                             | 3.509E-02                                                                                                                                                                                     |                                                                                                     |
|                                                                                                                                                         |                                                                                                                                                                                                                                            | 2.149E-02<br>2.020E-02                                                                                                                                                                                                | 2.235E-02                                                                                                                                                                                     | 1                                                                                                   |
| Average                                                                                                                                                 | 0.000 + 00                                                                                                                                                                                                                                 |                                                                                                                                                                                                                       |                                                                                                                                                                                               |                                                                                                     |
| Average<br>Std Dev                                                                                                                                      | 0.000E+00                                                                                                                                                                                                                                  |                                                                                                                                                                                                                       |                                                                                                                                                                                               | 1                                                                                                   |
| Average<br>Std Dev<br>Sample Variance                                                                                                                   | 0.000E+00<br>0.000E+00<br>0.000E+00<br>STA. 10,11,1                                                                                                                                                                                        | 3.008E-03<br>9.049E-06<br>2                                                                                                                                                                                           | 8.981E-03<br>8.066E-05                                                                                                                                                                        | ]                                                                                                   |
| Std Dev<br>Sample Variance                                                                                                                              | 0.000E+00<br>0.000E+00<br>STA. 10,11,1                                                                                                                                                                                                     | 3.008E-03<br>9.049E-06<br>2<br>K (cm/s)                                                                                                                                                                               | 8.981E-03<br>8.066E-05                                                                                                                                                                        | ]                                                                                                   |
| Std Dev<br>Sample Variance<br>Reading Number                                                                                                            | 0.000E+00<br>0.000E+00<br>STA. 10,11,1<br>Cold (10)                                                                                                                                                                                        | 3.008E-03<br>9.049E-06<br>2<br>K (cm/s)<br>Center (11)                                                                                                                                                                | 8.981E-03<br>8.066E-05<br>Hot (12)                                                                                                                                                            |                                                                                                     |
| Std Dev<br>Sample Variance<br>Reading Number<br>#1                                                                                                      | 0.000E+00<br>0.000E+00<br>STA. 10,11,1<br>Cold (10)<br>1.562E-02                                                                                                                                                                           | 3.008E-03<br>9.049E-06<br>2<br>K (cm/s)<br>Center (11)<br>4.717E-02                                                                                                                                                   | 8.981E-03<br>8.066E-05<br>Hot (12)<br>9.355E-03                                                                                                                                               |                                                                                                     |
| Std Dev<br>Sample Variance<br>Reading Number<br>#1<br>#2                                                                                                | 0.000E+00<br>0.000E+00<br>STA. 10,11,11<br>Cold (10)<br>1.562E-02<br>3.303E-02                                                                                                                                                             | 3.008E-03<br>9.049E-06<br>2<br>K (cm/s)<br>Center (11)<br>4.717E-02<br>5.000E-02                                                                                                                                      | 8.981E-03<br>8.066E-05<br>Hot (12)<br>9.355E-03<br>3.288E-03                                                                                                                                  |                                                                                                     |
| Std Dev<br>Sample Variance<br>Reading Number<br>#1<br>#2<br>#3                                                                                          | 0.000E+00<br>0.000E+00<br>STA. 10,11,1:<br>Cold (10)<br>1.562E-02<br>3.303E-02<br>3.509E-02                                                                                                                                                | 3.008E-03<br>9.049E-06<br>2<br>K (cm/s)<br>Center (11)<br>4.717E-02<br>5.000E-02<br>1.120E-01                                                                                                                         | 8.981E-03<br>8.066E-05<br>Hot (12)<br>9.355E-03<br>3.288E-03<br>7.567E-03                                                                                                                     |                                                                                                     |
| Std Dev<br>Sample Variance<br>Reading Number<br>#1<br>#2<br>#3<br>#4                                                                                    | 0.000E+00<br>0.000E+00<br>STA. 10,11,11<br>Cold (10)<br>1.562E-02<br>3.303E-02<br>5.152E-02                                                                                                                                                | 3.008E-03<br>9.049E-06<br>2<br>K (cm/s)<br>Center (11)<br>4.717E-02<br>5.000E-02<br>1.120E-01<br>3.190E+00                                                                                                            | 8.981E-03<br>8.066E-05<br>Hot (12)<br>9.355E-03<br>3.288E-03<br>7.567E-03<br>1.272E-02                                                                                                        |                                                                                                     |
| Std Dev<br>Sample Variance<br>Reading Number<br>#1<br>#2<br>#3                                                                                          | 0.000E+00<br>0.000E+00<br>STA. 10,11,1:<br>Cold (10)<br>1.562E-02<br>3.303E-02<br>3.509E-02                                                                                                                                                | 3.008E-03<br>9.049E-06<br>2<br>K (cm/s)<br>Center (11)<br>4.717E-02<br>5.000E-02<br>1.120E-01                                                                                                                         | 8.981E-03<br>8.066E-05<br>Hot (12)<br>9.355E-03<br>3.288E-03<br>7.567E-03                                                                                                                     |                                                                                                     |
| Std Dev<br>Sample Variance<br>Reading Number<br>#1<br>#2<br>#3<br>#4                                                                                    | 0.000E+00<br>0.000E+00<br>STA. 10,11,11<br>Cold (10)<br>1.562E-02<br>3.303E-02<br>5.152E-02                                                                                                                                                | 3.008E-03<br>9.049E-06<br>2<br>K (cm/s)<br>Center (11)<br>4.717E-02<br>5.000E-02<br>1.120E-01<br>3.190E+00                                                                                                            | 8.981E-03<br>8.066E-05<br>Hot (12)<br>9.355E-03<br>3.288E-03<br>7.567E-03<br>1.272E-02                                                                                                        |                                                                                                     |
| Std Dev<br>Sample Variance<br>Reading Number<br>#1<br>#2<br>#3<br>#4<br>Average                                                                         | 0.000E+00<br>0.000E+00<br>STA. 10,11,1:<br>Cold (10)<br>1.562E-02<br>3.303E-02<br>5.152E-02<br>3.382E-02                                                                                                                                   | 3.008E-03<br>9.049E-06<br>2<br>K (cm/s)<br>Center (11)<br>4.717E-02<br>5.000E-02<br>1.120E-01<br>3.190E+00<br>8.497E-01                                                                                               | 8.981E-03<br>8.066E-05<br>9.355E-03<br>3.288E-03<br>7.567E-03<br>1.272E-02<br>8.233E-03                                                                                                       |                                                                                                     |
| Std Dev<br>Sample Variance                                                                                                                              | 0.000E+00<br>0.000E+00<br>STA. 10,11,11<br>Cold (10)<br>1.562E-02<br>3.303E-02<br>3.509E-02<br>5.152E-02<br>3.382E-02<br>1.468E-02                                                                                                         | 3.008E-03<br>9.049E-06<br>2<br>K (cm/s)<br>Center (11)<br>4.717E-02<br>5.000E-02<br>1.120E-01<br>3.190E+00<br>8.497E-01<br>1.560E+00                                                                                  | 8,981E-03<br>8,066E-05<br>Hot (12)<br>9,355E-03<br>3,288E-03<br>7,567E-03<br>1,272E-02<br>8,233E-03<br>3,929E-03                                                                              |                                                                                                     |
| Std Dev<br>Sample Variance                                                                                                                              | 0.000E+00<br>0.000E+00<br>STA. 10,11,11<br>Cold (10)<br>1.562E-02<br>3.303E-02<br>3.509E-02<br>5.152E-02<br>3.382E-02<br>1.468E-02<br>2.156E-04<br>STA. 1,2,9,13                                                                           | 3.008E-03<br>9.049E-06<br>2<br>K (cm/s)<br>Center (11)<br>4.717E-02<br>5.000E-02<br>1.120E-01<br>3.190E+00<br>8.497E-01<br>1.560E+00<br>2.435E+00                                                                     | 8,981E-03<br>8,066E-05<br>Hot (12)<br>9,355E-03<br>3,288E-03<br>7,567E-03<br>1,272E-02<br>8,233E-03<br>3,929E-03                                                                              |                                                                                                     |
| Std Dev<br>Sample Variance                                                                                                                              | 0.000E+00<br>0.000E+00<br>STA. 10,11,1<br>Cold (10)<br>1.562E-02<br>3.303E-02<br>5.152E-02<br>3.382E-02<br>1.468E-02<br>2.156E-04<br>STA. 1,2,9,13<br>K (cm/s)                                                                             | 3.008E-03<br>9.049E-06<br>2<br>K (cm/s)<br>Center (11)<br>4.717E-02<br>5.000E-02<br>1.120E-01<br>3.190E+00<br>2.435E+00<br>2.435E+00                                                                                  | 8.981E-03<br>8.066E-05<br>9.355E-03<br>3.288E-03<br>7.567E-03<br>1.272E-02<br>8.233E-03<br>3.929E-03<br>1.544E-05                                                                             |                                                                                                     |
| Std Dev<br>Sample Variance<br>Reading Number<br>#1<br>#2<br>#3<br>#4<br>Average<br>Std Dev<br>Sample Variance                                           | 0.000E+00<br>0.000E+00<br>STA. 10,11,1:<br>Cold (10)<br>1.562E-02<br>3.303E-02<br>5.152E-02<br>3.382E-02<br>1.468E-02<br>2.156E-04<br>STA. 1,2,9,13<br>K (cm/s)<br>Center of                                                               | 3.008E-03<br>9.049E-06<br>2<br>K (cm/s)<br>Center (11)<br>4.717E-02<br>5.000E-02<br>1.120E-01<br>3.190E+00<br>8.497E-01<br>1.560E+00<br>2.435E+00                                                                     | 8.981E-03<br>8.066E-05<br>9.355E-03<br>3.288E-03<br>7.567E-03<br>1.272E-02<br>8.233E-03<br>3.929E-03<br>1.544E-05<br>Center of                                                                |                                                                                                     |
| Std Dev<br>Sample Variance<br>Reading Number<br>#1<br>#2<br>#3<br>#4<br>Average<br>Std Dev<br>Sample Variance<br>Reading Number                         | 0.000E+00<br>0.000E+00<br>STA. 10,11,1<br>Cold (10)<br>1.562E-02<br>3.303E-02<br>5.152E-02<br>3.360E-02<br>1.468E-02<br>2.156E-04<br>STA. 1,2,9,13<br>K (cm/s)<br>Center of<br>Mat (1)                                                     | 3.008E-03<br>9.049E-06<br>2<br>K (cm/s)<br>Center (11)<br>4.717E-02<br>5.000E-02<br>1.120E-01<br>3.190E+00<br>8.497E-01<br>1.560E+00<br>2.435E+00                                                                     | 8.981E-03<br>8.066E-05<br>9.355E-03<br>3.288E-03<br>7.567E-03<br>1.272E-02<br>8.233E-03<br>3.929E-03<br>1.544E-05<br>Center of<br>Mat (9)                                                     | Mat (13)                                                                                            |
| Std Dev<br>Sample Variance<br>Reading Number<br>#1<br>#2<br>#3<br>#4<br>Average<br>Std Dev<br>Sample Variance<br>Reading Number<br>#1                   | 0.000E+00<br>0.000E+00<br>STA. 10,11,1:<br>Cold (10)<br>1.562E-02<br>3.303E-02<br>3.509E-02<br>5.152E-02<br>3.382E-02<br>1.468E-02<br>2.156E-04<br>STA. 1,2,9,13<br>K (cm/s)<br>Center of<br>Mat (1)<br>7.042E-03                          | 3.008E-03<br>9.049E-06<br>2<br>K (cm/s)<br>Center (11)<br>4.717E-02<br>5.000E-02<br>1.120E-01<br>3.190E+00<br>8.497E-01<br>1.560E+00<br>2.435E+00<br>2.435E+00                                                        | 8.981E-03<br>8.066E-05<br>9.355E-03<br>3.288E-03<br>7.567E-03<br>1.272E-02<br>8.233E-03<br>1.544E-05<br>Center of<br>Mat (9)<br>2.723E-02                                                     | Mat (13)<br>2.769E-02                                                                               |
| Std Dev<br>Sample Variance<br>Reading Number<br>#1<br>#2<br>#3<br>#4<br>Average<br>Std Dev<br>Sample Variance<br>Reading Number<br>#1<br>#2             | 0.000E+00<br>0.000E+00<br>STA. 10,11,1<br>Cold (10)<br>1.562E-02<br>3.303E-02<br>5.152E-02<br>3.382E-02<br>3.382E-02<br>1.468E-02<br>2.156E-04<br>STA. 1,2,9,13<br>K (cm/s)<br>Center of<br>Mat (1)<br>7.042E-03<br>6.086E-03              | 3.008E-03<br>9.049E-06<br>2<br>K (cm/s)<br>Center (11)<br>4.717E-02<br>5.000E-02<br>1.120E-01<br>3.190E+00<br>8.497E-01<br>1.560E+00<br>2.435E+00<br>2.435E+00<br>6<br>Center of<br>Mat (2)<br>4.899E-03<br>4.241E-03 | 8.981E-03<br>8.066E-05<br>9.355E-03<br>3.288E-03<br>7.567E-03<br>1.272E-02<br>8.233E-03<br>3.929E-03<br>1.544E-05<br>Center of<br>Mat (9)<br>2.723E-02<br>1.461E-02                           | Mat (13)<br>2.769E-02<br>2.233E-02                                                                  |
| Std Dev<br>Sample Variance<br>Reading Number<br>#1<br>#2<br>#3<br>#4<br>Average<br>Std Dev<br>Sample Variance<br>Reading Number<br>#1<br>#2<br>#3       | 0.000E+00<br>0.000E+00<br>STA. 10,11,1:<br>Cold (10)<br>1.562E-02<br>3.303E-02<br>3.509E-02<br>5.152E-02<br>3.382E-02<br>1.468E-02<br>2.156E-04<br>STA. 1,2,9,13<br>K (cm/s)<br>Center of<br>Mat (1)<br>7.042E-03<br>7.145E-03             | 3.008E-03<br>9.049E-06<br>2<br>K (cm/s)<br>Center (11)<br>4.717E-02<br>5.000E-02<br>1.120E-01<br>3.190E+00<br>8.497E-01<br>1.560E+00<br>2.435E+00<br>2.435E+00                                                        | 8.981E-03<br>8.066E-05<br>9.355E-03<br>3.288E-03<br>7.567E-03<br>1.272E-02<br>8.233E-03<br>3.929E-03<br>1.544E-05<br>Center of<br>Mat (9)<br>2.723E-02<br>1.461E-02<br>1.461E-02              | Mat (13)<br>2.769E-02<br>2.233E-02<br>3.094E-02                                                     |
| Std Dev<br>Sample Variance<br>Reading Number<br>#1<br>#2<br>#3<br>#4<br>Average<br>Std Dev<br>Sample Variance<br>Reading Number<br>#1<br>#2             | 0.000E+00<br>0.000E+00<br>STA. 10,11,1<br>Cold (10)<br>1.562E-02<br>3.303E-02<br>5.152E-02<br>3.382E-02<br>3.382E-02<br>1.468E-02<br>2.156E-04<br>STA. 1,2,9,13<br>K (cm/s)<br>Center of<br>Mat (1)<br>7.042E-03<br>6.086E-03              | 3.008E-03<br>9.049E-06<br>2<br>K (cm/s)<br>Center (11)<br>4.717E-02<br>5.000E-02<br>1.120E-01<br>3.190E+00<br>8.497E-01<br>1.560E+00<br>2.435E+00<br>2.435E+00<br>6<br>Center of<br>Mat (2)<br>4.899E-03<br>4.241E-03 | 8.981E-03<br>8.066E-05<br>9.355E-03<br>3.288E-03<br>7.567E-03<br>1.272E-02<br>8.233E-03<br>3.929E-03<br>1.544E-05<br>Center of<br>Mat (9)<br>2.723E-02<br>1.461E-02                           | Mat (13)<br>2.769E-02<br>2.233E-02<br>3.094E-02                                                     |
| Std Dev<br>Sample Variance<br>Reading Number<br>#1<br>#2<br>#3<br>#4<br>Average<br>Std Dev<br>Sample Variance<br>Reading Number<br>#1<br>#2<br>#3<br>#4 | 0.000E+00<br>0.000E+00<br>STA. 10,11,1<br>Cold (10)<br>1.562E-02<br>3.303E-02<br>5.152E-02<br>3.382E-02<br>1.468E-02<br>2.156E-04<br>STA. 1,2,9,13<br>K (cm/s)<br>Center of<br>Mat (1)<br>7.042E-03<br>6.086E-03<br>7.145E-03<br>9.176E-03 | 3.008E-03<br>9.049E-06<br>2<br>K (cm/s)<br>Center (11)<br>4.717E-02<br>5.000E-02<br>1.120E-01<br>3.190E+00<br>2.435E+00<br>2.435E+00<br>2.435E+00<br>3<br>Center of<br>Mat (2)<br>4.899E-03<br>4.241E-03<br>5.295E-03 | 8.981E-03<br>8.066E-05<br>9.355E-03<br>3.288E-03<br>7.567E-03<br>1.272E-02<br>8.233E-03<br>3.929E-03<br>1.544E-05<br>Center of<br>Mat (9)<br>2.723E-02<br>1.461E-02<br>1.565E-02<br>1.352E-02 | Mat (13)<br>2.769E-02<br>2.233E-02<br>3.094E-02<br>1.636E-02                                        |
| Std Dev<br>Sample Variance<br>Reading Number<br>#1<br>#2<br>#3<br>#4<br>Average<br>Std Dev<br>Sample Variance<br>Reading Number<br>#1<br>#2<br>#3       | 0.000E+00<br>0.000E+00<br>STA. 10,11,1:<br>Cold (10)<br>1.562E-02<br>3.303E-02<br>3.509E-02<br>5.152E-02<br>3.382E-02<br>1.468E-02<br>2.156E-04<br>STA. 1,2,9,13<br>K (cm/s)<br>Center of<br>Mat (1)<br>7.042E-03<br>7.145E-03             | 3.008E-03<br>9.049E-06<br>2<br>K (cm/s)<br>Center (11)<br>4.717E-02<br>5.000E-02<br>1.120E-01<br>3.190E+00<br>8.497E-01<br>1.560E+00<br>2.435E+00<br>2.435E+00<br>6<br>Center of<br>Mat (2)<br>4.899E-03<br>4.241E-03 | 8.981E-03<br>8.066E-05<br>9.355E-03<br>3.288E-03<br>7.567E-03<br>1.272E-02<br>8.233E-03<br>3.929E-03<br>1.544E-05<br>Center of<br>Mat (9)<br>2.723E-02<br>1.461E-02<br>1.461E-02              | Center or<br>Mat (13)<br>2.769E-02<br>2.233E-02<br>3.094E-02<br>1.636E-02<br>2.433E-02<br>6.389E-02 |

|                                                                                                  | GT D: 17 1                                                                                                                                          | 0.15.04.04                                                                                                                              |                                                                                                                   |
|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
| Project:<br>Joint Type:                                                                          | CT Rt 17 1                                                                                                                                          | 2-15-04 (M                                                                                                                              | iddelton)                                                                                                         |
|                                                                                                  | STA. 1244                                                                                                                                           |                                                                                                                                         |                                                                                                                   |
|                                                                                                  | 017.1244                                                                                                                                            | K (cm/s)                                                                                                                                |                                                                                                                   |
| Reading Number                                                                                   | Cold                                                                                                                                                | Center                                                                                                                                  | Hot                                                                                                               |
| #1                                                                                               | 1.032E-03                                                                                                                                           | 0.000E+00                                                                                                                               | 0.000E+00                                                                                                         |
| #2                                                                                               | 1.741E-03                                                                                                                                           | 0.000E+00                                                                                                                               | 0.000E+00                                                                                                         |
| #3                                                                                               | 9.883E-04                                                                                                                                           | 0.000E+00                                                                                                                               | 0.000E+00                                                                                                         |
| Average                                                                                          | 1.253E-03                                                                                                                                           | 0.000E+00                                                                                                                               | 0.000E+00                                                                                                         |
| Std Dev                                                                                          | 4.224E-04                                                                                                                                           | 0.000E+00                                                                                                                               | 0.000E+00                                                                                                         |
| Sample Variance                                                                                  | 1.784E-07                                                                                                                                           | 0.000E+00                                                                                                                               | 0.000E+00                                                                                                         |
|                                                                                                  | STA. 1245                                                                                                                                           |                                                                                                                                         |                                                                                                                   |
|                                                                                                  |                                                                                                                                                     | K (cm/s)                                                                                                                                |                                                                                                                   |
| Reading Number                                                                                   | Cold                                                                                                                                                | Center                                                                                                                                  | Hot                                                                                                               |
| #1                                                                                               | 0.000E+00                                                                                                                                           | 1.238E-03                                                                                                                               | 0.000E+00                                                                                                         |
| #2                                                                                               | 0.000E+00                                                                                                                                           | 0.000E+00                                                                                                                               | 0.000E+00                                                                                                         |
| #3                                                                                               | 0.000E+00                                                                                                                                           | 0.000E+00                                                                                                                               | 0.000E+00                                                                                                         |
| Average                                                                                          | 0.000E+00                                                                                                                                           | 4.126E-04<br>7.147E-04                                                                                                                  | 0.000E+00                                                                                                         |
| Std Dev<br>Sample Variance                                                                       | 0.000E+00<br>0.000E+00                                                                                                                              | 7.147E-04<br>5.108E-07                                                                                                                  | 0.000E+00<br>0.000E+00                                                                                            |
|                                                                                                  | STA. 7009                                                                                                                                           | K (cm/s)                                                                                                                                |                                                                                                                   |
| Reading Number                                                                                   | Cold                                                                                                                                                | Center                                                                                                                                  | Hot                                                                                                               |
| #1                                                                                               | 0.000E+00                                                                                                                                           | 5.021E-04                                                                                                                               | 0.000E+00                                                                                                         |
| #2                                                                                               | 0.000E+00                                                                                                                                           | 2.505E-04                                                                                                                               | 0.000E+00                                                                                                         |
| #3                                                                                               | 0.000E+00                                                                                                                                           | 0.000E+00                                                                                                                               | 0.000E+00                                                                                                         |
| Average                                                                                          | 0.000E+00                                                                                                                                           | 2.509E-04                                                                                                                               | 0.000E+00                                                                                                         |
| Std Dev                                                                                          | 0.000E+00                                                                                                                                           | 2.510E-04                                                                                                                               | 0.000E+00                                                                                                         |
| Sample Variance                                                                                  | 0.000E+00                                                                                                                                           | 6.302E-08                                                                                                                               | 0.000E+00                                                                                                         |
|                                                                                                  | STA. 1246                                                                                                                                           |                                                                                                                                         |                                                                                                                   |
|                                                                                                  |                                                                                                                                                     | K (cm/s)                                                                                                                                |                                                                                                                   |
| Reading Number                                                                                   | Cold                                                                                                                                                | Center                                                                                                                                  | Hot                                                                                                               |
|                                                                                                  |                                                                                                                                                     | Center                                                                                                                                  | пог                                                                                                               |
| #1                                                                                               | 0.000E+00                                                                                                                                           | 0.000E+00                                                                                                                               | 0.000E+00                                                                                                         |
| #1                                                                                               | 0.000E+00                                                                                                                                           | 0.000E+00                                                                                                                               | 0.000E+00                                                                                                         |
|                                                                                                  |                                                                                                                                                     |                                                                                                                                         | 0.000E+00<br>0.000E+00                                                                                            |
| #2                                                                                               | 0.000E+00<br>0.000E+00<br>0.000E+00                                                                                                                 | 0.000E+00<br>2.756E-04                                                                                                                  | 0.000E+00<br>0.000E+00                                                                                            |
| #2<br>#3                                                                                         | 0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00                                                                                       | 0.000E+00<br>2.756E-04<br>0.000E+00<br>9.186E-05<br>1.591E-04                                                                           | 0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00                                                     |
| #2<br>#3<br>Average                                                                              | 0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00                                                                                                    | 0.000E+00<br>2.756E-04<br>0.000E+00<br>9.186E-05                                                                                        | 0.000E+00<br>0.000E+00<br>0.000E+00                                                                               |
| #2<br>#3<br>Average<br>Std Dev                                                                   | 0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00                                                                                       | 0.000E+00<br>2.756E-04<br>0.000E+00<br>9.186E-05<br>1.591E-04<br>2.531E-08                                                              | 0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00                                                     |
| #2<br>#3<br>Average<br>Std Dev<br>Sample Variance                                                | 0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>STA. 9006                                                             | 0.000E+00<br>2.756E-04<br>0.000E+00<br>9.186E-05<br>1.591E-04<br>2.531E-08<br>K (cm/s)                                                  | 0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00                                        |
| #2<br>#3<br>Average<br>Std Dev<br>Sample Variance                                                | 0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>STA. 9006                                                             | 0.000E+00<br>2.756E-04<br>0.000E+00<br>9.186E-05<br>1.591E-04<br>2.531E-08<br>K (cm/s)<br>Center                                        | 0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>Hot                                 |
| #2<br>#3<br>Average<br>Std Dev<br>Sample Variance<br>Reading Number<br>#1                        | 0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>5TA. 9006<br>Cold<br>0.000E+00                                                     | 0.000E+00<br>2.756E-04<br>0.000E+00<br>9.186E-05<br>1.591E-04<br>2.531E-08<br>K (cm/s)<br>Center<br>0.000E+00                           | 0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>Hot                                 |
| #2<br>#3<br>Average<br>Std Dev<br>Sample Variance<br>Reading Number<br>#1<br>#2                  | 0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>STA. 9006<br>Cold<br>0.000E+00<br>0.000E+00                           | 0.000E+00<br>2.756E-04<br>0.000E+00<br>9.186E-05<br>1.591E-04<br>2.531E-08<br>K (cm/s)<br>Center<br>0.000E+00<br>0.000E+00              | 0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>Hot<br>0.000E+00<br>0.000E+00       |
| #2<br>#3<br>Average<br>Std Dev<br>Sample Variance<br>Reading Number<br>#1<br>#2<br>#3            | 0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>STA. 9006<br>Cold<br>0.000E+00<br>0.000E+00                           | 0.000E+00<br>2.756E-04<br>0.000E+00<br>9.186E-05<br>1.591E-04<br>2.531E-08<br>K (cm/s)<br>Center<br>0.000E+00<br>0.000E+00<br>0.000E+00 | 0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00 |
| #2<br>#3<br>Average<br>Std Dev<br>Sample Variance<br>Reading Number<br>#1<br>#2<br>#3<br>Average | 0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>STA. 9006<br>Cold<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00 | 0.000E+00<br>2.756E-04<br>0.000E+00<br>9.186E-05<br>1.591E-04<br>2.531E-08<br>K (cm/s)<br>Center<br>0.000E+00<br>0.000E+00<br>0.000E+00 | 0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00 |
| #2<br>#3<br>Average<br>Std Dev<br>Sample Variance<br>Reading Number<br>#1<br>#2<br>#3            | 0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>STA. 9006<br>Cold<br>0.000E+00<br>0.000E+00                           | 0.000E+00<br>2.756E-04<br>0.000E+00<br>9.186E-05<br>1.591E-04<br>2.531E-08<br>K (cm/s)<br>Center<br>0.000E+00<br>0.000E+00<br>0.000E+00 | 0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>Hot<br>0.000E+00<br>0.000E+00       |

| Joint Type:                |           |                        | -          | Joint Type:                |           |                        | -        |
|----------------------------|-----------|------------------------|------------|----------------------------|-----------|------------------------|----------|
|                            | STA. 1244 |                        |            |                            | STA. 1298 |                        |          |
|                            |           | K (cm/s)               |            |                            |           | K (cm/s)               | r —      |
| Reading Number             | Cold      | Center                 | Hot        | Reading Number             | Cold      | Center                 | Hot      |
| #1                         | 2.043E-03 | 0.000E+00              | 0.000E+00  | #1                         | 4.770E-03 | 3.942E-02              |          |
| #2                         | 2.054E-03 | 0.000E+00              | 0.000E+00  | #2                         | 4.770E-03 | 3.660E-02              | 5.311E-0 |
| #3                         | 0.000E+00 | 0.000E+00              | 0.000E+00  | #3                         | 4.770E-03 | 3.942E-02              | 4.770E-0 |
| Average                    | 1.365E-03 |                        | 0.000E+00  | Average                    | 4.770E-03 | 3.848E-02              | 5.312E-0 |
| Std Dev                    | 1.183E-03 |                        | 0.000E+00  | Std Dev                    | 0.000E+00 |                        | 5.426E-0 |
| Sample Variance            | 1.398E-06 | 0.000E+00              | 0.000E+00  | Sample Variance            | 0.000E+00 | 2.652E-06              | 2.944E-0 |
|                            | STA. 1245 |                        |            |                            | STA. 1297 |                        |          |
|                            |           | K (cm/s)               |            |                            |           | K (cm/s)               |          |
| Reading Number             | Cold      | Center                 | Hot        | Reading Number             | Cold      | Center                 | Hot      |
| #1                         | 0.000E+00 | 1.908E-03              | 0.000E+00  | #1                         | 4.312E-03 | 3.449E-02              | 0.000E+  |
| #2                         | 2.149E-03 |                        | 0.000E+00  | #2                         |           | 2.905E-02              |          |
| #3                         | 0.000E+00 | 1.928E-03              | 1.958E-03  | #3                         | 3.220E-03 | 2.838E-02              | 0.000E+  |
| Average                    | 7.163E-04 | 1.918E-03              | 6.527E-04  | Average                    | 3.584E-03 |                        | 1.770E-0 |
| Std Dev                    | 1.241E-03 |                        | 1.131E-03  | Std Dev                    | 6.304E-04 |                        |          |
| Sample Variance            | 1.539E-06 | 9.627E-11              | 1.278E-06  | Sample Variance            | 3.974E-07 | 1.123E-05              | 9.402E-0 |
|                            |           |                        |            |                            |           |                        |          |
|                            | STA. 7009 | K (cm/s)               |            |                            | STA. 1296 | K (cm/s)               |          |
|                            |           |                        |            |                            |           | 1                      |          |
| Reading Number             | Cold      | Center                 | Hot        | Reading Number             | Cold      | Center                 | Hot      |
| #1                         | 0.000E±00 | 0.000E+00              | 0.000E±00  | #1                         | 4 610E-04 | 1.112E-02              | 0.000E+  |
| #2                         |           | 2.266E-03              | 2.305E-03  | #2                         |           | 9.606E-03              |          |
| #3                         |           |                        |            | #3                         |           | 9.105E-03              |          |
| Average                    | 8.396E-04 | 1.519E-03              | 7.682E-04  | Average                    | 4.610E-04 |                        | 0.000E+  |
| Std Dev                    | 1.454E-03 |                        | 1.331E-03  | Std Dev                    | 0.000E+00 |                        | 0.000E+  |
| Sample Variance            | 2.115E-06 | 1.731E-06              | 1.771E-06  | Sample Variance            | 0.000E+00 |                        | 0.000E+  |
|                            |           |                        |            |                            |           |                        |          |
|                            | STA. 1246 | K (cm/s)               |            |                            | STA. 1295 | K (cm/s)               |          |
| Reading Number             | Cold      | Center                 | Hot        | Reading Number             | Cold      | Center                 | Hot      |
| #1                         |           | 0.000E+00              | 2.718E-03  | #1                         | 0.000E+00 |                        | 0.000E+  |
| #0                         |           | 2 7025 02              | 0.0005.00  | #0                         | 0.0005.00 | 2 6025 02              | 0.0005   |
| #2<br>#3                   |           | 2.702E-03<br>0.000E+00 |            | #2<br>#3                   | 0.000E+00 | 3.692E-02<br>3.499E-02 |          |
| #3<br>Average              | 0.000E+00 | 9.006E-04              | 9.061E-04  | #3<br>Average              | 0.000E+00 |                        | 0.000E+  |
| Std Dev                    | 0.000E+00 |                        | 1.569E-03  | Std Dev                    | 0.000E+00 |                        | 0.000E+  |
| Sample Variance            | 0.000E+00 |                        | 2.463E-06  | Sample Variance            | 0.000E+00 |                        |          |
|                            |           |                        |            |                            |           |                        |          |
|                            | STA. 9006 |                        |            |                            | STA. 1294 |                        |          |
|                            |           | K (cm/s)               |            |                            |           | K (cm/s)               |          |
| Reading Number             | Cold      | Center                 | Hot        | Reading Number             | Cold      | Center                 | Hot      |
| #1                         |           | 0.000E+00              |            | #1                         |           | 1.107E-02              |          |
| #2                         |           | 3.254E-03              |            | #2                         |           | 8.776E-03              |          |
| #3                         |           | 0.000E+00              |            | #3                         |           | 9.345E-03              |          |
| Average                    | 0.000E+00 |                        | 0.000E+00  | Average                    | 7.089E-04 |                        |          |
|                            |           | 1.879E-03              |            | Std Dev<br>Sample Variance |           | 1.193E-03              |          |
| Std Dev<br>Sample Variance | 0.000E+00 | 2 5205 00              | 0.0005.000 |                            |           | 1.424E-06              |          |

| Project:                                                                                                                                               | CT Rt 44 '(                                                                                                                                                                                                                  | 05 (Pomfree                                                                                                                                                                             | t)                                                                                                                                                                                                                          | Project:                                                                             | CT Rt 17 1                                                                                                                                                                                                                                                                                                                          | 12-15-04 (G                                                                                                                                                                           | lastonb                                                                                               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| Joint Type:                                                                                                                                            |                                                                                                                                                                                                                              |                                                                                                                                                                                         | -                                                                                                                                                                                                                           | Joint Type:                                                                          |                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                       | •                                                                                                     |
|                                                                                                                                                        | STA. 1298                                                                                                                                                                                                                    |                                                                                                                                                                                         |                                                                                                                                                                                                                             |                                                                                      | STA. 1946                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                       |                                                                                                       |
|                                                                                                                                                        |                                                                                                                                                                                                                              | K (cm/s)                                                                                                                                                                                |                                                                                                                                                                                                                             |                                                                                      |                                                                                                                                                                                                                                                                                                                                     | K (cm/s)                                                                                                                                                                              |                                                                                                       |
| Reading Number                                                                                                                                         | Cold                                                                                                                                                                                                                         | Center                                                                                                                                                                                  | Hot                                                                                                                                                                                                                         | Reading Number                                                                       | r Cold                                                                                                                                                                                                                                                                                                                              | Center                                                                                                                                                                                | Ho                                                                                                    |
| #1                                                                                                                                                     | 1.986E-03                                                                                                                                                                                                                    | 1.552E-02                                                                                                                                                                               | 4.255E-03                                                                                                                                                                                                                   | #1                                                                                   | 0.000E+00                                                                                                                                                                                                                                                                                                                           | 5.299E-03                                                                                                                                                                             | 7.462                                                                                                 |
| #2                                                                                                                                                     | 1.342E-03                                                                                                                                                                                                                    | 1.306E-02                                                                                                                                                                               | 2.919E-03                                                                                                                                                                                                                   | #2                                                                                   | 1.854E-04                                                                                                                                                                                                                                                                                                                           | 5.929E-03                                                                                                                                                                             | 5.585                                                                                                 |
| #3                                                                                                                                                     | 2.040E-03                                                                                                                                                                                                                    | 1.254E-02                                                                                                                                                                               | 2.989E-03                                                                                                                                                                                                                   | #3                                                                                   | 1.854E-04                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                       | 3.716                                                                                                 |
| Average                                                                                                                                                | 1.790E-03                                                                                                                                                                                                                    | 1.371E-02                                                                                                                                                                               | 3.388E-03                                                                                                                                                                                                                   | Average                                                                              | 1.236E-04                                                                                                                                                                                                                                                                                                                           | 5.719E-03                                                                                                                                                                             | 5.588                                                                                                 |
| Std Dev                                                                                                                                                | 3.886E-04                                                                                                                                                                                                                    | 1.595E-03                                                                                                                                                                               | 7.517E-04                                                                                                                                                                                                                   | Std Dev                                                                              | 1.070E-04                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                       | 1.873                                                                                                 |
| Sample Variance                                                                                                                                        | 1.510E-07                                                                                                                                                                                                                    | 2.543E-06                                                                                                                                                                               | 5.650E-07                                                                                                                                                                                                                   | Sample Variance                                                                      | 1.146E-08                                                                                                                                                                                                                                                                                                                           | 1.322E-07                                                                                                                                                                             | 3.510                                                                                                 |
|                                                                                                                                                        |                                                                                                                                                                                                                              |                                                                                                                                                                                         |                                                                                                                                                                                                                             |                                                                                      |                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                       |                                                                                                       |
|                                                                                                                                                        | STA. 1297                                                                                                                                                                                                                    |                                                                                                                                                                                         |                                                                                                                                                                                                                             |                                                                                      | STA. 1945                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                       |                                                                                                       |
|                                                                                                                                                        |                                                                                                                                                                                                                              | K (cm/s)                                                                                                                                                                                |                                                                                                                                                                                                                             |                                                                                      |                                                                                                                                                                                                                                                                                                                                     | K (cm/s)                                                                                                                                                                              | )                                                                                                     |
| Reading Number                                                                                                                                         | Cold                                                                                                                                                                                                                         | Center                                                                                                                                                                                  | Hot                                                                                                                                                                                                                         | Reading Number                                                                       | r Cold                                                                                                                                                                                                                                                                                                                              | Center                                                                                                                                                                                | Но                                                                                                    |
| #1                                                                                                                                                     |                                                                                                                                                                                                                              | 7.485E-03                                                                                                                                                                               | 0.000E+00                                                                                                                                                                                                                   | #1                                                                                   | 2.004E-04                                                                                                                                                                                                                                                                                                                           | 4.615E-03                                                                                                                                                                             | 1.627                                                                                                 |
| #2                                                                                                                                                     |                                                                                                                                                                                                                              | 7.953E-03                                                                                                                                                                               |                                                                                                                                                                                                                             | #2                                                                                   | 2.004E-04                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                       | 1.421                                                                                                 |
| #3                                                                                                                                                     | 1.561E-03                                                                                                                                                                                                                    |                                                                                                                                                                                         | 0.000E+00                                                                                                                                                                                                                   | #3                                                                                   | 0.000E+00                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                       | 1.421                                                                                                 |
| Average                                                                                                                                                | 1.542E-03                                                                                                                                                                                                                    | 7.973E-03                                                                                                                                                                               | 0.000E+00                                                                                                                                                                                                                   | Average                                                                              | 1.336E-04                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                       | 1.490                                                                                                 |
| Std Dev                                                                                                                                                | 1.869E-05                                                                                                                                                                                                                    | 4.996E-04                                                                                                                                                                               | 0.000E+00                                                                                                                                                                                                                   | Std Dev                                                                              | 1.157E-04                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                       | 1.192                                                                                                 |
| Sample Variance                                                                                                                                        | 3.494E-10                                                                                                                                                                                                                    | 2.496E-07                                                                                                                                                                               | 0.000E+00                                                                                                                                                                                                                   | Sample Variance                                                                      |                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                       | 1.421                                                                                                 |
| Reading Number                                                                                                                                         | Cold                                                                                                                                                                                                                         | Center                                                                                                                                                                                  | Hot                                                                                                                                                                                                                         | Reading Number                                                                       | r Cold                                                                                                                                                                                                                                                                                                                              | Center                                                                                                                                                                                | He                                                                                                    |
|                                                                                                                                                        |                                                                                                                                                                                                                              |                                                                                                                                                                                         |                                                                                                                                                                                                                             |                                                                                      |                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                       |                                                                                                       |
| #1                                                                                                                                                     |                                                                                                                                                                                                                              |                                                                                                                                                                                         | 0.000E+00                                                                                                                                                                                                                   | #1                                                                                   | 0.000E+00                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                       | 3.916                                                                                                 |
| #2                                                                                                                                                     |                                                                                                                                                                                                                              | 4.140E-03<br>4.302E-03                                                                                                                                                                  | 0.000E+00<br>6.116E-04                                                                                                                                                                                                      | #2<br>#3                                                                             | 0.000E+00                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                       | 3.916                                                                                                 |
|                                                                                                                                                        |                                                                                                                                                                                                                              |                                                                                                                                                                                         | 0.110E-04                                                                                                                                                                                                                   | #3<br>Average                                                                        | 0.000E+00                                                                                                                                                                                                                                                                                                                           | 3.860E-03                                                                                                                                                                             | 3.916<br>3.916                                                                                        |
| #3                                                                                                                                                     | 5.951E-04                                                                                                                                                                                                                    |                                                                                                                                                                                         | 2 0205 04                                                                                                                                                                                                                   | Average                                                                              |                                                                                                                                                                                                                                                                                                                                     | 3 031 - 02                                                                                                                                                                            |                                                                                                       |
| Average                                                                                                                                                | 3.957E-04                                                                                                                                                                                                                    | 4.361E-03                                                                                                                                                                               | 2.039E-04                                                                                                                                                                                                                   |                                                                                      | 0.000E+00                                                                                                                                                                                                                                                                                                                           | 3.931E-03                                                                                                                                                                             |                                                                                                       |
| Average<br>Std Dev                                                                                                                                     | 3.957E-04<br>3.427E-04                                                                                                                                                                                                       | 4.361E-03<br>2.561E-04                                                                                                                                                                  | 2.039E-04<br>3.531E-04                                                                                                                                                                                                      | Std Dev                                                                              | 0.000E+00                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                       | 0.000                                                                                                 |
| Average                                                                                                                                                | 3.957E-04                                                                                                                                                                                                                    | 4.361E-03                                                                                                                                                                               | 2.039E-04                                                                                                                                                                                                                   |                                                                                      | 0.000E+00                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                       | 0.000                                                                                                 |
| Average<br>Std Dev                                                                                                                                     | 3.957E-04<br>3.427E-04                                                                                                                                                                                                       | 4.361E-03<br>2.561E-04<br>6.558E-08                                                                                                                                                     | 2.039E-04<br>3.531E-04                                                                                                                                                                                                      | Std Dev                                                                              | 0.000E+00                                                                                                                                                                                                                                                                                                                           | 1.502E-08                                                                                                                                                                             | 0.000                                                                                                 |
| Average<br>Std Dev<br>Sample Variance                                                                                                                  | 3.957E-04<br>3.427E-04<br>1.174E-07<br>STA. 1295                                                                                                                                                                             | 4.361E-03<br>2.561E-04<br>6.558E-08<br>K (cm/s)                                                                                                                                         | 2.039E-04<br>3.531E-04<br>1.247E-07                                                                                                                                                                                         | Std Dev<br>Sample Variance                                                           | 0.000E+00<br>0.000E+00<br>STA. 1943                                                                                                                                                                                                                                                                                                 | 1.502E-08<br>K (cm/s)                                                                                                                                                                 | 0.000                                                                                                 |
| Average<br>Std Dev<br>Sample Variance<br>Reading Number                                                                                                | 3.957E-04<br>3.427E-04<br>1.174E-07<br>STA. 1295<br>Cold                                                                                                                                                                     | 4.361E-03<br>2.561E-04<br>6.558E-08<br>K (cm/s)<br>Center                                                                                                                               | 2.039E-04<br>3.531E-04<br>1.247E-07<br>Hot                                                                                                                                                                                  | Std Dev<br>Sample Variance<br>Reading Number                                         | 0.000E+00<br>0.000E+00<br>STA. 1943<br>r Cold                                                                                                                                                                                                                                                                                       | K (cm/s)                                                                                                                                                                              | 0.000<br>0.000<br>Ho                                                                                  |
| Average<br>Std Dev<br>Sample Variance                                                                                                                  | 3.957E-04<br>3.427E-04<br>1.174E-07<br>STA. 1295<br>Cold                                                                                                                                                                     | 4.361E-03<br>2.561E-04<br>6.558E-08<br>K (cm/s)                                                                                                                                         | 2.039E-04<br>3.531E-04<br>1.247E-07<br>Hot                                                                                                                                                                                  | Std Dev<br>Sample Variance                                                           | 0.000E+00<br>0.000E+00<br>STA. 1943                                                                                                                                                                                                                                                                                                 | K (cm/s)                                                                                                                                                                              | 0.000<br>0.000<br>Ho                                                                                  |
| Average<br>Std Dev<br>Sample Variance<br>Reading Number                                                                                                | 3.957E-04<br>3.427E-04<br>1.174E-07<br>STA. 1295<br>Cold<br>0.000E+00                                                                                                                                                        | 4.361E-03<br>2.561E-04<br>6.558E-08<br>K (cm/s)<br>Center                                                                                                                               | 2.039E-04<br>3.531E-04<br>1.247E-07<br>Hot                                                                                                                                                                                  | Std Dev<br>Sample Variance<br>Reading Number                                         | 0.000E+00<br>0.000E+00<br>STA. 1943<br>r Cold                                                                                                                                                                                                                                                                                       | 1.502E-08<br>K (cm/s)<br>Center<br>8.067E-04                                                                                                                                          | 0.000<br>0.000<br>Ho<br>1.215                                                                         |
| Average<br>Std Dev<br>Sample Variance<br>Reading Number<br>#1                                                                                          | 3.957E-04<br>3.427E-04<br>1.174E-07<br>STA. 1295<br>Cold<br>0.000E+00                                                                                                                                                        | 4.361E-03<br>2.561E-04<br>6.558E-08<br>K (cm/s)<br>Center<br>8.272E-03<br>5.014E-03                                                                                                     | 2.039E-04<br>3.531E-04<br>1.247E-07<br>Hot<br>0.000E+00                                                                                                                                                                     | Std Dev<br>Sample Variance<br>Reading Number<br>#1                                   | 0.000E+00<br>0.000E+00<br>STA. 1943<br>r Cold<br>0.000E+00                                                                                                                                                                                                                                                                          | K (cm/s)           Center           8.067E-04           4.017E-04                                                                                                                     | 0.000<br>0.000<br>He<br>1.215<br>8.067                                                                |
| Average<br>Std Dev<br>Sample Variance<br>Reading Number<br>#1<br>#2                                                                                    | 3.957E-04<br>3.427E-04<br>1.174E-07<br>STA. 1295<br>Cold<br>0.000E+00<br>0.000E+00                                                                                                                                           | 4.361E-03<br>2.561E-04<br>6.558E-08<br>K (cm/s)<br>Center<br>8.272E-03<br>5.014E-03                                                                                                     | 2.039E-04<br>3.531E-04<br>1.247E-07<br>Hot<br>0.000E+00<br>7.446E-04                                                                                                                                                        | Std Dev<br>Sample Variance<br>Reading Number<br>#1<br>#2                             | 0.000E+00<br>0.000E+00<br>STA. 1943<br>r Cold<br>0.000E+00<br>2.004E-04                                                                                                                                                                                                                                                             | K (cm/s)           Center           8.067E-04           4.017E-04                                                                                                                     | 0.000<br>0.000<br>Ho<br>1.215<br>8.067<br>6.038                                                       |
| Average<br>Std Dev<br>Sample Variance<br>Reading Number<br>#1<br>#2<br>#3                                                                              | 3.957E-04<br>3.427E-04<br>1.174E-07<br>STA. 1295<br>Cold<br>0.000E+00<br>0.000E+00<br>0.000E+00                                                                                                                              | 4.361E-03<br>2.561E-04<br>6.558E-08<br>K (cm/s)<br>Center<br>8.272E-03<br>5.014E-03<br>5.247E-03<br>6.178E-03                                                                           | 2.039E-04<br>3.531E-04<br>1.247E-07<br>Hot<br>0.000E+00<br>7.446E-04<br>0.000E+00                                                                                                                                           | Std Dev<br>Sample Variance<br>Reading Number<br>#1<br>#2<br>#3                       | 0.000E+00<br>0.000E+00<br>STA. 1943<br>r Cold<br>0.000E+00<br>2.004E-04<br>0.000E+00                                                                                                                                                                                                                                                | K (cm/s)<br>Center<br>8.067E-04<br>4.017E-04<br>2.004E-04<br>4.696E-04                                                                                                                | 0.000<br>0.000<br>Ho<br>1.215<br>8.067<br>6.038<br>8.753                                              |
| Average<br>Std Dev<br>Sample Variance<br>Reading Number<br>#1<br>#2<br>#3<br>Average                                                                   | 3.957E-04<br>3.427E-04<br>1.174E-07<br>STA. 1295<br>Cold<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00                                                                                                                 | 4.361E-03<br>2.561E-04<br>6.558E-08<br>K (cm/s)<br>Center<br>8.272E-03<br>5.014E-03<br>5.247E-03<br>6.178E-03<br>1.817E-03                                                              | 2.039E-04<br>3.531E-04<br>1.247E-07<br>Hot<br>0.000E+00<br>7.446E-04<br>0.000E+00<br>2.482E-04                                                                                                                              | Std Dev<br>Sample Variance                                                           | 0.000E+00<br>0.000E+00<br>STA. 1943<br>r Cold<br>0.000E+00<br>2.004E-04<br>0.000E+00<br>6.681E-05<br>1.157E-04                                                                                                                                                                                                                      | K (cm/s)<br>Center<br>8.067E-04<br>4.017E-04<br>2.004E-04<br>3.088E-04                                                                                                                | 0.000<br>0.000<br>He<br>1.215<br>8.067<br>6.038<br>8.753<br>3.114                                     |
| Average<br>Std Dev<br>Sample Variance<br>Reading Number<br>#1<br>#2<br>#3<br>Average<br>Std Dev                                                        | 3.957E-04<br>3.427E-04<br>1.174E-07<br>STA. 1295<br>Cold<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00                                                                                                    | 4.361E-03<br>2.561E-04<br>6.558E-08<br>K (cm/s)<br>Center<br>8.272E-03<br>5.014E-03<br>5.247E-03<br>6.178E-03<br>1.817E-03                                                              | 2.039E-04<br>3.531E-04<br>1.247E-07<br>Hot<br>0.000E+00<br>7.446E-04<br>0.000E+00<br>2.482E-04<br>4.299E-04                                                                                                                 | Std Dev<br>Sample Variance<br>Reading Number<br>#1<br>#2<br>#3<br>Average<br>Std Dev | 0.000E+00<br>0.000E+00<br>STA. 1943<br>r Cold<br>0.000E+00<br>2.004E-04<br>0.000E+00<br>6.681E-05<br>1.157E-04                                                                                                                                                                                                                      | K (cm/s)<br>Center<br>8.067E-04<br>4.017E-04<br>2.004E-04<br>3.088E-04                                                                                                                | 0.000<br>0.000<br>1.215<br>8.067<br>6.038<br>8.753<br>3.114                                           |
| Average<br>Std Dev<br>Sample Variance<br>Reading Number<br>#1<br>#2<br>#3<br>Average<br>Std Dev                                                        | 3.957E-04<br>3.427E-04<br>1.174E-07<br>STA. 1295<br>Cold<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00                                                                                                    | 4.361E-03<br>2.561E-04<br>6.558E-08<br>K (cm/s)<br>Center<br>8.272E-03<br>5.014E-03<br>5.247E-03<br>6.178E-03<br>1.817E-03                                                              | 2.039E-04<br>3.531E-04<br>1.247E-07<br>Hot<br>0.000E+00<br>7.446E-04<br>0.000E+00<br>2.482E-04<br>4.299E-04                                                                                                                 | Std Dev<br>Sample Variance<br>Reading Number<br>#1<br>#2<br>#3<br>Average<br>Std Dev | 0.000E+00<br>0.000E+00<br>STA. 1943<br>r Cold<br>0.000E+00<br>2.004E-04<br>0.000E+00<br>6.681E-05<br>1.157E-04                                                                                                                                                                                                                      | K (cm/s)<br>Center<br>8.067E-04<br>4.017E-04<br>2.004E-04<br>3.088E-04                                                                                                                | 0.000<br>0.000<br>1.215<br>8.067<br>6.038<br>8.753<br>3.114                                           |
| Average<br>Std Dev<br>Sample Variance<br>Reading Number<br>#1<br>#2<br>#3<br>Average<br>Std Dev                                                        | 3.957E-04<br>3.427E-04<br>1.174E-07<br>STA. 1295<br>Cold<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00                                                                                                    | 4.361E-03<br>2.561E-04<br>6.558E-08<br>K (cm/s)<br>Center<br>8.272E-03<br>5.014E-03<br>5.247E-03<br>6.178E-03<br>1.817E-03                                                              | 2.039E-04<br>3.531E-04<br>1.247E-07<br>Hot<br>0.000E+00<br>7.446E-04<br>0.000E+00<br>2.482E-04<br>4.299E-04                                                                                                                 | Std Dev<br>Sample Variance<br>Reading Number<br>#1<br>#2<br>#3<br>Average<br>Std Dev | 0.000E+00<br>0.000E+00<br>STA. 1943<br>r Cold<br>0.000E+00<br>2.004E-04<br>0.000E+00<br>6.681E-05<br>1.157E-04<br>1.339E-08                                                                                                                                                                                                         | K (cm/s)<br>Center<br>8.067E-04<br>4.017E-04<br>2.004E-04<br>3.088E-04                                                                                                                | 0.000                                                                                                 |
| Average<br>Std Dev<br>Sample Variance<br>Reading Number<br>#1<br>#2<br>#3<br>Average<br>Std Dev                                                        | 3.957E-04<br>3.427E-04<br>1.174E-07<br>STA. 1295<br>Cold<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>STA. 1294<br>Cold                                                                               | 4.361E-03<br>2.561E-04<br>6.558E-08<br>K (cm/s)<br>Center<br>8.272E-03<br>5.014E-03<br>5.247E-03<br>3.247E-03<br>1.817E-03<br>3.302E-06<br>K (cm/s)<br>Center                           | 2.039E-04<br>3.531E-04<br>1.247E-07<br>                                                                                                                                                                                     | Std Dev<br>Sample Variance<br>Reading Number<br>#1<br>#2<br>#3<br>Average<br>Std Dev | 0.000E+00<br>0.000E+00<br>STA. 1943<br>r Cold<br>0.000E+00<br>2.004E-04<br>0.000E+00<br>6.681E-05<br>1.157E-04<br>1.339E-08<br>STA. 1942<br>r Cold                                                                                                                                                                                  | K (cm/s)<br>Center<br>8.067E-04<br>4.017E-04<br>2.004E-04<br>3.088E-04<br>9.537E-08<br>K (cm/s)<br>Center                                                                             | 0.000<br>0.000<br>1.215<br>8.067<br>6.038<br>8.753<br>3.114<br>9.700<br>He                            |
| Average<br>Std Dev<br>Sample Variance<br>#1<br>#2<br>#3<br>Average<br>Std Dev<br>Sample Variance<br>Reading Number<br>#1                               | 3.957E-04<br>3.427E-04<br>1.174E-07<br>STA. 1295<br>Cold<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>STA. 1294<br>Cold<br>8.624E-04                                                     | 4.361E-03<br>2.561E-04<br>6.558E-08<br>K (cm/s)<br>Center<br>8.272E-03<br>5.014E-03<br>5.247E-03<br>6.178E-03<br>3.302E-06<br>K (cm/s)<br>Center<br>4.801E-03                           | 2.039E-04<br>3.531E-04<br>1.247E-07<br>                                                                                                                                                                                     | Std Dev<br>Sample Variance                                                           | 0.000E+00<br>0.000E+00<br>STA. 1943<br>r Cold<br>0.000E+00<br>2.004E-04<br>0.000E+00<br>6.681E-05<br>1.157E-04<br>1.339E-08<br>STA. 1942<br>r Cold<br>8.067E-04                                                                                                                                                                     | K (cm/s)           Center           8.067E-04           4.017E-04           2.004E-04           3.088E-04           9.537E-08           K (cm/s)           Center           8.512E-03 | 0.000<br>0.000<br>1.215<br>8.067<br>6.038<br>8.753<br>3.114<br>9.700<br>Hd<br>3.526                   |
| Average<br>Std Dev<br>Sample Variance<br>#1<br>#2<br>#3<br>Average<br>Std Dev<br>Sample Variance<br>Reading Number<br>#1<br>#2                         | 3.957E-04<br>3.427E-04<br>1.174E-07<br>STA. 1295<br>Cold<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>STA. 1294<br>Cold<br>8.624E-04<br>8.683E-04                           | 4.361E-03<br>2.561E-04<br>6.558E-08<br>K (cm/s)<br>Center<br>8.272E-03<br>5.014E-03<br>5.247E-03<br>6.178E-03<br>3.302E-06<br>K (cm/s)<br>Center<br>4.801E-03<br>4.989E-03              | 2.039E-04<br>3.531E-04<br>1.247E-07<br>0.000E+00<br>7.446E-04<br>0.000E+00<br>2.482E-04<br>1.848E-07<br>Hot<br>0.000E+00<br>9.251E-04                                                                                       | Std Dev<br>Sample Variance                                                           | 0.000E+00<br>0.000E+00<br>STA. 1943<br>r<br>Cold<br>0.000E+00<br>2.004E-04<br>0.000E+00<br>6.681E-05<br>1.157E-04<br>1.339E-08<br>STA. 1942<br>r<br>Cold<br>8.067E-04<br>6.038E-04                                                                                                                                                  | K (cm/s)<br>Center<br>8.067E-04<br>4.017E-04<br>2.004E-04<br>4.696E-04<br>3.088E-04<br>9.537E-08<br>K (cm/s)<br>Center<br>8.512E-03<br>8.751E-03                                      | 0.000<br>0.000<br>1.215<br>8.067<br>6.038<br>8.753<br>3.114<br>9.700<br>9.700                         |
| Average<br>Std Dev<br>Sample Variance<br>#1<br>#2<br>#3<br>Average<br>Std Dev<br>Sample Variance<br>Reading Number<br>#1<br>#2<br>#3                   | 3.957E-04<br>3.427E-04<br>1.174E-07<br>STA. 1295<br>Cold<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>STA. 1294<br>STA. 1294<br>Cold<br>8.632E-04<br>8.683E-04<br>0.000E+00                           | 4.361E-03<br>2.561E-04<br>6.558E-08<br>K (cm/s)<br>Center<br>8.272E-03<br>5.014E-03<br>5.247E-03<br>6.178E-03<br>3.302E-06<br>K (cm/s)<br>Center<br>4.801E-03<br>4.989E-03<br>4.312E-03 | 2.039E-04<br>3.531E-04<br>1.247E-07<br>                                                                                                                                                                                     | Std Dev<br>Sample Variance                                                           | 0.000E+00<br>0.000E+00<br>STA. 1943<br>r Cold<br>0.000E+00<br>2.004E-04<br>0.000E+00<br>6.681E-05<br>1.157E-04<br>1.339E-08<br>STA. 1942<br>r Cold<br>8.067E-04<br>6.038E-04<br>6.038E-04                                                                                                                                           | K (cm/s)<br>Center<br>8.067E-04<br>4.017E-04<br>2.004E-04<br>4.696E-04<br>3.088E-04<br>9.537E-08<br>K (cm/s)<br>Center<br>8.512E-03<br>8.751E-03<br>9.477E-03                         | 0.000<br>0.000<br>1.215<br>8.067<br>6.038<br>8.753<br>3.114<br>9.700<br>He<br>3.526<br>3.098<br>3.098 |
| Average<br>Std Dev<br>Sample Variance<br>#1<br>#2<br>#3<br>Average<br>Std Dev<br>Sample Variance<br>Reading Number<br>#1<br>#2<br>#3<br>Average        | 3.957E-04<br>3.427E-04<br>1.174E-07<br>STA. 1295<br>Cold<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>STA. 1294<br>Cold<br>8.624E-04<br>8.624E-04<br>8.624E-04<br>0.000E+00<br>5.769E-04 | 4.361E-03<br>2.561E-04<br>6.558E-08<br>K (cm/s)<br>Center<br>8.272E-03<br>5.014E-03<br>5.247E-03<br>3.302E-06<br>K (cm/s)<br>Center<br>4.801E-03<br>4.312E-03<br>4.312E-03<br>4.701E-03 | 2.039E-04<br>3.531E-04<br>1.247E-07<br>                                                                                                                                                                                     | Std Dev<br>Sample Variance                                                           | 0.000E+00<br>0.000E+00<br>STA. 1943<br>r Cold<br>0.000E+00<br>2.004E-04<br>0.000E+00<br>6.681E-05<br>1.157E-04<br>1.339E-08<br>STA. 1942<br>r Cold<br>8.067E-04<br>6.038E-04<br>6.038E-04<br>6.038E-04<br>6.714E-04                                                                                                                 | K (cm/s)<br>Center<br>8.067E-04<br>4.017E-04<br>2.004E-04<br>3.088E-04<br>9.537E-08<br>K (cm/s)<br>Center<br>8.512E-03<br>8.751E-03<br>8.751E-03<br>8.751E-03<br>8.913E-03            | 0.000<br>0.000<br>1.215<br>8.067<br>6.038<br>8.753<br>3.114<br>9.700<br>He<br>3.526<br>3.098<br>3.241 |
| Average<br>Std Dev<br>Sample Variance<br>Reading Number<br>#1<br>#2<br>#3<br>Average<br>Std Dev<br>Sample Variance<br>Reading Number<br>#1<br>#2<br>#3 | 3.957E-04<br>3.427E-04<br>1.174E-07<br>STA. 1295<br>Cold<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>STA. 1294<br>STA. 1294<br>Cold<br>8.632E-04<br>8.683E-04<br>0.000E+00                           | 4.361E-03<br>2.561E-04<br>6.558E-08<br>K (cm/s)<br>Center<br>8.272E-03<br>5.014E-03<br>5.247E-03<br>6.178E-03<br>3.302E-06<br>K (cm/s)<br>Center<br>4.801E-03<br>4.989E-03<br>4.312E-03 | 2.039E-04<br>3.531E-04<br>1.247E-07<br>Hot<br>0.000E+00<br>7.446E-04<br>0.000E+00<br>2.482E-04<br>1.848E-07<br>Hot<br>0.000E+00<br>9.251E-04<br>0.000E+00<br>9.251E-04<br>0.000E+00<br>9.251E-04<br>0.3084E-04<br>5.341E-04 | Std Dev<br>Sample Variance                                                           | 0.000E+00           0.000E+00           0.000E+00           STA. 1943           r           Cold           0.000E+00           2.004E-04           0.000E+00           6.681E-05           1.157E-04           1.339E-08           STA. 1942           r           Cold           8.067E-04           6.714E-04           1.172E-04 | K (cm/s)<br>Center<br>8.067E-04<br>4.017E-04<br>2.004E-04<br>3.088E-04<br>9.537E-08<br>K (cm/s)<br>Center<br>8.512E-03<br>8.751E-03<br>8.751E-03<br>8.751E-03<br>8.913E-03            | 0.000<br>0.000<br>1.215<br>8.067<br>6.038<br>8.753<br>3.114<br>9.700<br>H<br>3.526<br>3.098<br>3.098  |

| Project:<br>Joint Type:<br>Reading Number                                                   | CT Rt 17 '(<br>STA. 1946                                                                                                                       |                                                                                                                                      | -<br>                                                                                                           |
|---------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| Reading Number                                                                              | STA. 1946                                                                                                                                      |                                                                                                                                      | •<br>                                                                                                           |
| -                                                                                           | STA. 1946                                                                                                                                      |                                                                                                                                      |                                                                                                                 |
| -                                                                                           |                                                                                                                                                |                                                                                                                                      |                                                                                                                 |
| -                                                                                           |                                                                                                                                                | K (cm/s)                                                                                                                             |                                                                                                                 |
| -                                                                                           | Cold                                                                                                                                           | Center                                                                                                                               | Hot                                                                                                             |
| #1                                                                                          | 0.000E+00                                                                                                                                      | 1.890E-03                                                                                                                            | 0.000E+0                                                                                                        |
| #1<br>#2                                                                                    | 0.000E+00                                                                                                                                      | 1.890E-03                                                                                                                            | 6.332E-04                                                                                                       |
| #3                                                                                          | 6.332E-04                                                                                                                                      | 6.434E-04                                                                                                                            | 0.000E+0                                                                                                        |
| Average                                                                                     | 2.111E-04                                                                                                                                      | 1.270E-03                                                                                                                            | 2.111E-0                                                                                                        |
| Std Dev                                                                                     | 3.656E-04                                                                                                                                      | 6.232E-04                                                                                                                            | 3.656E-04                                                                                                       |
| Sample Variance                                                                             | 1.337E-07                                                                                                                                      | 3.884E-07                                                                                                                            | 1.337E-0                                                                                                        |
|                                                                                             |                                                                                                                                                |                                                                                                                                      |                                                                                                                 |
|                                                                                             | STA. 1945                                                                                                                                      |                                                                                                                                      |                                                                                                                 |
|                                                                                             |                                                                                                                                                |                                                                                                                                      |                                                                                                                 |
| Deedine Norsher                                                                             | 0.11                                                                                                                                           | K (cm/s)                                                                                                                             | 11-4                                                                                                            |
| Reading Number                                                                              | Cold                                                                                                                                           | Center                                                                                                                               | Hot                                                                                                             |
| #1<br>#2                                                                                    | 0.000E+00                                                                                                                                      | 1.221E-02                                                                                                                            | 6.877E-0                                                                                                        |
| #2<br>#3                                                                                    | 6.761E-04<br>0.000E+00                                                                                                                         | 1.075E-02<br>1.181E-02                                                                                                               | 0.000E+0<br>6.916E-04                                                                                           |
| Average                                                                                     | 2.254E-04                                                                                                                                      | 1.159E-02                                                                                                                            | 4.598E-0                                                                                                        |
| Std Dev                                                                                     | 3.903E-04                                                                                                                                      | 7.545E-04                                                                                                                            | 3.982E-04                                                                                                       |
| Sample Variance                                                                             | 1.524E-07                                                                                                                                      | 5.693E-07                                                                                                                            | 1.585E-0                                                                                                        |
|                                                                                             | STA. 1944                                                                                                                                      | K (cm/s)                                                                                                                             |                                                                                                                 |
| Reading Number                                                                              | STA. 1944<br>Cold                                                                                                                              | K (cm/s)<br>Center                                                                                                                   | Hot                                                                                                             |
| -                                                                                           | Cold                                                                                                                                           | Center                                                                                                                               |                                                                                                                 |
| #1                                                                                          | Cold<br>0.000E+00                                                                                                                              | Center<br>0.000E+00                                                                                                                  | 0.000E+0                                                                                                        |
| #1<br>#2                                                                                    | Cold<br>0.000E+00<br>7.339E-04                                                                                                                 | Center<br>0.000E+00<br>7.038E-04                                                                                                     | 0.000E+0<br>7.524E-0                                                                                            |
| #1<br>#2<br>#3                                                                              | Cold<br>0.000E+00<br>7.339E-04<br>0.000E+00                                                                                                    | Center<br>0.000E+00<br>7.038E-04<br>7.080E-04                                                                                        | 0.000E+0<br>7.524E-0<br>0.000E+0                                                                                |
| #1<br>#2                                                                                    | Cold<br>0.000E+00<br>7.339E-04<br>0.000E+00<br>2.446E-04                                                                                       | Center<br>0.000E+00<br>7.038E-04<br>7.080E-04<br>4.706E-04                                                                           | 0.000E+0<br>7.524E-0<br>0.000E+0<br>2.508E-0                                                                    |
| #1<br>#2<br>#3<br>Average                                                                   | Cold<br>0.000E+00<br>7.339E-04<br>0.000E+00                                                                                                    | Center<br>0.000E+00<br>7.038E-04<br>7.080E-04                                                                                        | 0.000E+0<br>7.524E-0<br>0.000E+0<br>2.508E-0<br>4.344E-0                                                        |
| #1<br>#2<br>#3<br>Average<br>Std Dev                                                        | Cold<br>0.000E+00<br>7.339E-04<br>0.000E+00<br>2.446E-04<br>4.237E-04                                                                          | Center<br>0.000E+00<br>7.038E-04<br>7.080E-04<br>4.706E-04<br>4.076E-04                                                              | 0.000E+0<br>7.524E-0<br>0.000E+0<br>2.508E-0<br>4.344E-0                                                        |
| #1<br>#2<br>#3<br>Average<br>Std Dev                                                        | Cold<br>0.000E+00<br>7.339E-04<br>0.000E+00<br>2.446E-04<br>4.237E-04                                                                          | Center<br>0.000E+00<br>7.038E-04<br>7.080E-04<br>4.706E-04<br>1.661E-07                                                              | 0.000E+0<br>7.524E-0<br>0.000E+0<br>2.508E-0<br>4.344E-0                                                        |
| #1<br>#2<br>#3<br>Average<br>Std Dev<br>Sample Variance                                     | Cold<br>0.000E+00<br>7.339E-04<br>0.000E+00<br>2.446E-04<br>4.237E-04<br>1.796E-07<br>STA. 1943                                                | Center<br>0.000E+00<br>7.038E-04<br>7.080E-04<br>4.706E-04<br>1.661E-07<br>K (cm/s)                                                  | 0.000E+0<br>7.524E-0<br>0.000E+0<br>2.508E-0<br>4.344E-0<br>1.887E-0                                            |
| #1<br>#2<br>#3<br>Average<br>Std Dev<br>Sample Variance                                     | Cold<br>0.000E+00<br>7.339E-04<br>0.000E+00<br>2.446E-04<br>4.237E-04<br>1.796E-07<br>STA. 1943<br>Cold                                        | Center<br>0.000E+00<br>7.038E-04<br>7.080E-04<br>4.076E-04<br>1.661E-07<br>K (cm/s)<br>Center                                        | 0.000E+0<br>7.524E-0<br>0.000E+0<br>2.508E-0<br>4.344E-0<br>1.887E-0<br>Hot                                     |
| #1<br>#2<br>#3<br>Average<br>Std Dev<br>Sample Variance                                     | Cold<br>0.000E+00<br>7.339E-04<br>0.000E+00<br>2.446E-04<br>4.237E-04<br>1.796E-07<br>STA. 1943                                                | Center<br>0.000E+00<br>7.038E-04<br>7.080E-04<br>4.706E-04<br>1.661E-07<br>K (cm/s)                                                  | 0.000E+0<br>7.524E-0<br>0.000E+0<br>2.508E-0<br>4.344E-0<br>1.887E-0<br>Hot                                     |
| #1<br>#2<br>#3<br>Average<br>Std Dev<br>Sample Variance<br>Reading Number<br>#1             | Cold<br>0.000E+00<br>7.339E-04<br>0.000E+00<br>2.446E-04<br>4.237E-04<br>1.796E-07<br>STA. 1943<br>Cold<br>0.000E+00                           | Center<br>0.000E+00<br>7.038E-04<br>4.706E-04<br>4.076E-04<br>1.661E-07<br>K (cm/s)<br>Center<br>2.376E-03                           | 0.000E+0<br>7.524E-0<br>0.000E+0<br>2.508E-0<br>4.344E-0<br>1.887E-0<br>Hot<br>0.000E+0                         |
| #1<br>#2<br>#3<br>Average<br>Std Dev<br>Sample Variance                                     | Cold<br>0.000E+00<br>7.339E-04<br>0.000E+00<br>2.446E-04<br>4.237E-04<br>1.796E-07<br>STA. 1943<br>Cold<br>0.000E+00<br>0.000E+00              | Center<br>0.000E+00<br>7.038E-04<br>4.706E-04<br>4.076E-04<br>1.661E-07<br>K (cm/s)<br>Center<br>2.376E-03<br>1.611E-03              | 0.000E+0<br>7.524E-0<br>0.000E+0<br>2.508E-0<br>4.344E-0<br>1.887E-0<br>Hot<br>0.000E+0<br>0.000E+0             |
| #1<br>#2<br>#3<br>Average<br>Std Dev<br>Sample Variance<br>Reading Number<br>#1<br>#2<br>#3 | Cold<br>0.000E+00<br>7.339E-04<br>0.000E+00<br>2.446E-04<br>4.237E-04<br>1.796E-07<br>STA. 1943<br>Cold<br>0.000E+00                           | Center<br>0.000E+00<br>7.038E-04<br>4.706E-04<br>4.076E-04<br>1.661E-07<br>K (cm/s)<br>Center<br>2.376E-03                           | 0.000E+0<br>7.524E-0<br>0.000E+0<br>2.508E-0<br>4.344E-0<br>1.887E-0<br>Hot<br>0.000E+0<br>0.000E+0<br>0.000E+0 |
| #1<br>#2<br>#3<br>Average<br>Std Dev<br>Sample Variance<br>Reading Number<br>#1<br>#2       | Cold<br>0.000E+00<br>7.339E-04<br>0.000E+00<br>2.446E-04<br>4.237E-04<br>1.796E-07<br>STA. 1943<br>Cold<br>0.000E+00<br>0.000E+00<br>0.000E+00 | Center<br>0.000E+00<br>7.038E-04<br>7.080E-04<br>4.706E-04<br>1.661E-07<br>K (cm/s)<br>Center<br>2.376E-03<br>1.611E-03<br>2.457E-03 | 0.000E+0<br>7.524E-0<br>0.000E+0<br>2.508E-0<br>4.344E-0<br>1.887E-0<br>Hot                                     |

| Project:                                                                             | ME I95 NB 9-1-04                                                                                              |                                                                                                         |                                                                                     |  |  |  |  |  |
|--------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|--|--|--|--|--|
| Joint Type:                                                                          | Rubb                                                                                                          | erized                                                                                                  |                                                                                     |  |  |  |  |  |
|                                                                                      | STA. 197+0                                                                                                    | 14                                                                                                      |                                                                                     |  |  |  |  |  |
|                                                                                      |                                                                                                               | K (cm/s)                                                                                                |                                                                                     |  |  |  |  |  |
| Reading Number                                                                       | Left                                                                                                          | Center                                                                                                  | Right                                                                               |  |  |  |  |  |
| #1                                                                                   | 3.354E-04                                                                                                     | 4.197E-04                                                                                               | 1.015E-03                                                                           |  |  |  |  |  |
| #2                                                                                   | 0.000E+00                                                                                                     | 0.000E+00                                                                                               | 5.042E-04                                                                           |  |  |  |  |  |
| #3                                                                                   | 0.000E+00                                                                                                     |                                                                                                         | 5.042E-04                                                                           |  |  |  |  |  |
| Average                                                                              | 1.118E-04                                                                                                     | 1.399E-04                                                                                               | 6.745E-04                                                                           |  |  |  |  |  |
| Std Dev                                                                              | 1.936E-04                                                                                                     | 2.423E-04                                                                                               | 2.950E-04                                                                           |  |  |  |  |  |
| Sample Variance                                                                      | 3.749E-08                                                                                                     | 5.871E-08                                                                                               | 8.700E-08                                                                           |  |  |  |  |  |
| eading Number                                                                        | Left                                                                                                          | K (cm/s)<br>Center                                                                                      | Right                                                                               |  |  |  |  |  |
| #1                                                                                   | 0.000E+00                                                                                                     |                                                                                                         | 1.673E-04                                                                           |  |  |  |  |  |
| #1                                                                                   | 0.000E+00                                                                                                     |                                                                                                         | 1.673E-04                                                                           |  |  |  |  |  |
| #2                                                                                   |                                                                                                               |                                                                                                         | 0.000E+00                                                                           |  |  |  |  |  |
| #3                                                                                   | 0 000E+00                                                                                                     |                                                                                                         |                                                                                     |  |  |  |  |  |
| #3<br>Average                                                                        | 0.000E+00                                                                                                     | 0.000E+00                                                                                               |                                                                                     |  |  |  |  |  |
| Average                                                                              | 0.000E+00                                                                                                     | 5.577E-05                                                                                               | 1.115E-04                                                                           |  |  |  |  |  |
| Average<br>Std Dev                                                                   |                                                                                                               | 5.577E-05                                                                                               |                                                                                     |  |  |  |  |  |
| Average                                                                              | 0.000E+00<br>0.000E+00                                                                                        | 5.577E-05<br>9.660E-05<br>9.332E-09                                                                     | 1.115E-04<br>9.660E-05                                                              |  |  |  |  |  |
| Average<br>Std Dev                                                                   | 0.000E+00<br>0.000E+00<br>0.000E+00                                                                           | 5.577E-05<br>9.660E-05<br>9.332E-09<br>69                                                               | 1.115E-04<br>9.660E-05                                                              |  |  |  |  |  |
| Average<br>Std Dev<br>Sample Variance                                                | 0.000E+00<br>0.000E+00<br>0.000E+00<br>STA. 197+0                                                             | 5.577E-05<br>9.660E-05<br>9.332E-09<br>69<br>K (cm/s)<br>Center                                         | 1.115E-04<br>9.660E-05<br>9.332E-09                                                 |  |  |  |  |  |
| Average<br>Std Dev<br>Sample Variance                                                | 0.000E+00<br>0.000E+00<br>0.000E+00<br>STA. 197+0<br>Left                                                     | 5.577E-05<br>9.660E-05<br>9.332E-09<br>69<br>K (cm/s)<br>Center<br>0.000E+00                            | 1.115E-04<br>9.660E-05<br>9.332E-09<br>Right                                        |  |  |  |  |  |
| Average<br>Std Dev<br>Sample Variance<br>Reading Number<br>#1                        | 0.000E+00<br>0.000E+00<br>0.000E+00<br>STA. 197+0<br>Left<br>3.354E-04                                        | 5.577E-05<br>9.660E-05<br>9.332E-09<br>69<br>K (cm/s)<br>Center<br>0.000E+00                            | 1.115E-04<br>9.660E-05<br>9.332E-09<br>Right<br>1.673E-04<br>1.673E-04              |  |  |  |  |  |
| Average<br>Std Dev<br>Sample Variance<br>Reading Number<br>#1<br>#2<br>#3<br>Average | 0.000E+00<br>0.000E+00<br>0.000E+00<br>STA. 197+0<br>Left<br>3.354E-04<br>1.673E-04<br>1.673E-04<br>2.233E-04 | 5.577E-05<br>9.660E-05<br>9.332E-09<br><b>K (cm/s)</b><br>Center<br>0.000E+00<br>0.000E+00<br>0.000E+00 | 1.115E-04<br>9.660E-05<br>9.332E-09<br>Right<br>1.673E-04<br>1.673E-04<br>1.673E-04 |  |  |  |  |  |
| Average<br>Std Dev<br>Sample Variance<br>Reading Number<br>#1<br>#2<br>#3            | 0.000E+00<br>0.000E+00<br>0.000E+00<br>STA. 197+0<br>Left<br>3.354E-04<br>1.673E-04<br>1.673E-04              | 5.577E-05<br>9.660E-05<br>9.332E-09<br>69<br>K (cm/s)<br>Center<br>0.000E+00<br>0.000E+00<br>0.000E+00  | 1.115E-04<br>9.660E-05<br>9.332E-09<br>Right<br>1.673E-04<br>1.673E-04<br>1.673E-04 |  |  |  |  |  |

| Project:           | ME 195 NI  |                        |                        | Project:        | ME 195 N    |                 |        |
|--------------------|------------|------------------------|------------------------|-----------------|-------------|-----------------|--------|
| Joint Type:        | Emu        | lsified                |                        | Joint Type:     | Koch        | Sealer          | -      |
|                    | STA. 197+8 |                        |                        |                 | STA. 199+5  |                 |        |
|                    |            | K (cm/s)               |                        |                 |             | K (cm/s)        |        |
| Reading Number     | Left       | Center                 | Right                  | Reading Numbe   | r Left      | Center          | Righ   |
| #1                 | 6.454E-04  | 1.603E-04              | 1.603E-04              | #1              | 0.000E+00   | 3.213E-04       | 4.830E |
| #2                 | 4.830E-04  | 0.000E+00              | 0.000E+00              | #2              | 0.000E+00   | 0.000E+00       | 4.830  |
| #3                 | 4.021E-04  | 2.408E-04              | 2.408E-04              | #3              | 0.000E+00   | 0.000E+00       | 3.213  |
| Average            | 5.102E-04  | 1.337E-04              | 1.337E-04              | Average         | 0.000E+00   | 1.071E-04       | 4.291  |
| Std Dev            | 1.239E-04  | 1.226E-04              | 1.226E-04              | Std Dev         | 0.000E+00   | 1.855E-04       | 9.335  |
| Sample Variance    | 1.535E-08  | 1.502E-08              | 1.502E-08              | Sample Variance | e 0.000E+00 | 3.442E-08       | 8.714  |
| Deedline New 1     | 1-4        | K (cm/s)               | Diské                  | Deadline No. 1  |             | K (cm/s)        |        |
| Reading Number     | Left       | Center                 | Right                  | Reading Numbe   | r Left      | Center          | Rig    |
| #1                 | 3.213E-04  | 1.603E-04              | 8.085E-04              | #1              | 0.000E+00   | 1.603E-04       | 3.213  |
| #2                 | 3.213E-04  | 0.000E+00              | 8.085E-04              | #2              | 1.603E-04   | 0.000E+00       | 1.603  |
| #3                 | 2.408E-04  | 1.603E-04              | 4.830E-04              | #3              | 0.000E+00   | 1.603E-04       | 1.603  |
| Average            | 2.945E-04  | 1.069E-04              | 7.000E-04              | Average         | 5.344E-05   | 1.069E-04       | 2.140  |
| Std Dev            | 4.653E-05  | 9.257E-05              | 1.879E-04              | Std Dev         | 9.257E-05   | 9.257E-05       | 9.296  |
| Sample Variance    | 2.165E-09  | 8.569E-09              | 3.530E-08              | Sample Variance | e 8.569E-09 | 8.569E-09       | 8.641  |
|                    | STA. 197+8 | 894<br>K (cm/s)        |                        |                 | STA. 199+6  | 618<br>K (cm/s) |        |
| Reading Number     | Left       | Center                 | Right                  | Reading Numbe   | r Left      | Center          | Rig    |
| #1                 | 0.000E+00  | 0.000E+00              | 1.603E-04              | #1              | 0.000E+00   | 8.008E-05       | 0.000  |
| #2                 |            | 0.000E+00              |                        | #2              |             | 0.000E+00       |        |
|                    |            | 0.000E+00              |                        | #3              |             | 0.000E+00       |        |
| #3                 |            |                        | 5.344E-05              | Average         | 0.000E+00   |                 |        |
| -                  | 0.000E+00  |                        |                        |                 |             |                 |        |
| Average            |            |                        | 9.257E-05              | Std Dev         | 0.000E+00   | 4.624E-05       | 0.000F |
| Average<br>Std Dev | 0.000E+00  | 0.000E+00<br>0.000E+00 | 9.257E-05<br>8.569E-09 | Sample Variance | 0.000E+00   |                 | 0.000  |

| Project:                                                                                               | NH I93 8-1                                                                                                                                                                              | 10-04 (Surf.                                                                                                                                                                     | . Course)                                                                                                                                      |
|--------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| oint Type:                                                                                             | Con                                                                                                                                                                                     | ntrol                                                                                                                                                                            | -                                                                                                                                              |
|                                                                                                        | STA.136+50                                                                                                                                                                              | 0                                                                                                                                                                                |                                                                                                                                                |
|                                                                                                        |                                                                                                                                                                                         | K (cm/s)                                                                                                                                                                         |                                                                                                                                                |
| Reading Number                                                                                         | Left                                                                                                                                                                                    | Center                                                                                                                                                                           | Right                                                                                                                                          |
| #1                                                                                                     | 5.334E-03                                                                                                                                                                               | 2.105E-02                                                                                                                                                                        | 1.381E-02                                                                                                                                      |
| #2                                                                                                     | 4.248E-03                                                                                                                                                                               |                                                                                                                                                                                  |                                                                                                                                                |
| #3                                                                                                     | 4.790E-03                                                                                                                                                                               | 1.981E-02                                                                                                                                                                        | 1.558E-02                                                                                                                                      |
| Average                                                                                                | 4.791E-03                                                                                                                                                                               | 2.022E-02                                                                                                                                                                        | 1.440E-02                                                                                                                                      |
| Std Dev                                                                                                | 5.430E-04                                                                                                                                                                               |                                                                                                                                                                                  | 1.021E-03                                                                                                                                      |
| Sample Variance                                                                                        | 2.948E-07                                                                                                                                                                               | 5.102E-07                                                                                                                                                                        | 1.043E-06                                                                                                                                      |
|                                                                                                        | STA. 131+1                                                                                                                                                                              | 1                                                                                                                                                                                |                                                                                                                                                |
|                                                                                                        | 51A. 151+1                                                                                                                                                                              | 1                                                                                                                                                                                |                                                                                                                                                |
|                                                                                                        |                                                                                                                                                                                         | K (cm/s)                                                                                                                                                                         |                                                                                                                                                |
| Reading Number                                                                                         | Left                                                                                                                                                                                    | Center                                                                                                                                                                           | Right                                                                                                                                          |
| #1                                                                                                     | 8.093E-03                                                                                                                                                                               |                                                                                                                                                                                  |                                                                                                                                                |
| #2                                                                                                     | 7.536E-03                                                                                                                                                                               |                                                                                                                                                                                  |                                                                                                                                                |
| #3                                                                                                     |                                                                                                                                                                                         | 9.779E-03                                                                                                                                                                        |                                                                                                                                                |
| Average                                                                                                | 7.907E-03                                                                                                                                                                               | 1.035E-02                                                                                                                                                                        | 2.995E-03                                                                                                                                      |
| Std Dev                                                                                                | 3.215E-04                                                                                                                                                                               |                                                                                                                                                                                  | 6.186E-04                                                                                                                                      |
| Sample Variance                                                                                        | 1.034E-07                                                                                                                                                                               | 9.750E-07                                                                                                                                                                        | 3.827E-07                                                                                                                                      |
|                                                                                                        |                                                                                                                                                                                         |                                                                                                                                                                                  |                                                                                                                                                |
|                                                                                                        | STA. 124+3                                                                                                                                                                              | 80<br>K (cm/s)                                                                                                                                                                   |                                                                                                                                                |
|                                                                                                        |                                                                                                                                                                                         |                                                                                                                                                                                  |                                                                                                                                                |
| Reading Number                                                                                         | Left                                                                                                                                                                                    | Center                                                                                                                                                                           | Right                                                                                                                                          |
| #1                                                                                                     | 8.093E-03                                                                                                                                                                               | 2.230E-02                                                                                                                                                                        | 1.264E-02                                                                                                                                      |
| #2                                                                                                     | 7.536E-03                                                                                                                                                                               | 1.981E-02                                                                                                                                                                        | 1.149E-02                                                                                                                                      |
| #3                                                                                                     | 6.430E-03                                                                                                                                                                               | 1.798E-02                                                                                                                                                                        | 1.092E-02                                                                                                                                      |
| Average                                                                                                | 7.353E-03                                                                                                                                                                               | 2.003E-02                                                                                                                                                                        | 1.168E-02                                                                                                                                      |
| Std Dev                                                                                                | 8.464E-04                                                                                                                                                                               |                                                                                                                                                                                  | 8.795E-04                                                                                                                                      |
| Sample Variance                                                                                        | 7.164E-07                                                                                                                                                                               | 4.700E-06                                                                                                                                                                        | 7.735E-07                                                                                                                                      |
|                                                                                                        | STA. 119+2                                                                                                                                                                              | 20                                                                                                                                                                               |                                                                                                                                                |
|                                                                                                        |                                                                                                                                                                                         |                                                                                                                                                                                  |                                                                                                                                                |
|                                                                                                        | 017.113+2                                                                                                                                                                               | K (cm/s)                                                                                                                                                                         |                                                                                                                                                |
| Reading Number                                                                                         |                                                                                                                                                                                         | K (cm/s)<br>Center                                                                                                                                                               | Right                                                                                                                                          |
| Reading Number<br>#1                                                                                   |                                                                                                                                                                                         | Center                                                                                                                                                                           | -                                                                                                                                              |
|                                                                                                        | Left<br>2.637E-03                                                                                                                                                                       | Center                                                                                                                                                                           | 2.637E-03                                                                                                                                      |
| #1                                                                                                     | Left<br>2.637E-03                                                                                                                                                                       | Center<br>1.498E-02<br>1.322E-02                                                                                                                                                 | 2.637E-03                                                                                                                                      |
| #1                                                                                                     | Left<br>2.637E-03<br>2.637E-03<br>2.637E-03                                                                                                                                             | Center<br>1.498E-02<br>1.322E-02<br>1.206E-02                                                                                                                                    | 2.637E-03<br>4.248E-03<br>2.105E-03                                                                                                            |
| #1<br>#2<br>#3                                                                                         | Left<br>2.637E-03<br>2.637E-03                                                                                                                                                          | Center<br>1.498E-02<br>1.322E-02<br>1.206E-02<br>1.342E-02                                                                                                                       | 2.637E-03<br>4.248E-03                                                                                                                         |
| #1<br>#2<br>#3<br>Average                                                                              | Left<br>2.637E-03<br>2.637E-03<br>2.637E-03<br>2.637E-03<br>0.000E+00                                                                                                                   | Center<br>1.498E-02<br>1.322E-02<br>1.206E-02<br>1.342E-02                                                                                                                       | 2.637E-03<br>4.248E-03<br>2.105E-03<br>2.997E-03                                                                                               |
| #1<br>#2<br>#3<br><u>Average</u><br>Std Dev                                                            | Left<br>2.637E-03<br>2.637E-03<br>2.637E-03<br>2.637E-03<br>0.000E+00                                                                                                                   | Center<br>1.498E-02<br>1.322E-02<br>1.206E-02<br>1.342E-02<br>1.470E-03                                                                                                          | 2.637E-03<br>4.248E-03<br>2.105E-03<br>2.997E-03<br>1.116E-03                                                                                  |
| #1<br>#2<br>#3<br><u>Average</u><br>Std Dev                                                            | Left<br>2.637E-03<br>2.637E-03<br>2.637E-03<br>2.637E-03<br>0.000E+00                                                                                                                   | Center<br>1.498E-02<br>1.322E-02<br>1.206E-02<br>1.342E-02<br>1.470E-03<br>2.161E-06                                                                                             | 2.637E-03<br>4.248E-03<br>2.105E-03<br>2.997E-03<br>1.116E-03                                                                                  |
| #1<br>#2<br>#3<br>Average<br>Std Dev<br>Sample Variance                                                | Left<br>2.637E-03<br>2.637E-03<br>2.637E-03<br>2.637E-03<br>0.000E+00<br>0.000E+00<br>STA. 113+5                                                                                        | Center<br>1.498E-02<br>1.322E-02<br>1.206E-02<br>1.342E-02<br>1.470E-03<br>2.161E-06                                                                                             | 2.637E-03<br>4.248E-03<br>2.105E-03<br>2.997E-03<br>1.116E-03                                                                                  |
| #1<br>#2<br>#3<br>Average<br>Std Dev<br>Sample Variance                                                | Left<br>2.637E-03<br>2.637E-03<br>2.637E-03<br>2.637E-03<br>0.000E+00<br>0.000E+00<br>STA. 113+5<br>Left                                                                                | Center<br>1.498E-02<br>1.322E-02<br>1.206E-02<br>1.342E-02<br>1.470E-03<br>2.161E-06<br>3<br>K (cm/s)<br>Center                                                                  | 2.637E-03<br>4.248E-03<br>2.105E-03<br>2.997E-03<br>1.116E-03<br>1.245E-06                                                                     |
| #1<br>#2<br>#3<br>Average<br>Std Dev<br>Sample Variance<br>Reading Number<br>#1                        | Left<br>2.637E-03<br>2.637E-03<br>2.637E-03<br>2.637E-03<br>0.000E+00<br>0.000E+00<br>STA. 113+5<br>Left<br>3.172E-03                                                                   | Center<br>1.498E-02<br>1.322E-02<br>1.206E-02<br>1.342E-02<br>1.470E-03<br>2.161E-06<br>3<br>K (cm/s)<br>Center<br>3.627E-02                                                     | 2.637E-03<br>4.248E-03<br>2.105E-03<br>1.297E-03<br>1.116E-03<br>1.245E-06<br><b>Right</b><br>1.035E-02                                        |
| #1<br>#2<br>#3<br>Average<br>Std Dev<br>Sample Variance<br>Reading Number<br>#1<br>#2                  | Left<br>2.637E-03<br>2.637E-03<br>2.637E-03<br>0.000E+00<br>0.000E+00<br>STA. 113+5<br>Left<br>3.172E-03<br>2.105E-03                                                                   | Center<br>1.498E-02<br>1.322E-02<br>1.322E-02<br>1.342E-02<br>1.342E-02<br>2.161E-06<br>3<br>K (cm/s)<br>Center<br>3.627E-02<br>2.941E-02                                        | 2.637E-03<br>4.248E-03<br>2.105E-03<br>1.116E-03<br>1.245E-06<br><b>Right</b><br>1.035E-02<br>9.779E-03                                        |
| #1<br>#2<br>#3<br>Average<br>Std Dev<br>Sample Variance<br>Reading Number<br>#1<br>#2<br>#3            | Left<br>2.637E-03<br>2.637E-03<br>2.637E-03<br>0.000E+00<br>0.000E+00<br>STA. 113+5<br>Left<br>3.172E-03<br>2.105E-03<br>1.576E-03                                                      | Center<br>1.498E-02<br>1.322E-02<br>1.206E-02<br>1.342E-02<br>2.161E-06<br>X (cm/s)<br>Center<br>3.627E-02<br>2.941E-02<br>2.613E-02                                             | 2.637E-03<br>4.248E-03<br>2.105E-03<br>2.997E-03<br>1.110E-03<br>1.245E-06<br><b>Right</b><br>1.035E-02<br>9.779E-03<br>8.652E-03              |
| #1<br>#2<br>#3<br>Average<br>Std Dev<br>Sample Variance<br>Reading Number<br>#1<br>#2<br>#3<br>Average | Left<br>2.637E-03<br>2.637E-03<br>2.637E-03<br>2.637E-03<br>2.637E-03<br>0.000E+00<br>0.000E+00<br>STA. 113+5<br>STA. 113+5<br>Left<br>3.172E-03<br>2.105E-03<br>1.576E-03<br>2.284E-03 | Center<br>1.498E-02<br>1.322E-02<br>1.320E-02<br>1.342E-02<br>1.470E-03<br>2.161E-06<br>X (cm/s)<br>Center<br>3.627E-02<br>2.941E-02<br>2.613E-02<br>3.061E-02                   | 2.637E-03<br>4.248E-03<br>2.105E-03<br>2.997E-03<br>1.116E-03<br>1.245E-06<br><b>Right</b><br>1.035E-02<br>9.779E-03<br>8.652E-03<br>9.593E-03 |
| #1<br>#2<br>#3<br>Average<br>Std Dev<br>Sample Variance<br>Reading Number<br>#1<br>#2<br>#3            | Left<br>2.637E-03<br>2.637E-03<br>2.637E-03<br>0.000E+00<br>0.000E+00<br>STA. 113+5<br>Left<br>3.172E-03<br>2.105E-03<br>1.576E-03                                                      | Center<br>1.498E-02<br>1.322E-02<br>1.320E-02<br>1.342E-02<br>1.470E-03<br>2.161E-06<br>3<br>K (cm/s)<br>Center<br>3.627E-02<br>2.941E-02<br>2.613E-02<br>2.613E-02<br>5.177E-03 | 2.637E-03<br>4.248E-03<br>2.105E-03<br>1.116E-03<br>1.245E-06<br><b>Right</b><br>1.035E-02<br>9.779E-03<br>8.652E-03<br>8.622E-03<br>8.623E-04 |

| Project:                                                                   | VT I91 NE                                                                                       | 8                                                                                                            |                                                                                                   |
|----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| Joint Type:                                                                | Conve                                                                                           | ntional                                                                                                      |                                                                                                   |
|                                                                            | STA. A                                                                                          |                                                                                                              |                                                                                                   |
|                                                                            |                                                                                                 | K (cm/s)                                                                                                     |                                                                                                   |
| Reading Number                                                             | Passing                                                                                         | Joint                                                                                                        | Travel                                                                                            |
| #1                                                                         | 5.569E-03                                                                                       | 1.103E-02                                                                                                    | 3.733E-03                                                                                         |
| #2                                                                         | 5.018E-03                                                                                       | 8.715E-03                                                                                                    | 3.100E-03                                                                                         |
| #3                                                                         | 5.808E-03                                                                                       | 8.064E-03                                                                                                    | 2.690E-03                                                                                         |
| Average                                                                    | 5.465E-03                                                                                       | 9.270E-03                                                                                                    | 3.174E-03                                                                                         |
| Std Dev                                                                    | 4.051E-04                                                                                       | 1.559E-03                                                                                                    | 5.255E-04                                                                                         |
| Sample Variance                                                            | 1.641E-07                                                                                       | 2.430E-06                                                                                                    | 2.762E-07                                                                                         |
|                                                                            |                                                                                                 | K (cm/s)                                                                                                     |                                                                                                   |
| Reading Number                                                             | Passing                                                                                         | Joint                                                                                                        | Travel                                                                                            |
| #1                                                                         | 9.128E-03                                                                                       | 2.098E-02                                                                                                    | 1.946E-03                                                                                         |
| #2                                                                         | 7.956E-03                                                                                       | 1.726E-02                                                                                                    | 2.032E-03                                                                                         |
| #3                                                                         | 7.504E-03                                                                                       | 1.780E-02                                                                                                    | 1.082E-03                                                                                         |
|                                                                            |                                                                                                 |                                                                                                              | 1.687E-03                                                                                         |
| Average                                                                    | 8.196E-03                                                                                       | 1.868E-02                                                                                                    | 1.007 - 00                                                                                        |
| Std Dev                                                                    | 8.196E-03<br>8.379E-04                                                                          | 2.009E-03                                                                                                    | 5.253E-04                                                                                         |
|                                                                            |                                                                                                 |                                                                                                              | 5.253E-04                                                                                         |
| Std Dev                                                                    | 8.379E-04                                                                                       | 2.009E-03<br>4.037E-06                                                                                       | 5.253E-04<br>2.759E-07                                                                            |
| Std Dev<br>Sample Variance                                                 | 8.379E-04<br>7.021E-07<br>STA. C                                                                | 2.009E-03<br>4.037E-06<br>K (cm/s)                                                                           | 5.253E-04<br>2.759E-07                                                                            |
| Std Dev                                                                    | 8.379E-04<br>7.021E-07<br>STA. C                                                                | 2.009E-03<br>4.037E-06                                                                                       | 5.253E-04                                                                                         |
| Std Dev<br>Sample Variance                                                 | 8.379E-04<br>7.021E-07<br>STA. C                                                                | 2.009E-03<br>4.037E-06<br>K (cm/s)                                                                           | 5.253E-04<br>2.759E-07<br>Travel                                                                  |
| Std Dev<br>Sample Variance                                                 | 8.379E-04<br>7.021E-07<br>STA. C<br>Passing                                                     | 2.009E-03<br>4.037E-06<br>K (cm/s)<br>Joint                                                                  | 5.253E-04<br>2.759E-07<br>Travel<br>7.242E-03                                                     |
| Std Dev<br>Sample Variance<br>Reading Number<br>#1                         | 8.379E-04<br>7.021E-07<br>STA. C<br>Passing<br>2.509E-02                                        | 2.009E-03<br>4.037E-06<br>K (cm/s)<br>Joint<br>5.467E-02<br>3.869E-02<br>3.955E-02                           | 5.253E-04<br>2.759E-07<br>Travel<br>7.242E-03<br>3.325E-03                                        |
| Std Dev<br>Sample Variance<br>Reading Number<br>#1<br>#2                   | 8.379E-04<br>7.021E-07<br>STA. C<br>Passing<br>2.509E-02<br>2.551E-02                           | 2.009E-03<br>4.037E-06<br>K (cm/s)<br>Joint<br>5.467E-02<br>3.869E-02                                        | 5.253E-04<br>2.759E-07<br>Travel<br>7.242E-03<br>3.325E-03<br>3.031E-03                           |
| Std Dev<br>Sample Variance<br>Reading Number<br>#1<br>#2<br>#3             | 8.379E-04<br>7.021E-07<br>STA. C<br>Passing<br>2.509E-02<br>2.551E-02<br>2.251E-02              | 2.009E-03<br>4.037E-06<br>K (cm/s)<br>Joint<br>5.467E-02<br>3.869E-02<br>3.955E-02                           | 5.253E-04<br>2.759E-07<br>Travel<br>7.242E-03<br>3.325E-03<br>3.031E-03<br>2.843E-03              |
| Std Dev<br>Sample Variance<br>Reading Number<br>#1<br>#2<br>#3<br>#4       | 8.379E-04<br>7.021E-07<br>STA. C<br>Passing<br>2.509E-02<br>2.551E-02<br>2.251E-02              | 2.009E-03<br>4.037E-06<br>K (cm/s)<br>Joint<br>5.467E-02<br>3.869E-02<br>3.955E-02<br>3.261E-02              | 5.253E-04<br>2.759E-07                                                                            |
| Std Dev<br>Sample Variance<br>Reading Number<br>#1<br>#2<br>#3<br>#4<br>#5 | 8.379E-04<br>7.021E-07<br>STA. C<br>Passing<br>2.509E-02<br>2.551E-02<br>2.251E-02<br>2.215E-02 | 2.009E-03<br>4.037E-06<br>K (cm/s)<br>Joint<br>5.467E-02<br>3.869E-02<br>3.955E-02<br>3.261E-02<br>3.169E-02 | 5.253E-04<br>2.759E-07<br>Travel<br>7.242E-03<br>3.325E-03<br>3.031E-03<br>2.843E-03<br>2.998E-03 |

# NETC 03-5 NMAS 9.5mm

| Project:                                                                  | ME Rt 5                                                                       |                                                                                    |                                                                     |  |  |  |
|---------------------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------------------------------------|---------------------------------------------------------------------|--|--|--|
| Joint Type:                                                               | Conve                                                                         | entional                                                                           |                                                                     |  |  |  |
|                                                                           |                                                                               |                                                                                    |                                                                     |  |  |  |
|                                                                           | STA. A                                                                        |                                                                                    |                                                                     |  |  |  |
|                                                                           |                                                                               | K (cm/s)                                                                           |                                                                     |  |  |  |
| Reading Number                                                            | NB                                                                            | Joint                                                                              | SB                                                                  |  |  |  |
| #1                                                                        | 7.292E-04                                                                     | 8.839E-03                                                                          | 3.620E-04                                                           |  |  |  |
| #2                                                                        | 3.690E-04                                                                     | 5.552E-03                                                                          | 0.000E+00                                                           |  |  |  |
| #3                                                                        | 3.744E-04                                                                     | 4.764E-03                                                                          | 0.000E+00                                                           |  |  |  |
| Average                                                                   | 4.909E-04                                                                     | 6.385E-03                                                                          | 1.207E-04                                                           |  |  |  |
| Std Dev                                                                   | 2.064E-04                                                                     | 2.161E-03                                                                          | 2.090E-04                                                           |  |  |  |
| Sample Variance                                                           | 4.260E-08                                                                     | 4.672E-06                                                                          | 4.368E-08                                                           |  |  |  |
| STA. B                                                                    |                                                                               |                                                                                    |                                                                     |  |  |  |
|                                                                           |                                                                               | K (cm/s)                                                                           |                                                                     |  |  |  |
| Reading Number                                                            | NB                                                                            | Joint                                                                              | SB                                                                  |  |  |  |
| #1                                                                        | 1.465E-03                                                                     | 1.205E-02                                                                          | 0.000E+00                                                           |  |  |  |
| #2                                                                        | 1.188E-03                                                                     | 9.129E-03                                                                          | 0.000E+00                                                           |  |  |  |
| #3                                                                        | 1.213E-03                                                                     | 7.976E-03                                                                          | 0.000E+00                                                           |  |  |  |
| #3                                                                        |                                                                               |                                                                                    | 0.000E+00                                                           |  |  |  |
| Average                                                                   | 1.289E-03                                                                     | 9.717E-03                                                                          | 0.0001.00                                                           |  |  |  |
|                                                                           | 1.289E-03<br>1.537E-04                                                        | 9.717E-03<br>2.098E-03                                                             | 0.000E+00                                                           |  |  |  |
| Average                                                                   |                                                                               |                                                                                    |                                                                     |  |  |  |
| Average<br>Std Dev                                                        | 1.537E-04<br>2.362E-08                                                        | 2.098E-03                                                                          | 0.000E+00                                                           |  |  |  |
| Average<br>Std Dev                                                        | 1.537E-04                                                                     | 2.098E-03<br>4.402E-06                                                             | 0.000E+00                                                           |  |  |  |
| Average<br>Std Dev                                                        | 1.537E-04<br>2.362E-08                                                        | 2.098E-03                                                                          | 0.000E+00                                                           |  |  |  |
| Average<br>Std Dev<br>Sample Variance                                     | 1.537E-04<br>2.362E-08<br>STA. C                                              | 2.098E-03<br>4.402E-06<br>K (cm/s)                                                 | 0.000E+00<br>0.000E+00                                              |  |  |  |
| Average<br>Std Dev<br>Sample Variance<br>Reading Number                   | 1.537E-04<br>2.362E-08<br>STA. C<br>NB                                        | 2.098E-03<br>4.402E-06<br>K (cm/s)<br>Joint<br>2.241E-02                           | 0.000E+00<br>0.000E+00<br>SB                                        |  |  |  |
| Average<br>Std Dev<br>Sample Variance<br>Reading Number<br>#1             | 1.537E-04<br>2.362E-08<br>STA. C<br>NB<br>1.107E-03                           | 2.098E-03<br>4.402E-06<br>K (cm/s)<br>Joint<br>2.241E-02                           | 0.000E+00<br>0.000E+00<br>SB<br>7.226E-03                           |  |  |  |
| Average<br>Std Dev<br>Sample Variance<br>Reading Number<br>#1<br>#2       | 1.537E-04<br>2.362E-08<br>STA. C<br>NB<br>1.107E-03<br>2.247E-03              | 2.098E-03<br>4.402E-06<br>K (cm/s)<br>Joint<br>2.241E-02<br>2.333E-02              | 0.000E+00<br>0.000E+00<br>SB<br>7.226E-03<br>7.356E-03              |  |  |  |
| Average<br>Std Dev<br>Sample Variance<br>Reading Number<br>#1<br>#2<br>#3 | 1.537E-04<br>2.362E-08<br>STA. C<br>NB<br>1.107E-03<br>2.247E-03<br>1.516E-03 | 2.098E-03<br>4.402E-06<br>K (cm/s)<br>Joint<br>2.241E-02<br>2.333E-02<br>2.349E-02 | 0.000E+00<br>0.000E+00<br>SB<br>7.226E-03<br>7.356E-03<br>7.729E-03 |  |  |  |

| NMSA | Site     | Joint type | Station  | section | K (cm/s) | ITS (kPa) | Air(%) | infiltration (cm/hr) |
|------|----------|------------|----------|---------|----------|-----------|--------|----------------------|
| 25mm | NH RT153 | control    | 603+75   | hot     | 5.28E-02 | 378.7     | 6.1    | 1999                 |
|      |          |            |          | center  | 4.57E-01 | 88.0      | 10.3   | 5413                 |
|      |          |            |          | cold    | 8.95E-02 | 208.8     | 7.2    | 1268                 |
|      |          |            |          | avg mat | 7.11E-02 | 293.8     | 6.7    | 1634                 |
|      |          |            |          | jt/mat  | 642      | 30        | 155    | 331                  |
|      |          |            |          |         |          |           |        |                      |
|      |          |            | 603+45   | hot     | 8.24E-02 | 426.4     | 6.0    | 1946                 |
|      |          |            |          | center  | 3.88E-01 | 108.7     | 10.5   | 6628                 |
|      |          |            |          | cold    | 7.73E-02 | 268.3     | 7.3    | 2078                 |
|      |          |            |          | avg mat | 7.99E-02 | 347.4     | 6.6    | 2012                 |
|      |          |            |          | jt/mat  | 486      | 31        | 159    | 329                  |
|      |          |            |          |         |          |           |        |                      |
|      |          |            | 603+25   | hot     | 1.95E-01 | 338.1     | 8.3    | 1200                 |
|      |          |            |          | center  | 3.76E-01 | ~         | 10.0   | 6247                 |
|      |          |            |          | cold    | 4.78E-02 | 430.1     | 6.3    | 4038                 |
|      |          |            |          | avg mat | 1.21E-01 | 384.1     | 7.3    | 2619                 |
|      |          |            |          | jt/mat  | 309      |           | 136    | 239                  |
|      |          |            |          |         |          |           |        |                      |
|      |          |            | averages | hot     | 1.10E-01 | 381.1     | 6.8    | 1715                 |
|      |          |            |          | center  | 4.07E-01 | 98.4      | 10.3   | 6096                 |
|      |          |            |          | cold    | 7.15E-02 | 302.4     | 6.9    | 2461                 |
|      |          |            |          | avg mat | 9.08E-02 | 341.7     | 6.9    | 2088                 |
|      |          |            |          | jt/mat  | 479      | 31        | 150    | 300                  |

# Appendix B: Average Measurements at Each Test Location

| NMSA | Site       | Joint type          | Station  | section | K (cm/s) | ITS (kPa) | Air (%) | infiltration (cm/hr) |
|------|------------|---------------------|----------|---------|----------|-----------|---------|----------------------|
| 19mm | maine s 95 | rubber joint sealer | 1745     | hot     | 3.99E-03 | 475.0     | 5.5     | 139                  |
|      |            |                     |          | center  | 2.39E-02 | ~         | ~       | 563                  |
|      |            |                     |          | cold    | 3.20E-03 | 474.7     | 5.0     | 110                  |
|      |            |                     |          | avg mat | 3.60E-03 | 474.9     | 5.2     | 124                  |
|      |            |                     |          | jt/mat  | 665      | #VALUE!   | #VALUE! | 453                  |
|      |            |                     |          |         |          |           |         |                      |
|      |            |                     | 1740     | hot     | 1.11E-03 | 514.6     | 5.8     | 37                   |
|      |            |                     |          | center  | 9.75E-03 | 341.5     | 7.4     | 271                  |
|      |            |                     |          | cold    | 1.55E-03 | 361.7     | 7.7     | 51                   |
|      |            |                     |          | avg mat | 1.33E-03 | 438.1     | 6.8     | 44                   |
|      |            |                     |          | jt/mat  | 732      | 78        | 109     | 617                  |
|      |            |                     |          |         |          |           |         |                      |
|      |            |                     | 1735     | hot     | 1.55E-03 | 428.4     | 7.0     | 51                   |
|      |            |                     |          | center  | 1.94E-02 | 301.1     | 7.4     | 439                  |
|      |            |                     |          | cold    | 2.04E-03 | 427.1     | 6.1     | 66                   |
|      |            |                     |          | avg mat | 1.80E-03 | 427.8     | 6.6     | 59                   |
|      |            |                     |          | jt/mat  | 1081     | 70        | 113     | 750                  |
|      |            |                     |          |         |          |           |         |                      |
|      |            |                     | 1730     | hot     | 0.00E+00 | 424.1     | 7.4     | 0                    |
|      |            |                     |          | center  | 2.46E-03 | 354.5     | 4.7     | 88                   |
|      |            |                     |          | cold    | 1.02E-03 | 459.6     | 3.3     | 37                   |
|      |            |                     |          | avg mat | 5.09E-04 | 441.9     | 5.4     | 18                   |
|      |            |                     |          | jt/mat  | 484      | 80        | 88      | 480                  |
|      |            |                     |          |         |          |           |         |                      |
|      |            |                     | 1725     | hot     | 0.00E+00 | 335.6     | 7.2     | 0                    |
|      |            |                     |          | center  | 2.76E-03 | 467.7     | 5.6     | 88                   |
|      |            |                     |          | cold    | 4.85E-03 | 503.8     | 2.7     | 146                  |
|      |            |                     |          | avg mat | 2.43E-03 | 419.7     | 4.9     | 73                   |
|      |            |                     |          | jt/mat  | 114      | 111       | 114     | 120                  |
|      |            |                     |          |         |          |           |         |                      |
|      |            |                     | averages | hot     | 1.33E-03 | 435.6     | 6.6     | 45                   |
|      |            |                     |          | center  | 1.17E-02 | 366.2     | 6.3     | 290                  |
|      |            |                     |          | cold    | 2.53E-03 | 445.4     | 5.0     | 82                   |
|      |            |                     |          | avg mat | 1.93E-03 | 440.5     | 5.8     | 64                   |
|      |            |                     |          | jt/mat  | 603      | 83        | 109     | 455                  |

| NMSA       | Site                     | Joint type   | Station  | section | K (cm/s) | ITS (kPa) | Air (%) | infiltration (cm/hr) |
|------------|--------------------------|--------------|----------|---------|----------|-----------|---------|----------------------|
| 19mm       | nh93sb 7-29-04           | joint heater | 92+13    | hot     | 1.74E-04 | ~         | ~       | 7                    |
|            |                          |              |          | center  | 4.07E-03 | ~         | ~       | 168                  |
|            |                          |              |          | cold    | 2.99E-03 | ~         | ~       | 124                  |
|            |                          |              |          | avg mat | 1.58E-03 | ~         | ~       | 66                   |
|            |                          |              |          | jt/mat  | 257      | ~         | ~       | 256                  |
|            |                          |              |          |         |          |           |         |                      |
|            |                          |              | 78-43    | hot     | 8.73E-04 | ~         | ~       | 37                   |
|            |                          |              |          | center  | 2.64E-03 | ~         | ~       | 110                  |
|            |                          |              |          | cold    | 2.11E-03 | ~         | ~       | 88                   |
|            |                          |              |          | avg mat | 1.49E-03 | ~         | ~       | 62                   |
|            |                          |              |          | jt/mat  | 177      | ~         | ~       | 176                  |
|            |                          |              |          |         |          |           |         |                      |
|            |                          |              | 74+62    | hot     | 5.24E-04 | ~         | ~       | 22                   |
|            |                          |              |          | center  | 3.53E-03 | ~         | ~       | 146                  |
|            |                          |              |          | cold    | 5.24E-04 | ~         | ~       | 22                   |
|            |                          |              |          | avg mat | 5.24E-04 | ~         | ~       | 22                   |
|            |                          |              |          | jt/mat  | 674      | ~         | ~       | 667                  |
|            |                          |              |          |         |          |           |         |                      |
|            |                          |              | 68+53    | hot     | 1.05E-03 | ~         | ~       | 44                   |
|            |                          |              |          | center  | 1.75E-03 | ~         | ~       | 73                   |
|            |                          |              |          | cold    | 1.74E-04 | ~         | ~       | 7                    |
|            |                          |              |          | avg mat | 6.11E-04 | ~         | ~       | 26                   |
|            |                          |              |          | jt/mat  | 287      | ~         | ~       | 286                  |
|            |                          |              |          |         |          |           |         |                      |
|            |                          |              | 62+03    | hot     | 6.98E-04 | ~         | ~       | 29                   |
|            |                          |              |          | center  | 2.28E-03 | ~         | ~       | 95                   |
|            |                          |              |          | cold    | 0.00E+00 | ~         | ~       | 0                    |
|            |                          |              |          | avg mat | 3.49E-04 | ~         | ~       | 15                   |
|            |                          |              |          | jt/mat  | 654      | ~         | ~       | 650                  |
|            |                          |              |          |         |          |           |         |                      |
| Cores take | en at different location | ons from     | averages | hot     | 6.63E-04 | 353.8     | 6.1     | 28                   |
| permeame   | eter testing.            |              |          | center  | 2.86E-03 | 275.0     | 12.1    | 119                  |
|            | alues calculated fro     | m all cores. |          | cold    | 1.16E-03 | 300.5     | 6.6     | 48                   |
|            |                          |              |          | avg mat | 9.12E-04 | 327.2     | 6.3     | 38                   |
|            |                          |              |          | jt/mat  | 313      | 84        | 192     | 312                  |

| NMSA       | Site                   | Joint type   | Station  | section | K (cm/s) | ITS (kPa) | Air (%) | infiltration (cm/hr) |
|------------|------------------------|--------------|----------|---------|----------|-----------|---------|----------------------|
| 19mm       | nh93sb 7-29-04         | conventional | 131+57   | hot     | 0.00E+00 | ~         | ~       | 0                    |
|            |                        |              |          | center  | 2.86E-03 | ~         | ~       | 117                  |
|            |                        |              |          | cold    | 1.76E-03 | ~         | ~       | 73                   |
|            |                        |              |          | avg mat | 8.82E-04 | ~         | ~       | 37                   |
|            |                        |              |          | jt/mat  | 324      | ~         | ~       | 320                  |
|            |                        |              |          |         |          |           |         |                      |
|            |                        |              | 122+82   | hot     | 1.06E-03 | ~         | ~       | 44                   |
|            |                        |              |          | center  | 1.01E-02 | ~         | ~       | 402                  |
|            |                        |              |          | cold    | 3.56E-03 | ~         | ~       | 146                  |
|            |                        |              |          | avg mat | 2.31E-03 | ~         | ~       | 95                   |
|            |                        |              |          | jt/mat  | 437      | ~         | ~       | 423                  |
|            |                        |              |          |         |          |           |         |                      |
|            |                        |              | 120+34   | hot     | 1.58E-03 | ~         | ~       | 66                   |
|            |                        |              |          | center  | 1.68E-02 | ~         | ~       | 658                  |
|            |                        |              |          | cold    | 0.00E+00 | ~         | ~       | 0                    |
|            |                        |              |          | avg mat | 7.88E-04 | ~         | ~       | 33                   |
|            |                        |              |          | jt/mat  | 2129     | ~         | ~       | 2000                 |
|            |                        |              |          |         |          |           |         |                      |
|            |                        |              | 114+34   | hot     | 1.05E-03 | ~         | ~       | 44                   |
|            |                        |              |          | center  | 5.93E-02 | ~         | ~       | 1968                 |
|            |                        |              |          | cold    | 1.05E-03 | ~         | ~       | 44                   |
|            |                        |              |          | avg mat | 1.05E-03 | ~         | ~       | 44                   |
|            |                        |              |          | jt/mat  | 5657     | ~         | ~       | 4483                 |
|            |                        |              |          |         |          |           |         |                      |
|            |                        |              | 108+80   | hot     | 1.74E-04 | ~         | ~       | 7                    |
|            |                        |              |          | center  | 2.57E-02 | ~         | ~       | 973                  |
|            |                        |              |          | cold    | 1.66E-03 | ~         | ~       | 69                   |
|            |                        |              |          | avg mat | 9.19E-04 | ~         | ~       | 38                   |
|            |                        |              |          | jt/mat  | 2796     | ~         | ~       | 2533                 |
|            |                        |              |          |         |          |           |         |                      |
| Cores take | en at different locati | ons from     | averages | hot     | 7.71E-04 | 351.0     | 6.4     | 32                   |
| permeame   | eter testing.          |              |          | center  | 2.29E-02 | 415.3     | 12.1    | 824                  |
|            | alues calculated fro   | m all cores. |          | cold    | 1.61E-03 | 335.3     | 6.5     | 67                   |
|            | oint core was tested   |              |          | avg mat | 1.19E-03 | 343.2     | 6.4     | 49                   |
|            |                        |              |          | jt/mat  | 1930     | 121       | 188     | 1668                 |

| NMSA | Site    | Joint type | Station  | section | K (cm/s) | ITS (kPa) | Air (%) | infiltration (cm/hr) |
|------|---------|------------|----------|---------|----------|-----------|---------|----------------------|
| 19mm | NH RT25 | control    | 1033+45  | hot     | 1.81E-02 | ~         | 7.7     | 775                  |
|      |         |            |          | center  | 6.78E-02 | ~         | 10.3    | 2633                 |
|      |         |            |          | cold    | 1.70E-02 | ~         | 7.8     | 746                  |
|      |         |            |          | avg mat | 1.76E-02 | ~         | 7.8     | 761                  |
|      |         |            |          | jt/mat  | 386      | ~         | 132     | 346                  |
|      |         |            |          |         |          |           |         |                      |
|      |         |            | 1034+85  | hot     | 2.74E-02 | ~         | 7.4     | 1170                 |
|      |         |            |          | center  | 5.67E-02 | ~         | 8.5     | 2282                 |
|      |         |            |          | cold    | 2.03E-02 | ~         | 7.7     | 892                  |
|      |         |            |          | avg mat | 2.38E-02 | ~         | 7.6     | 1031                 |
|      |         |            |          | jt/mat  | 238      | ~         | 113     | 221                  |
|      |         |            |          |         |          |           |         |                      |
|      |         |            | 1024+00  | hot     | 2.91E-02 | ~         | 7.2     | 1273                 |
|      |         |            |          | center  | 1.18E-01 | ~         | 10.4    | 4140                 |
|      |         |            |          | cold    | 1.97E-02 | ~         | 8.0     | 966                  |
|      |         |            |          | avg mat | 2.44E-02 | ~         | 7.6     | 1119                 |
|      |         |            |          | jt/mat  | 482      | ~         | 137     | 370                  |
|      |         |            |          |         |          |           |         |                      |
|      |         |            | 1025+00  | hot     | 2.52E-02 | ~         | 8.7     | 1083                 |
|      |         |            |          | center  | 1.64E-01 | ~         | 11.7    | 5194                 |
|      |         |            |          | cold    | 4.13E-02 | ~         | 8.0     | 1785                 |
|      |         |            |          | avg mat | 3.32E-02 | ~         | 8.4     | 1434                 |
|      |         |            |          | jt/mat  | 492      | ~         | 140     | 362                  |
|      |         |            |          |         |          |           |         |                      |
|      |         |            | 1026+00  | hot     | 3.89E-02 | ~         | 8.6     | 1609                 |
|      |         |            |          | center  | 1.44E-01 | ~         | 12.3    | 5077                 |
|      |         |            |          | cold    | 2.35E-02 | ~         | 9.2     | 1024                 |
|      |         |            |          | avg mat | 3.12E-02 | ~         | 8.9     | 1317                 |
|      |         |            |          | jt/mat  | 462      | ~         | 138     | 386                  |
|      |         |            |          |         |          |           |         | 1                    |
|      |         |            | averages | hot     | 2.77E-02 | ~         | 7.9     | 1182                 |
|      |         |            | Ĭ        | center  | 1.10E-01 | ~         | 10.6    | 3865                 |
|      |         |            |          | cold    | 2.44E-02 | ~         | 8.1     | 1083                 |
|      |         |            |          | avg mat | 2.61E-02 | ~         | 8.0     | 1132                 |
|      |         |            | 1        | jt/mat  | 422      | ~         | 132     | 341                  |

| NMSA | Site           | Joint type | Station  | section | K (cm/s) | ITS (kPa) | Air (%) | infiltration (cm/hr) |
|------|----------------|------------|----------|---------|----------|-----------|---------|----------------------|
| 19mm | NH I-93 6/9/04 | control    | 132+02   | left    | 7.30E-04 | 556.1     | 6.4     | 29                   |
|      | rect           |            |          | center  | 1.04E-02 | 431.0     | 11.2    | 402                  |
|      |                |            |          | rt      | 5.49E-04 | 727.6     | 5.7     | 22                   |
|      |                |            |          | avg mat | 6.39E-04 | 641.9     | 6.0     | 26                   |
|      |                |            |          | jt/mat  | 1633     | 67        | 185     | 1571                 |
|      |                |            |          |         |          |           |         |                      |
|      |                |            | 131+67   | left    | 3.60E-03 | 589.2     | 6.2     | 143                  |
|      |                |            |          | center  | 9.66E-03 | 466.8     | 9.9     | 373                  |
|      |                |            |          | rt      | 1.10E-03 | 666.7     | 6.3     | 44                   |
|      |                |            |          | avg mat | 2.35E-03 | 628.0     | 6.2     | 93                   |
|      |                |            |          | jt/mat  | 411      | 74        | 159     | 400                  |
|      |                |            |          |         |          |           |         |                      |
|      |                |            | 131+38   | left    | 2.95E-03 | 555.5     | 6.5     | 117                  |
|      |                |            |          | center  | 1.65E-03 | 433.9     | 8.6     | 66                   |
|      |                |            |          | rt      | 1.67E-03 | 674.1     | 5.8     | 66                   |
|      |                |            |          | avg mat | 2.31E-03 | 614.8     | 6.1     | 91                   |
|      |                |            |          | jt/mat  | 72       | 71        | 141     | 72                   |
|      |                |            |          |         |          |           |         |                      |
|      |                |            | 131+04   | left    | 1.07E-03 | 661.0     | 5.9     | 44                   |
|      |                |            |          | center  | 2.46E-02 | 463.0     | 10.1    | 914                  |
|      |                |            |          | rt      | 1.78E-04 | 740.8     | 5.2     | 7                    |
|      |                |            |          | avg mat | 6.25E-04 | 700.9     | 5.6     | 26                   |
|      |                |            |          | jt/mat  | 3932     | 66        | 182     | 3571                 |
|      |                |            |          |         |          |           |         |                      |
|      |                |            | 130+50   | left    | 1.07E-03 | 606.8     | 5.8     | 44                   |
|      |                |            |          | center  | 2.01E-02 | 552.1     | 8.4     | 761                  |
|      |                |            |          | rt      | 2.68E-04 | 813.8     | 4.6     | 11                   |
|      |                |            |          | avg mat | 6.69E-04 | 710.3     | 5.2     | 27                   |
|      |                |            |          | jt/mat  | 3001     | 78        | 160     | 2773                 |
|      |                |            |          |         |          |           |         | 1                    |
|      |                |            | averages | left    | 1.89E-03 | 593.7     | 6.1     | 75                   |
|      |                |            | Ĭ        | center  | 1.33E-02 | 469.4     | 9.6     | 503                  |
|      |                |            |          | rt      | 7.51E-04 | 724.6     | 5.5     | 30                   |
|      |                |            |          | avg mat | 1.32E-03 | 659.2     | 5.8     | 53                   |
|      |                |            |          | jt/mat  | 1008     | 71        | 165     | 956                  |

# Appendix B – 19 mm sites

| NMSA | Site                                         | Joint type   | Station  | section           | K (cm/s)             | ITS (kPa)      | Air (%)    | infiltration (cm/hr) |
|------|----------------------------------------------|--------------|----------|-------------------|----------------------|----------------|------------|----------------------|
| 19mm | NH I-93 6/9/04                               | joint heater | 77+24    | left              | 4.60E-03             | 479.4          | 6.7        | 168                  |
|      | rect                                         |              |          | center            | 3.20E-02             | 460.2          | 9.2        | 1057                 |
|      |                                              |              |          | rt                | 4.39E-03             | 585.6          | 6.0        | 161                  |
|      |                                              |              |          | avg mat           | 4.50E-03             | 532.5          | 6.3        | 165                  |
|      |                                              |              |          | jt/mat            | 713                  | 86             | 146        | 642                  |
|      |                                              |              |          |                   |                      |                |            |                      |
|      |                                              |              | 76+78    | left              | 3.80E-04             | 523.3          | 5.1        | 15                   |
|      |                                              |              |          | center            | 3.13E-02             | 495.1          | 9.1        | 1068                 |
|      |                                              |              |          | rt                | 2.49E-03             | 701.7          | 5.1        | 95                   |
|      |                                              |              |          | avg mat           | 1.44E-03             | 612.5          | 5.1        | 55                   |
|      |                                              |              |          | jt/mat            | 2178                 | 81             | 180        | 1947                 |
|      |                                              |              | 70.47    | 1.0               | 7.005.04             | 000.5          | <b>F</b> 4 |                      |
|      |                                              |              | 76+47    | left              | 7.60E-04             | 623.5          | 5.1        | 29                   |
|      |                                              |              | -        | center            | 8.22E-03             | 521.1          | 6.8        | 307                  |
|      |                                              |              | -        | rt                | 2.49E-03             | 699.5          | 5.0        | 95                   |
|      |                                              |              | -        | avg mat           | 1.62E-03             | 661.5          | 5.1        | 62                   |
|      | <u> </u>                                     |              |          | jt/mat            | 507                  | 79             | 133        | 494                  |
|      | <u> </u>                                     |              | 76+10    | left              | 1.28E-03             | 531.1          | 6.4        | 51                   |
|      |                                              |              | 70+10    | center            | 1.20E-03             | 594.1          | 7.2        | 461                  |
|      |                                              |              |          |                   |                      |                | 4.7        | -                    |
|      |                                              |              |          | rt<br>avg mat     | 1.84E-03<br>1.56E-03 | 670.2<br>600.6 | 4.7<br>5.6 | 73<br>62             |
|      |                                              |              |          | jt/mat            | 775                  | 99             | 5.6<br>129 | 741                  |
|      |                                              |              |          | ji/mat            | 115                  | 99             | 129        | 741                  |
|      |                                              |              | 75+70    | left              | 3.98E-03             | 550.0          | 6.6        | 161                  |
|      |                                              |              | 10110    | center            | 1.79E-03             | 588.8          | 7.6        | 73                   |
|      |                                              |              |          | rt                | 1.97E-03             | 685.4          | 4.9        | 80                   |
|      |                                              |              |          | avg mat           | 2.98E-03             | 617.7          | 5.7        | 121                  |
|      |                                              |              |          | jt/mat            | 60                   | 95             | 132        | 61                   |
|      |                                              |              |          |                   |                      |                |            |                      |
|      |                                              |              | averages | left              | 2.20E-03             | 541.5          | 6.0        | 85                   |
|      |                                              |              |          | center            | 1.71E-02             | 531.8          | 8.0        | 593                  |
|      |                                              |              |          | rt                | 2.64E-03             | 668.5          | 5.1        | 101                  |
|      |                                              |              |          | avg mat           | 2.42E-03             | 605.0          | 5.6        | 93                   |
|      |                                              |              |          | jt/mat            | 706                  | 88             | 144        | 639                  |
|      |                                              |              |          |                   |                      |                |            |                      |
|      | circle                                       |              | 76+10    | left              | 2.58E-03             | 531.1          | 6.4        | 102                  |
|      |                                              |              |          | center            | 3.14E-03             | 594.1          | 7.2        | 124                  |
|      |                                              |              |          | rt                | 2.39E-03             | 670.2          | 4.7        | 95                   |
|      |                                              |              |          | avg mat           | 2.49E-03             | 600.6          | 5.6        | 99                   |
|      |                                              |              |          | jt/mat            | 126                  | 99             | 129        | 126                  |
|      |                                              |              | 75+70    | left              | 4.35E-03             | 550.0          | 6.6        | 176                  |
|      | <u> </u>                                     |              | /5+/0    |                   | 4.35E-03<br>2.52E-03 |                |            | 176                  |
|      | <u> </u>                                     |              | +        | center<br>rt      | 2.52E-03<br>2.34E-03 | 588.8<br>685.4 | 7.6<br>4.9 | 95                   |
|      |                                              |              | +        |                   | 2.34E-03<br>3.34E-03 | 617.7          | 4.9<br>5.7 | 135                  |
|      | <u> </u>                                     |              |          | avg mat<br>jt/mat | 3.34E-03<br>75       | 95             | 132        | 76                   |
|      |                                              |              |          | jvinat            | 15                   | 30             | 102        | 10                   |
|      | <u>†                                    </u> |              | averages | left              | 3.46E-03             | 540.5          | 6.5        | 139                  |
|      |                                              |              |          | center            | 2.83E-03             | 591.5          | 7.4        | 113                  |
|      |                                              |              |          | rt                | 2.37E-03             | 677.8          | 4.8        | 95                   |
|      |                                              |              |          | avg mat           | 2.92E-03             | 609.2          | 5.7        | 117                  |
|      |                                              |              |          | jt/mat            | 97                   | 97             | 130        | 97                   |

| NMSA   | Site            | Joint type | Station  | section    | K (cm/s) | ITS (kPa) | Air (%) | infiltration (cm/hr) |
|--------|-----------------|------------|----------|------------|----------|-----------|---------|----------------------|
| 12.5mm | Mass N95 Saugus |            | 5        | hot        | 1.27E-03 | 356.8     | 3.6     | 38                   |
|        |                 |            | 4        | center     | 3.44E-02 | 239.8     | 8.8     | 927                  |
|        |                 |            | 3        | cold       | 1.73E-02 | 289.7     | 6.8     | 516                  |
|        |                 |            |          | avg mat    | 9.26E-03 | 323.2     | 5.2     | 277                  |
|        |                 |            |          | jt/mat     | 371      | 74        | 169     | 335                  |
|        |                 |            |          |            |          |           |         |                      |
|        |                 |            | 8        | hot        | 2.24E-02 | 357.2     | 3.4     | 587                  |
|        |                 |            | 7        | center     | 2.02E-02 | 300.4     | 6.3     | 538                  |
|        |                 |            | 6        | cold       |          | 288.8     | 6.0     |                      |
|        |                 |            |          | avg mat    | 2.24E-02 | 323.0     | 4.7     | 587                  |
|        |                 |            |          | jt/mat     | 90       | 93        | 133     | 92                   |
|        |                 |            |          |            |          |           |         |                      |
|        |                 |            | 12       | hot        | 8.23E-03 | 352.0     | 1.7     | 263                  |
|        |                 |            | 11       | center     | 6.97E-02 | 262.7     | 7.3     | 1097                 |
|        |                 |            | 10       | cold       | 3.38E-02 | 344.8     | 4.5     | 790                  |
|        |                 |            |          | avg mat    | 2.10E-02 | 348.4     | 3.1     | 527                  |
|        |                 |            |          | jt/mat     | 332      | 75        | 233     | 208                  |
|        |                 |            |          |            |          |           |         |                      |
|        |                 |            | 1        | ctr of mat | 7.36E-03 | 386.7     | 1.6     | 230                  |
|        |                 |            | 2        | ctr of mat | 4.81E-03 | 366.4     | 2.0     | 124                  |
|        |                 |            | 9        | ctr of mat | 1.78E-02 | 365.6     | 2.3     | 483                  |
|        |                 |            | 13       | ctr of mat | 2.43E-02 | 309.4     | 5.1     | 609                  |
|        |                 |            |          |            |          |           |         |                      |
|        |                 |            | averages | hot        | 1.06E-02 | 355.3     | 2.9     | 296                  |
|        |                 |            |          | center     | 4.14E-02 | 267.6     | 7.5     | 854                  |
|        |                 |            |          | cold       | 2.55E-02 | 307.8     | 5.8     | 653                  |
|        |                 |            |          | avg mat    | 1.75E-02 | 331.5     | 4.4     | 464                  |
|        |                 |            |          | jt/mat     | 264      | 81        | 178     | 212                  |

| NMSA   | Site              | Joint type |          | section | K (cm/s) | ITS (kPa) | Air (%) | infiltration (cm/hr) |
|--------|-------------------|------------|----------|---------|----------|-----------|---------|----------------------|
| 12.5mm | CT RT17 middleton |            | 1244     | east    | 1.25E-03 | 645.1     | 6.5     | 55                   |
|        |                   |            |          | center  | 0.00E+00 | 573.1     | 7.0     | 0                    |
|        |                   |            |          | west    | 0.00E+00 | 537.0     | 8.3     | 0                    |
|        |                   |            |          | avg mat | 6.27E-04 | 591.1     | 7.4     | 27                   |
|        |                   |            |          | jt/mat  | 0        | 97        | 95      | 0                    |
|        |                   |            |          |         |          |           |         |                      |
|        |                   |            | 1245     | east    | 0.00E+00 | 640.5     | 7.3     | 0                    |
|        |                   |            |          | center  | 4.13E-04 | 492.0     | 6.2     | 18                   |
|        |                   |            |          | west    | 0.00E+00 | 763.5     | 5.1     | 0                    |
|        |                   |            |          | avg mat | 0.00E+00 | 702.0     | 6.2     | 0                    |
|        |                   |            |          | jt/mat  | #DIV/0!  | 70        | 100     | #DIV/0!              |
|        |                   |            |          |         |          |           |         |                      |
|        |                   |            | 7009     | east    | 0.00E+00 | 767.6     | 5.2     | 0                    |
|        |                   |            |          | center  | 2.51E-04 | 630.9     | 5.7     | 11                   |
|        |                   |            |          | west    | 0.00E+00 | 594.8     | 6.5     | 0                    |
|        |                   |            |          | avg mat | 0.00E+00 | 681.2     | 5.8     | 0                    |
|        |                   |            |          | jt/mat  | #DIV/0!  | 93        | 98      | #DIV/0!              |
|        |                   |            |          |         |          |           |         |                      |
|        |                   |            | 1246     | east    | 0.00E+00 | 709.5     | 6.0     | 0                    |
|        |                   |            |          | center  | 9.19E-05 | 594.9     | 5.7     | 4                    |
|        |                   |            |          | west    | 0.00E+00 | 740.1     | 5.9     | 0                    |
|        |                   |            |          | avg mat | 0.00E+00 | 724.8     | 5.9     | 0                    |
|        |                   |            |          | jt/mat  | #DIV/0!  | 82        | 97      | #DIV/0!              |
|        |                   |            |          |         |          |           |         |                      |
|        |                   |            | 9666     | east    | 0.00E+00 | 813.4     | 4.2     | 0                    |
|        |                   |            |          | center  | 0.00E+00 | 822.9     | 3.5     | 0                    |
|        |                   |            |          | west    | 0.00E+00 | 719.1     | 4.2     | 0                    |
|        |                   |            |          | avg mat | 0.00E+00 | 766.3     | 4.2     | 0                    |
|        |                   |            |          | jt/mat  | #DIV/0!  | 107       | 83      | #DIV/0!              |
|        |                   |            |          |         |          |           |         |                      |
|        |                   |            | averages | east    | 2.51E-04 | 715.2     | 5.8     | 11                   |
|        |                   |            |          | center  | 1.51E-04 | 622.8     | 5.6     | 7                    |
|        |                   |            |          | west    | 0.00E+00 | 670.9     | 6.0     | 0                    |
|        |                   |            |          | avg mat | 1.25E-04 | 693.1     | 5.9     | 5                    |
|        |                   |            |          | jt/mat  | 121      | 90        | 95      | 120                  |

| NMSA   |                      | Joint type |          | section | K (cm/s) | ITS (kPa) | Air (%) | infiltration (cm/hr) |
|--------|----------------------|------------|----------|---------|----------|-----------|---------|----------------------|
| 12.5mm | Ct RT17 Middleton 05 |            | 1244     | hot     | 0.00E+00 |           |         | 0                    |
|        |                      |            |          | center  | 0.00E+00 | 980.7535  |         | 0                    |
|        |                      |            |          | cold    | 1.37E-03 | 585.1805  |         | 15                   |
|        |                      |            |          | avg mat | 6.83E-04 | 585.2     | #DIV/0! | 7                    |
|        |                      |            |          | jt/mat  | 0        | 168       | #DIV/0! | 0                    |
|        |                      |            |          |         |          |           |         |                      |
|        |                      |            | 1245     | hot     | 6.53E-04 | 687.9794  |         | 7                    |
|        |                      |            |          | center  | 1.92E-03 | 920.652   |         | 22                   |
|        |                      |            |          | cold    | 7.16E-04 | 917.348   |         | 7                    |
|        |                      |            |          | avg mat | 6.85E-04 | 802.7     | #DIV/0! | 7                    |
|        |                      |            |          | jt/mat  | 280      | 115       | #DIV/0! | 300                  |
|        |                      |            |          |         |          |           |         |                      |
|        |                      |            | 7009     | hot     | 7.68E-04 | 1036.803  |         | 7                    |
|        |                      |            |          | center  | 1.52E-03 | 793.991   |         | 15                   |
|        |                      |            |          | cold    | 8.40E-04 | 1008.079  |         | 7                    |
|        |                      |            |          | avg mat | 8.04E-04 | 1022.4    | #DIV/0! | 7                    |
|        |                      |            |          | jt/mat  | 189      | 78        | #DIV/0! | 200                  |
|        |                      |            |          |         |          |           |         |                      |
|        |                      |            | 1246     | hot     | 9.06E-04 | 850.4335  |         | 7                    |
|        |                      |            |          | center  | 9.01E-04 | 962.096   |         | 7                    |
|        |                      |            |          | cold    | 0.00E+00 | 972.3417  |         | 0                    |
|        |                      |            |          | avg mat | 4.53E-04 | 911.4     | #DIV/0! | 4                    |
|        |                      |            |          | jt/mat  | 199      | 106       | #DIV/0! | 200                  |
|        |                      |            |          |         |          |           |         |                      |
|        |                      |            | 9666     | hot     | 0.00E+00 | 1026.3    |         | 0                    |
|        |                      |            |          | center  | 1.08E-03 | 694.8179  |         | 7                    |
|        |                      |            |          | cold    | 0.00E+00 | 1033.64   |         | 0                    |
|        |                      |            |          | avg mat | 0.00E+00 | 1030.0    | #DIV/0! | 0                    |
|        |                      |            |          | jt/mat  | #DIV/0!  | 67        | #DIV/0! | #DIV/0!              |
|        |                      |            |          |         |          |           |         |                      |
|        |                      |            | averages | east    | 4.65E-04 | 900.4     | #DIV/0! | 4                    |
|        |                      |            |          | center  | 1.08E-03 | 870.5     | #DIV/0! | 10                   |
|        |                      |            |          | west    | 5.84E-04 | 903.3     | #DIV/0! | 6                    |
|        |                      |            |          | avg mat | 5.25E-04 | 901.8     | #DIV/0! | 5                    |
|        |                      |            |          | jt/mat  | 207      | 97        | #DIV/0! | 200                  |

| NMSA   | Site            | Joint type | Station  | section | K (cm/s) | ITS (kPa) | Air (%) | infiltration (cm/hr) |
|--------|-----------------|------------|----------|---------|----------|-----------|---------|----------------------|
| 12.5mm | CT RT44 Pomfret |            | 1298     | hot     | 5.31E-03 | 235.5     | 10.4    | 219                  |
|        |                 |            |          | center  | 3.85E-02 | 70.2      | 15.0    | 1397                 |
|        |                 |            |          | cold    | 4.77E-03 | 271.0     | 9.4     | 198                  |
|        |                 |            |          | avg mat | 5.04E-03 | 253.2     | 9.9     | 208                  |
|        |                 |            |          | jt/mat  | 763      | 28        | 152     | 670                  |
|        |                 |            |          |         |          |           |         |                      |
|        |                 |            | 1297     | hot     | 1.77E-04 | 353.9     | 7.7     | 7                    |
|        |                 |            |          | center  | 3.06E-02 | 109.1     | 12.8    | 1127                 |
|        |                 |            |          | cold    | 3.58E-03 | 362.1     | 8.4     | 146                  |
|        |                 |            |          | avg mat | 1.88E-03 | 358.0     | 8.1     | 77                   |
|        |                 |            |          | jt/mat  | 1629     | 30        | 159     | 1467                 |
|        |                 |            |          |         |          |           |         |                      |
|        |                 |            | 1296     | hot     | 0.00E+00 | 446.0     | 7.0     | 0                    |
|        |                 |            |          | center  | 9.94E-03 | 260.1     | 10.6    | 454                  |
|        |                 |            |          | cold    | 4.61E-04 | 372.8     | 8.5     | 22                   |
|        |                 |            |          | avg mat | 2.30E-04 | 409.4     | 7.8     | 11                   |
|        |                 |            |          | jt/mat  | 4315     | 64        | 136     | 4133                 |
|        |                 |            |          |         |          |           |         |                      |
|        |                 |            | 1295     | hot     | 0.00E+00 | 388.8     | 7.6     | 0                    |
|        |                 |            |          | center  | 3.72E-02 | 186.3     | 11.7    | 1478                 |
|        |                 |            |          | cold    | 0.00E+00 | 324.9     | 8.4     | 0                    |
|        |                 |            |          | avg mat | 0.00E+00 | 356.9     | 8.0     | 0                    |
|        |                 |            |          | jt/mat  | #DIV/0!  | 52        | 146     | #DIV/0!              |
|        |                 |            |          |         |          |           |         |                      |
|        |                 |            | 1294     | hot     | 1.77E-04 | 356.2     | 8.0     | 7                    |
|        |                 |            |          | center  | 9.73E-03 | 195.1     | 10.7    | 388                  |
|        |                 |            |          | cold    | 7.09E-04 | 263.7     | 8.7     | 29                   |
|        |                 |            |          | avg mat | 4.43E-04 | 310.0     | 8.4     | 18                   |
|        |                 |            |          | jt/mat  | 2196     | 63        | 128     | 2120                 |
|        |                 |            |          |         |          |           |         |                      |
|        |                 |            | averages | hot     | 1.13E-03 | 356.1     | 8.2     | 47                   |
|        |                 |            |          | center  | 2.52E-02 | 164.2     | 12.1    | 969                  |
|        |                 |            |          | cold    | 1.90E-03 | 318.9     | 8.7     | 79                   |
|        |                 |            |          | avg mat | 1.52E-03 | 337.5     | 8.4     | 63                   |
|        |                 |            |          | jt/mat  | 1658     | 49        | 144     | 1540                 |

| NMSA   |                     | Joint type |          | section | K (cm/s) | ITS (kPa) |         | infiltration (cm/hr) |
|--------|---------------------|------------|----------|---------|----------|-----------|---------|----------------------|
| 12.5mm | CT RT 44 Pomfret 05 |            | 1298     | hot     | 1.79E-03 | 517.3     | 5.5     | 59                   |
|        |                     |            |          | center  | 1.37E-02 | 256.6     | Broken  | 351                  |
|        |                     |            |          | cold    | 3.39E-03 |           | 5.0     | 102                  |
|        |                     |            |          | avg mat | 2.59E-03 | 517.3     | 5.2     | 80                   |
|        |                     |            |          | jt/mat  | 529      | 50        | #VALUE! | 436                  |
|        |                     |            |          |         |          |           |         |                      |
|        |                     |            | 1297     | hot     | 1.54E-03 | 715.4     | 5.8     | 44                   |
|        |                     |            |          | center  | 7.97E-03 | 360.4     | 7.4     | 219                  |
|        |                     |            |          | cold    | 0.00E+00 | 1609.0    | 7.7     | 0                    |
|        |                     |            |          | avg mat | 7.71E-04 | 1162.2    | 6.8     | 22                   |
|        |                     |            |          | jt/mat  | 1034     | 31        | 109     | 1000                 |
|        |                     |            |          |         |          |           |         |                      |
|        |                     |            | 1296     | hot     | 3.96E-04 | 630.8     | 7.0     | 15                   |
|        |                     |            |          | center  | 4.36E-03 | 280.7     | 7.4     | 139                  |
|        |                     |            |          | cold    | 2.04E-04 | 564.0     | 6.1     | 7                    |
|        |                     |            |          | avg mat | 3.00E-04 | 597.4     | 6.6     | 11                   |
|        |                     |            |          | jt/mat  | 1455     | 47        | 113     | 1267                 |
|        |                     |            |          |         |          |           |         |                      |
|        |                     |            | 1295     | hot     | 0.00E+00 | 613.4     | 7.4     | 0                    |
|        |                     |            |          | center  | 6.18E-03 | 537.9     | 4.7     | 110                  |
|        |                     |            |          | cold    | 2.48E-04 | 774.1     | 3.3     | 7                    |
|        |                     |            |          | avg mat | 1.24E-04 | 693.7     | 5.4     | 4                    |
|        |                     |            |          | jt/mat  | 4978     | 78        | 88      | 3000                 |
|        |                     |            |          | -       |          |           |         |                      |
|        |                     |            | 1294     | hot     | 8.65E-04 | 626.3     | 7.2     | 15                   |
|        |                     |            |          | center  | 4.70E-03 | 409.2     | 5.6     | 124                  |
|        |                     |            |          | cold    | 3.08E-04 | 614.4     | 2.7     | 7                    |
|        |                     |            |          | avg mat | 5.87E-04 | 620.4     | 4.9     | 11                   |
|        |                     |            |          | jt/mat  | 801      | 66        | 114     | 1133                 |
|        |                     |            |          | •       |          |           |         |                      |
|        |                     |            | averages | hot     | 9.19E-04 | 620.7     | 6.6     | 26                   |
|        |                     |            | ž        | center  | 7.38E-03 | 369.0     | 6.3     | 189                  |
|        |                     |            |          | cold    | 8.30E-04 | 890.4     | 5.0     | 25                   |
|        |                     |            |          | avg mat | 8.74E-04 | 755.5     | 5.8     | 26                   |
|        |                     |            |          | jt/mat  | 845      | 49        | 109     | 737                  |

| NMSA   | Site                 | Joint type | Station  | section | K (cm/s) | ITS (kPa) |      | infiltration (cm/hr) |
|--------|----------------------|------------|----------|---------|----------|-----------|------|----------------------|
| 12.5mm | CT RT 17 Glastonbury | /          | 1946     | hot     | 5.59E-04 | 447.3     | 7.1  | 33                   |
|        |                      |            |          | center  | 5.72E-03 | 264.9     | 13.3 | 318                  |
|        |                      |            |          | cold    | 1.24E-04 | 461.0     | 9.9  | 7                    |
|        |                      |            |          | avg mat | 3.41E-04 | 454.2     | 8.5  | 20                   |
|        |                      |            |          | jt/mat  | 1676     | 58        | 157  | 1582                 |
|        |                      |            |          |         |          |           |      |                      |
|        |                      |            | 1945     | hot     | 1.49E-03 | 470.3     | 6.7  | 80                   |
|        |                      |            |          | center  | 5.13E-03 | 276.3     | 14.1 | 267                  |
|        |                      |            |          | cold    | 1.34E-04 | 539.6     | 9.4  | 7                    |
|        |                      |            |          | avg mat | 8.12E-04 | 504.9     | 8.0  | 44                   |
|        |                      |            |          | jt/mat  | 632      | 55        | 175  | 608                  |
|        |                      |            |          |         |          |           |      |                      |
|        |                      |            | 1944     | hot     | 3.92E-04 | 550.5     | 4.9  | 22                   |
|        |                      |            |          | center  | 3.93E-03 | 372.1     | 12.5 | 212                  |
|        |                      |            |          | cold    | 0.00E+00 | 585.8     | 7.8  | 0                    |
|        |                      |            |          | avg mat | 1.96E-04 | 568.2     | 6.4  | 11                   |
|        |                      |            |          | jt/mat  | 2007     | 65        | 196  | 1933                 |
|        |                      |            |          |         |          |           |      |                      |
|        |                      |            | 1943     | hot     | 8.75E-04 | 554.0     | 5.8  | 48                   |
|        |                      |            |          | center  | 4.70E-04 | 426.9     | 10.9 | 26                   |
|        |                      |            |          | cold    | 6.68E-05 | 650.5     | 8.4  | 4                    |
|        |                      |            |          | avg mat | 4.71E-04 | 602.2     | 7.1  | 26                   |
|        |                      |            |          | jt/mat  | 100      | 71        | 154  | 100                  |
|        |                      |            |          |         |          |           |      |                      |
|        |                      |            | 1942     | hot     | 3.24E-03 | 469.3     | 7.1  | 172                  |
|        |                      |            |          | center  | 8.91E-03 | 255.1     | 14.1 | 446                  |
|        |                      |            |          | cold    | 6.71E-04 | 490.0     | 11.6 | 37                   |
|        |                      |            |          | avg mat | 1.96E-03 | 479.7     | 9.3  | 104                  |
|        |                      |            |          | jt/mat  | 456      | 53        | 152  | 428                  |
|        |                      |            |          | ·       |          |           |      |                      |
|        |                      |            | averages | hot     | 1.31E-03 | 498.3     | 6.3  | 71                   |
|        |                      |            | ¥        | center  | 4.83E-03 | 319.1     | 13.0 | 254                  |
|        |                      |            |          | cold    | 1.99E-04 | 545.4     | 9.4  | 11                   |
|        |                      |            |          | avg mat | 7.55E-04 | 521.8     | 7.9  | 41                   |
|        |                      |            |          | jt/mat  | 640      | 61        | 165  | 620                  |

| NMSA   | Site              | Joint type | Station  | section | K (cm/s) | ITS (kPa) | Air (%) | infiltration (cm/hr) |
|--------|-------------------|------------|----------|---------|----------|-----------|---------|----------------------|
| 12.5mm | CT Glastonbury 05 |            | 1946     | hot     | 2.11E-04 | 1035.2    |         | 7                    |
|        |                   |            |          | center  | 1.27E-03 | 570.7     |         | 44                   |
|        |                   |            |          | cold    | 2.11E-04 | 1213.7    |         | 7                    |
|        |                   |            |          | avg mat | 2.11E-04 | 1124.4    | #DIV/0! | 7                    |
|        |                   |            |          | jt/mat  | 602      | 51        | #DIV/0! | 600                  |
|        |                   |            |          |         |          |           |         |                      |
|        |                   |            | 1945     | hot     | 2.25E-04 | 929.4     |         | 7                    |
|        |                   |            |          | center  | 1.16E-02 |           |         | 285                  |
|        |                   |            |          | cold    | 4.60E-04 | 965.6     |         | 15                   |
|        |                   |            |          | avg mat | 3.43E-04 | 947.5     | #DIV/0! | 11                   |
|        |                   |            |          | jt/mat  | 3384     | 0         | #DIV/0! | 2600                 |
|        |                   |            |          |         |          |           |         |                      |
|        |                   |            | 1944     | hot     | 2.45E-04 | 938.5     |         | 7                    |
|        |                   |            |          | center  | 4.71E-04 | 853.4     |         | 15                   |
|        |                   |            |          | cold    | 2.51E-04 | 929.6     |         | 7                    |
|        |                   |            |          | avg mat | 2.48E-04 | 934.0     | #DIV/0! | 7                    |
|        |                   |            |          | jt/mat  | 190      | 91        | #DIV/0! | 200                  |
|        |                   |            |          |         |          |           |         |                      |
|        |                   |            | 1943     | hot     | 0.00E+00 | 889.0     |         | 0                    |
|        |                   |            |          | center  | 2.15E-03 | 804.5     |         | 59                   |
|        |                   |            |          | cold    | 0.00E+00 | 912.3     |         | 0                    |
|        |                   |            |          | avg mat | 0.00E+00 | 900.6     | #DIV/0! | 0                    |
|        |                   |            |          | jt/mat  | #DIV/0!  | 89        | #DIV/0! | #DIV/0!              |
|        |                   |            |          |         |          |           |         |                      |
|        |                   |            | 1942     | hot     | 0.00E+00 | 1261.0    |         | 0                    |
|        |                   |            |          | center  | 3.78E-03 | 845.6     |         | 80                   |
|        |                   |            |          | cold    | 0.00E+00 |           |         | 0                    |
|        |                   |            |          | avg mat | 0.00E+00 | 1261.0    | #DIV/0! | 0                    |
|        |                   |            |          | jt/mat  | #DIV/0!  | 67        | #DIV/0! | #DIV/0!              |
|        |                   |            |          |         |          |           |         |                      |
|        |                   |            | averages | hot     | 1.36E-04 | 1010.6    | #DIV/0! | 4                    |
|        |                   |            |          | center  | 3.85E-03 | 768.6     | #DIV/0! | 97                   |
|        |                   |            |          | cold    | 1.84E-04 | 1005.3    | #DIV/0! | 6                    |
|        |                   |            |          | avg mat | 1.60E-04 | 1007.9    | #DIV/0! | 5                    |
|        |                   |            |          | jt/mat  | 2404     | 76        | #DIV/0! | 1886                 |

| NMSA   | Site             | Joint type    | Station  | section | K (cm/s) | ITS (kPa) | Air (%) | infiltration (cm/hr) |
|--------|------------------|---------------|----------|---------|----------|-----------|---------|----------------------|
| 12.5mm | ME 195 NB 9/1/04 | rized joint s | 197+014  | left    | 1.12E-04 | 551.4     | 5.6     | 7                    |
|        |                  |               |          | center  | 1.40E-04 | 426.7     | 7.9     | 9                    |
|        |                  |               |          | right   | 6.74E-04 | 510.5     | 6.0     | 44                   |
|        |                  |               |          | avg mat | 3.93E-04 | 530.9     | 5.8     | 26                   |
|        |                  |               |          | jt/mat  | 36       | 80        | 137     | 36                   |
|        |                  |               |          |         |          |           |         |                      |
|        |                  |               | 197+047  | left    | 0.00E+00 | 692.4     | 6.5     | 0                    |
|        |                  |               |          | center  | 5.58E-05 | 575.2     | 8.2     | 4                    |
|        |                  |               |          | right   | 1.12E-04 | 624.4     | 7.3     | 7                    |
|        |                  |               |          | avg mat | 5.58E-05 | 658.4     | 6.9     | 4                    |
|        |                  |               |          | jt/mat  | 100      | 87        | 119     | 100                  |
|        |                  |               |          |         |          |           |         |                      |
|        |                  |               | 197+069  | left    | 2.23E-04 | 463.7     | 7.2     | 15                   |
|        |                  |               |          | center  | 0.00E+00 | 492.0     | 8.4     | 0                    |
|        |                  |               |          | right   | 1.67E-04 | 616.9     | 6.4     | 11                   |
|        |                  |               |          | avg mat | 1.95E-04 | 540.3     | 6.8     | 13                   |
|        |                  |               |          | jt/mat  | 0        | 91        | 125     | 0                    |
|        |                  |               |          |         |          |           |         |                      |
|        |                  |               | averages | left    | 1.12E-04 | 569.1     | 6.4     | 7                    |
|        |                  |               |          | center  | 6.52E-05 | 498.0     | 8.2     | 4                    |
|        |                  |               |          | right   | 3.18E-04 | 583.9     | 6.6     | 21                   |
|        |                  |               |          | avg mat | 2.15E-04 | 576.5     | 6.5     | 14                   |
|        |                  |               |          | jt/mat  | 30       | 86        | 126     | 30                   |

| NMSA   | Site             | Joint type   | Station  | section | K (cm/s) | ITS (kPa) | Air (%) | infiltration (cm/hr) |
|--------|------------------|--------------|----------|---------|----------|-----------|---------|----------------------|
| 12.5mm | ME 195 NB 9/1/04 | ulsified sea | 197+819  | left    | 5.10E-04 | 609.9     | 6.4     | 35                   |
|        |                  |              |          | center  | 1.34E-04 | 588.0     | 7.2     | 9                    |
|        |                  |              |          | right   | 1.34E-04 | 685.3     | 5.9     | 9                    |
|        |                  |              |          | avg mat | 3.22E-04 | 647.6     | 6.1     | 22                   |
|        |                  |              |          | jt/mat  | 42       | 91        | 117     | 42                   |
|        |                  |              |          |         |          |           |         |                      |
|        |                  |              | 197+856  | left    | 2.94E-04 | 534.8     | 6.5     | 20                   |
|        |                  |              |          | center  | 1.07E-04 | 590.6     | 7.3     | 7                    |
|        |                  |              |          | right   | 7.00E-04 | 546.1     | 7.3     | 48                   |
|        |                  |              |          | avg mat | 4.97E-04 | 540.4     | 6.9     | 34                   |
|        |                  |              |          | jt/mat  | 21       | 109       | 106     | 22                   |
|        |                  |              |          |         |          |           |         |                      |
|        |                  |              | 197+894  | left    | 0.00E+00 | 579.7     | 6.9     | 0                    |
|        |                  |              |          | center  | 0.00E+00 | 651.5     | 7.2     | 0                    |
|        |                  |              |          | right   | 5.34E-05 | ~         | ~       | 4                    |
|        |                  |              |          | avg mat | 2.67E-05 | 579.7     | 6.9     | 2                    |
|        |                  |              |          | jt/mat  | 0        | 112       | 105     | 0                    |
|        |                  |              |          |         |          |           |         |                      |
|        |                  |              | averages | left    | 2.68E-04 | 574.8     | 6.6     | 18                   |
|        |                  |              |          | center  | 8.02E-05 | 610.0     | 7.2     | 5                    |
|        |                  |              |          | right   | 2.96E-04 | 615.7     | 6.6     | 20                   |
|        |                  |              |          | avg mat | 2.82E-04 | 595.3     | 6.6     | 19                   |
|        |                  |              |          | jt/mat  | 28       | 102       | 110     | 29                   |

| NMSA   | Site             | Joint type  | Station  | section | K (cm/s) | ITS (kPa) | Air (%) | infiltration (cm/hr) |
|--------|------------------|-------------|----------|---------|----------|-----------|---------|----------------------|
| 12.5mm | ME 195 NB 9/1/04 | koch sealer | 199+570  | left    | 0.00E+00 | 654.4     | 4.4     | 0                    |
|        |                  |             |          | center  | 1.07E-04 | 503.0     | 7.1     | 7                    |
|        |                  |             |          | right   | 4.29E-04 | 688.1     | 5.6     | 29                   |
|        |                  |             |          | avg mat | 2.15E-04 | 671.2     | 5.0     | 15                   |
|        |                  |             |          | jt/mat  | 50       | 75        | 143     | 50                   |
|        |                  |             |          |         |          |           |         |                      |
|        |                  |             | 199+596  | left    | 5.34E-05 | 531.6     | 6.3     | 4                    |
|        |                  |             |          | center  | 1.07E-04 | 336.8     | 8.2     | 7                    |
|        |                  |             |          | right   | 2.14E-04 | 603.3     | 5.8     | 15                   |
|        |                  |             |          | avg mat | 1.34E-04 | 567.4     | 6.1     | 9                    |
|        |                  |             |          | jt/mat  | 80       | 59        | 135     | 80                   |
|        |                  |             |          |         |          |           |         |                      |
|        |                  |             | 199+618  | left    | 0.00E+00 | ~         | 6.9     | 0                    |
|        |                  |             |          | center  | 2.67E-05 | 493.2     | 8.1     | 2                    |
|        |                  |             |          | right   | 0.00E+00 | 686.5     | 4.7     | 0                    |
|        |                  |             |          | avg mat | 0.00E+00 | 686.5     | 5.8     | 0                    |
|        |                  |             |          | jt/mat  | #DIV/0!  | 72        | 140     | #DIV/0!              |
|        |                  |             |          |         |          |           |         |                      |
|        |                  |             | averages | left    | 1.78E-05 | 593.0     | 5.9     | 1                    |
|        |                  |             |          | center  | 8.02E-05 | 444.3     | 7.8     | 5                    |
|        |                  |             |          | right   | 2.14E-04 | 659.3     | 5.4     | 15                   |
|        |                  |             |          | avg mat | 1.16E-04 | 626.1     | 5.6     | 8                    |
|        |                  |             |          | jt/mat  | 69       | 71        | 139     | 69                   |

| NMSA        | Site                    | Joint type                                             | Station  | section | K (cm/s) | ITS (kPa) | Air (%) | infiltration (cm/hr) |
|-------------|-------------------------|--------------------------------------------------------|----------|---------|----------|-----------|---------|----------------------|
| 12.5mm      | NH I-93                 | Control                                                | 136+50   | left    | 4.52E-03 | ~         | ~       | 187                  |
|             | Surface course          |                                                        |          | center  | 1.98E-02 | ~         | 1       | 768                  |
|             | 8/10/2004               | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | 582      |         |          |           |         |                      |
|             |                         |                                                        |          | avg mat | 9.61E-03 | #DIV/0!   | #DIV/0! | 384                  |
|             |                         |                                                        |          | jt/mat  | 206      | #VALUE!   | #VALUE! | 200                  |
|             |                         |                                                        |          |         |          |           |         |                      |
|             |                         |                                                        | 131+11   | left    | 7.81E-03 | ~         | ~       | 318                  |
|             |                         |                                                        |          | center  | 9.78E-03 | ~         | ~       | 395                  |
|             |                         |                                                        |          | right   | 2.64E-03 | ~         | ~       | 110                  |
|             |                         |                                                        |          | avg mat | 5.23E-03 | #DIV/0!   | #DIV/0! | 214                  |
|             |                         |                                                        |          | jt/mat  | 187      | #VALUE!   | #VALUE! | 185                  |
|             |                         |                                                        |          |         |          |           |         |                      |
|             |                         |                                                        | 124+30   | left    | 6.98E-03 | ~         | ~       | 285                  |
|             |                         |                                                        |          | center  | 1.89E-02 | ~         | ~       | 735                  |
|             |                         |                                                        |          | right   | 1.12E-02 | ~         | ~       | 450                  |
|             |                         |                                                        |          | avg mat | 9.09E-03 | #DIV/0!   | #DIV/0! | 368                  |
|             |                         |                                                        |          | jt/mat  | 208      | #VALUE!   | #VALUE! | 200                  |
|             |                         |                                                        |          |         |          |           |         |                      |
|             |                         |                                                        | 119+20   | left    | 2.64E-03 | ~         | ~       | 110                  |
|             |                         |                                                        |          | center  | 1.26E-02 | ~         | ~       | 505                  |
|             |                         |                                                        |          | right   | 3.18E-03 | ~         | ~       | 132                  |
|             |                         |                                                        |          | avg mat | 2.91E-03 | #DIV/0!   | #DIV/0! | 121                  |
|             |                         |                                                        |          |         | 435      | #VALUE!   | #VALUE! | 418                  |
|             |                         |                                                        |          | -       |          |           |         |                      |
|             |                         |                                                        | 113+53   | left    | 1.84E-03 | ~         | ~       | 77                   |
|             |                         |                                                        |          | center  | 2.78E-02 | ~         | ~       | 1042                 |
|             |                         |                                                        |          | right   | 9.22E-03 | ~         | ~       | 373                  |
|             |                         |                                                        |          | avg mat | 5.53E-03 | #DIV/0!   | #DIV/0! | 225                  |
|             |                         | 1                                                      |          | jt/mat  | 502      | #VALUE!   | #VALUE! | 463                  |
|             |                         | 1                                                      |          | · ·     |          |           |         |                      |
|             |                         | 1 1                                                    | averages | left    | 4.76E-03 | 341.0     | 7.5     | 195                  |
| Cores taker | n at different location | s from perm                                            |          | center  | 1.78E-02 | 188.0     | 12.1    | 689                  |
|             | erage values calculat   |                                                        |          | right   | 8.19E-03 | 319.0     | 7.4     | 329                  |
|             | <u> </u>                |                                                        |          | avg mat | 6.47E-03 | 330.0     | 7.5     | 262                  |
|             |                         | 1                                                      |          | jt/mat  | 275      | 57        | 162     | 263                  |

| NMSA        | Site                                                | Joint type      | Station  | section | K (cm/s) | ITS (kPa) | Air (%) | infiltration (cm/hr) |
|-------------|-----------------------------------------------------|-----------------|----------|---------|----------|-----------|---------|----------------------|
| 12.5mm      | NH I-93                                             | joint heater    | 82+78    | left    | 9.62E-03 | ~         | ~       | 384                  |
|             | Surface course                                      |                 |          | center  | 1.06E-02 | ~         | ~       | 428                  |
|             | 8/10/2004                                           |                 |          | right   | 2.90E-03 | ~         | ~       | 121                  |
|             |                                                     |                 |          | avg mat | 6.26E-03 | #DIV/0!   | #DIV/0! | 252                  |
|             |                                                     |                 |          | jt/mat  | 170      | #VALUE!   | #VALUE! | 170                  |
|             |                                                     |                 |          |         |          |           |         |                      |
|             |                                                     |                 | 78+82    | left    | 2.11E-03 | ~         | ~       | 88                   |
|             |                                                     |                 |          | center  | 1.56E-02 | ~         | ~       | 614                  |
|             |                                                     |                 |          | right   | 9.22E-03 | ~         | ~       | 373                  |
|             |                                                     |                 |          | avg mat | 5.66E-03 | #DIV/0!   | #DIV/0! | 230                  |
|             |                                                     |                 |          | jt/mat  | 275      | #VALUE!   | #VALUE! | 267                  |
|             |                                                     |                 |          |         |          |           |         |                      |
|             |                                                     |                 | 74+77    | left    | 6.71E-03 | ~         | ~       | 274                  |
|             |                                                     |                 |          | center  | 1.74E-02 | ~         | ~       | 680                  |
|             |                                                     |                 |          | right   | 1.74E-02 | ~         | ~       | 680                  |
|             |                                                     |                 |          | avg mat | 1.20E-02 | #DIV/0!   | #DIV/0! | 477                  |
|             |                                                     |                 |          | jt/mat  | 144      | #VALUE!   | #VALUE! | 143                  |
|             |                                                     |                 |          |         |          |           |         |                      |
|             |                                                     |                 | 64+54    | left    | 8.37E-03 | ~         | ~       | 340                  |
|             |                                                     |                 |          | center  | 7.26E-03 | ~         | ~       | 296                  |
|             |                                                     |                 |          | right   | 1.84E-03 | ~         | ~       | 77                   |
|             |                                                     |                 |          | avg mat | 5.11E-03 | #DIV/0!   | #DIV/0! | 208                  |
|             |                                                     |                 |          | jt/mat  | 142      | #VALUE!   | #VALUE! | 142                  |
|             |                                                     |                 |          | -       |          |           |         |                      |
|             |                                                     |                 | 57+84    | left    | 2.64E-03 | ~         | ~       | 110                  |
|             |                                                     |                 |          | center  | 1.56E-02 | ~         | ~       | 614                  |
|             |                                                     |                 |          | right   | 7.54E-03 | ~         | ~       | 307                  |
|             |                                                     |                 |          | avg mat | 5.09E-03 | #DIV/0!   | #DIV/0! | 208                  |
|             |                                                     |                 |          | jt/mat  | 306      | #VALUE!   | #VALUE! | 295                  |
|             |                                                     |                 |          |         |          |           |         |                      |
|             |                                                     |                 | averages | left    | 5.89E-03 | 345.0     | 6.5     | 239                  |
| Cores taker | Cores taken at different locations from permeameter |                 |          |         | 1.33E-02 | 254.0     | 9.6     | 527                  |
|             | arage values calculat                               | center<br>right | 7.77E-03 | 328.0   | 7.4      | 312       |         |                      |
| Ĭ           | × ·                                                 |                 |          | avg mat | 6.83E-03 | 336.5     | 7.0     | 275                  |
|             |                                                     |                 |          | jt/mat  | 194      | 75        | 138     | 191                  |

| NMSA                                               | Site               | Joint type | Station  | section | K (cm/s)  | ITS (kPa) | Air (%) | infiltration (cm/hr) |
|----------------------------------------------------|--------------------|------------|----------|---------|-----------|-----------|---------|----------------------|
| 12.5mm                                             | VT 191 NB          | convent    | A        | pass    | 5.465E-03 |           |         | 263                  |
|                                                    |                    |            |          | center  | 9.270E-03 |           |         | 395                  |
|                                                    |                    |            |          | travel  | 3.174E-03 |           |         | 117                  |
|                                                    |                    |            |          | avg mat | 4.320E-03 |           |         | 190                  |
|                                                    |                    |            |          | jt/mat  | 215       |           |         | 208                  |
|                                                    |                    |            |          |         |           |           |         |                      |
|                                                    |                    |            | В        | pass    | 8.196E-03 |           |         | 344                  |
|                                                    |                    |            |          | center  | 1.868E-02 |           |         | 666                  |
|                                                    |                    |            |          | travel  | 1.687E-03 |           |         | 73                   |
|                                                    |                    |            |          | avg mat | 4.941E-03 |           |         | 208                  |
|                                                    |                    |            |          | jt/mat  | 378       |           |         | 319                  |
|                                                    |                    |            |          |         |           |           |         |                      |
|                                                    |                    |            | С        | pass    | 2.381E-02 |           |         | 933                  |
|                                                    |                    |            |          | center  | 3.944E-02 |           |         | 1343                 |
|                                                    |                    |            |          | travel  | 3.888E-03 |           |         | 176                  |
|                                                    |                    |            |          | avg mat | 1.385E-02 |           |         | 554                  |
|                                                    |                    |            |          | jt/mat  | 285       |           |         | 242                  |
|                                                    |                    |            |          |         |           |           |         |                      |
|                                                    | om QC/QA cores tak |            | averages | pass    | 1.25E-02  | #DIV/0!   | #DIV/0! | 513                  |
| different locations from perm testing              |                    | center     | 2.25E-02 | #DIV/0! | 6.0       | 801       |         |                      |
| Avgerage values calculated from all available data |                    | travel     | 2.92E-03 | #DIV/0! | #DIV/0!   | 122       |         |                      |
|                                                    |                    |            |          | avg mat | 7.70E-03  | #DIV/0!   | 6.0     | 318                  |
|                                                    |                    |            |          | jt/mat  | 292       | #DIV/0!   | 99      | 252                  |

|       |         |             |          |         |          |           |        |              |         | Nuke Gag | е        |
|-------|---------|-------------|----------|---------|----------|-----------|--------|--------------|---------|----------|----------|
| NMSA  | Site    | Joint type  | Station  | section | K (cm/s) | ITS (kPa) | Air(%) | infiltration | (cm/hr) | %Gmm     | % Air    |
| 9.5mm | ME Rt 5 | conventiona |          | NB      | 4.91E-04 | 266.3     | 7.7    | 29           |         | 92.83    | 7.17     |
|       |         |             |          | center  | 6.39E-03 | 222.8     | 16.8   | 336          |         | 90.71    | 9.29     |
|       |         |             |          | SB      | 1.21E-04 | 349.9     | 4.6    | 7            |         | 92.63    | 7.37     |
|       |         |             |          | avg mat | 3.06E-04 | 308.1     | 6.2    | 18           |         | 9.27E+01 | 7.27E+00 |
|       |         |             |          | jt/mat  | 2088     | 72        | 272    | 1840         |         | 98       | 128      |
|       |         |             |          |         |          |           |        |              |         |          |          |
|       |         |             | В        | NB      | 1.29E-03 |           |        | 73           |         | 93.96    | 6.04     |
|       |         |             |          | center  | 9.72E-03 |           |        | 497          |         | 91.9     | 8.1      |
|       |         |             |          | SB      | 0.00E+00 |           |        | 0            |         | 92.3     | 7.7      |
|       |         |             |          | avg mat | 6.44E-04 |           |        | 37           |         | 9.31E+01 | 6.87E+00 |
|       |         |             |          | jt/mat  | 1508     |           |        | 1360         |         | 99       | 118      |
|       |         |             |          |         |          |           |        |              |         |          |          |
|       |         |             | С        | NB      | 1.62E-03 | 314.5     | 7.4    | 95           |         | 92.3     | 7.7      |
|       |         |             |          | center  | 2.31E-02 |           |        | 988          |         | 91.31    | 8.69     |
|       |         |             |          | SB      | 7.44E-03 |           |        | 402          |         | 94.56    | 5.44     |
|       |         |             |          | avg mat | 4.53E-03 |           |        | 249          |         | 9.34E+01 | 6.57E+00 |
|       |         |             |          | jt/mat  | 509      |           |        | 397          |         | 98       | 132      |
|       |         |             |          |         |          |           |        |              |         |          |          |
|       |         |             | averages | NB      | 1.13E-03 | 290.4     | 7.6    | 66           |         | 93.0     | 7.0      |
|       |         |             |          | center  | 1.31E-02 | 222.8     | 16.8   | 607          |         | 91.3     | 8.7      |
|       |         |             |          | SB      | 2.52E-03 | 349.9     | 4.6    | 137          |         | 93.2     | 6.8      |
|       |         |             |          | avg mat | 1.83E-03 | 320.2     | 6.1    | 101          |         | 93.1     | 6.9      |
|       |         |             |          | jt/mat  | 1369     | 70        | 275    | 1199         |         | 98       | 126      |

# Appendix C: Individual Core Data and Statistics

Project: NH RT153
Joint Type

|             |        | ITS (kPa) |         |
|-------------|--------|-----------|---------|
| Station     | Mat 1  | Center    | Mat 2   |
| 603+75      | 378.7  | 88.0      | 208.8   |
| 603+45      | 426.4  | 108.7     | 268.3   |
| 603+25      | 338.1  |           | 430.1   |
| Average     | 381.1  | 98.4      | 302.4   |
| COV         | 11.6   | 14.9      | 37.9    |
| mple Variar | 1953.2 | 215.0     | 13121.4 |

|             |       | Air (%) |       |
|-------------|-------|---------|-------|
| Station     | Mat 1 | Center  | Mat 2 |
| 603+75      | 6.1   | 10.3    | 7.2   |
| 603+45      | 6.0   | 10.5    | 7.3   |
| 603+25      | 8.3   | 10.0    | 6.3   |
| Average     | 6.8   | 10.3    | 6.9   |
| COV         | 19.0  | 2.7     | 7.5   |
| mple Variar | 1.7   | 0.1     | 0.3   |

Project: NH I-93 SB

Joint Type Joint Heater

\*cores taken at different locations from permeameter testing blank cells indicate no data available (no core/broken core)

|             |         | ITS (kPa) |        |
|-------------|---------|-----------|--------|
| Core        | Mat 1   | Center    | Mat 2  |
| 1           | 235.7   | 489       | 430.4  |
| 2           | 391.9   |           | 335.9  |
| 3           | 333.9   |           | 324.7  |
| 4           | 422.4   | 195       | 320.1  |
| 5           | 319.2   | 460       | 192.0  |
| 6           | 235.9   | 226       | 222.3  |
| 7           | 307.7   | 470       | 248.5  |
| 8           | 584.1   | 256       | 329.8  |
| 9           |         |           |        |
| 10          |         |           |        |
| 11          |         | 64        |        |
| 12          |         | 188       |        |
| 13          |         | 128       |        |
| 14          |         |           |        |
| Average     | 353.8   | 275.0     | 300.5  |
| COV         | 32.2    | 57.6      | 25.3   |
| mple Variar | 12960.5 | 25114.4   | 5793.7 |

| ſ           |       | Air (%) |       |
|-------------|-------|---------|-------|
| Core        | Mat 1 | Center  | Mat 2 |
| 1           | 5.9   | 12.3    | 5.0   |
| 2           | 4.7   | 12.5    | 5.3   |
| 3           | 5.1   | 11.8    | 8.6   |
| 4           | 5.7   | 12.3    | 6.9   |
| 5           | 6.6   | 12.0    | 7.4   |
| 6           | 7.3   | 9.3     | 6.1   |
| 7           | 6.4   | 11.1    | 6.3   |
| 8           | 6.7   | 9.5     | 7.1   |
| 9           |       | 13.9    |       |
| 10          |       | 13.3    |       |
| 11          |       | 13.2    |       |
| 12          |       | 13.2    |       |
| 13          |       | 13.6    |       |
| 14          |       | 12.1    |       |
| 15          |       | 12.6    |       |
| Average     | 6.1   | 12.2    | 6.6   |
| COV         | 15.5  | 11.5    | 16.0  |
| mple Variar | 0.8   | 1.8     | 1.4   |

Project: NH I-93 SB

#### Joint Type Control

\*cores taken at different locations from perme blank cells indicate no data available (no core

|               |         | ITS (kPa) | ,      |
|---------------|---------|-----------|--------|
| Core          | Mat 1   | Center    | Mat 2  |
| 1             | 301.8   |           | 291.0  |
| 2             | 235.6   |           | 342.8  |
| 3             | 273.7   | 415.3     | 371.7  |
| 4             | 842.4   |           | 299.2  |
| 5             | 374.9   |           | 249.2  |
| 6             | 247.9   |           | 362.3  |
| 7             | 314.0   |           | 423.4  |
| 8             | 369.1   |           | 342.4  |
| 9             | 199.5   |           |        |
| 10            |         |           |        |
| 11            |         |           |        |
| 12            |         |           |        |
| 13            |         |           |        |
| 14            |         |           |        |
| Average       | 351.0   | 415.3     | 335.3  |
| COV           | 55.1    | #DIV/0!   | 16.2   |
| Sample Variar | 37380.7 | #DIV/0!   | 2941.5 |

|               |       | Air (%) |       |
|---------------|-------|---------|-------|
| Core          | Mat 1 | Center  | Mat 2 |
| 1             | 6.1   | 13.1    | 7.9   |
| 2             | 7.0   | 11.6    | 4.9   |
| 3             | 7.0   | 11.1    | 6.1   |
| 4             | 5.9   | 11.2    | 6.7   |
| 5             | 6.1   | 11.5    | 7.2   |
| 6             | 7.1   | 12.4    | 5.4   |
| 7             | 5.4   | 12.9    | 5.9   |
| 8             | 7.2   | 12.5    | 7.5   |
| 9             | 6.2   | 11.9    |       |
| 10            |       | 12.7    |       |
| 11            |       | 11.6    |       |
| 12            |       | 11.8    |       |
| 13            |       | 12.5    |       |
| 14            |       | 12.2    |       |
| Average       | 6.4   | 12.1    | 6.5   |
| COV           | 10.0  | 5.2     | 16.3  |
| Sample Variar | 0.4   | 0.4     | 1.1   |

# Project:maine s 95Joint Typerubber joint sealer

|             |        | ITS (kPa) |        |
|-------------|--------|-----------|--------|
| Station     | Mat 1  | Center    | Mat 2  |
| 1745        | 475.0  |           | 474.7  |
| 1740        | 514.6  | 341.5     | 361.7  |
| 1735        | 428.4  | 301.1     | 427.1  |
| 1730        | 424.1  | 354.5     | 459.6  |
| 1725        | 335.6  | 467.7     | 503.8  |
| Average     | 435.6  | 366.2     | 445.4  |
| COV         | 15.4   | 19.5      | 12.2   |
| mple Variar | 4495.4 | 5095.6    | 2955.1 |

#### Project: NH RT25 Joint Type

ITS (kPa) **Station** Mat 1 Center Mat 2 1033+45 1034+85 1024+00 1025+00 1026+00 #DIV/0! #DIV/0! #DIV/0! Average COV #DIV/0! #DIV/0! #DIV/0! Sample Variar #DIV/0! #DIV/0! #DIV/0!

|             |       | Air (%) |       |
|-------------|-------|---------|-------|
| Station     | Mat 1 | Center  | Mat 2 |
| 1745        | 5.5   |         | 5.0   |
| 1740        | 5.8   | 7.4     | 7.7   |
| 1735        | 7.0   | 7.4     | 6.1   |
| 1730        | 7.4   | 4.7     | 3.3   |
| 1725        | 7.2   | 5.6     | 2.7   |
| Average     | 6.6   | 6.3     | 5.0   |
| COV         | 13.1  | 21.3    | 41.0  |
| mple Variar | 0.7   | 1.8     | 4.1   |

|    |             |       | Air (%) |       |
|----|-------------|-------|---------|-------|
|    | Station     | Mat 1 | Center  | Mat 2 |
|    | 1033+45     | 7.7   | 10.3    | 7.8   |
|    | 1034+85     | 7.4   | 8.5     | 7.7   |
|    | 1024+00     | 7.2   | 10.4    | 8.0   |
|    | 1025+00     | 8.7   | 11.7    | 8.0   |
|    | 1026+00     | 8.6   | 12.3    | 9.2   |
|    | Average     | 7.9   | 10.6    | 8.1   |
|    | COV         | 8.8   | 13.6    | 7.1   |
| Sa | mple Variar | 0.5   | 2.1     | 0.3   |

| Project:   | NH I-93 6/9/04 |
|------------|----------------|
| Joint Type | control        |

| Project:   | NH I-93 6/9/04 |  |
|------------|----------------|--|
| Joint Type | heater         |  |

|             | ITS (kPa) |        |        |
|-------------|-----------|--------|--------|
| Station     | Mat 1     | Center | Mat 2  |
| 132+02      | 556.1     | 431.0  | 727.6  |
| 131+67      | 589.2     | 466.8  | 666.7  |
| 131+38      | 555.5     | 433.9  | 674.1  |
| 131+04      | 661.0     | 463.0  | 740.8  |
| 130+50      | 606.8     | 552.1  | 813.8  |
| Average     | 593.7     | 469.4  | 724.6  |
| COV         | 7.3       | 10.4   | 8.2    |
| mple Variar | 1897.2    | 2404.1 | 3532.1 |

|    |             | ITS (kPa) |        |        |
|----|-------------|-----------|--------|--------|
|    | Station     | Mat 1     | Center | Mat 2  |
|    | 77+24       | 479.4     | 460.2  | 585.6  |
|    | 76+78       | 523.3     | 495.1  | 701.7  |
|    | 76+47       | 623.5     | 521.1  | 699.5  |
|    | 76+10       | 531.1     | 594.1  | 670.2  |
|    | 75+70       | 550.0     | 588.8  | 685.4  |
|    | Average     | 541.5     | 531.8  | 668.5  |
|    | COV         | 9.7       | 11.0   | 7.2    |
| Sa | mple Variar | 2773.6    | 3433.2 | 2306.1 |

|             | Air (%) |        |       |
|-------------|---------|--------|-------|
| Station     | Mat 1   | Center | Mat 2 |
| 132+02      | 6.4     | 11.2   | 5.7   |
| 131+67      | 6.2     | 9.9    | 6.3   |
| 131+38      | 6.5     | 8.6    | 5.8   |
| 131+04      | 5.9     | 10.1   | 5.2   |
| 130+50      | 5.8     | 8.4    | 4.6   |
| Average     | 6.1     | 9.6    | 5.5   |
| COV         | 4.5     | 11.9   | 11.3  |
| mple Variar | 0.1     | 1.3    | 0.4   |

|    |             | Air (%) |        |       |
|----|-------------|---------|--------|-------|
|    | Station     | Mat 1   | Center | Mat 2 |
|    | 77+24       | 6.7     | 9.2    | 6.0   |
|    | 76+78       | 5.1     | 9.1    | 5.1   |
|    | 76+47       | 5.1     | 6.8    | 5.0   |
|    | 76+10       | 6.4     | 7.2    | 4.7   |
|    | 75+70       | 6.6     | 7.6    | 4.9   |
|    | Average     | 6.0     | 8.0    | 5.1   |
|    | COV         | 13.4    | 14.2   | 9.6   |
| Sa | mple Variar | 0.6     | 1.3    | 0.2   |

| Project:                                                    | NH I-93 SB    |              |             | _    |
|-------------------------------------------------------------|---------------|--------------|-------------|------|
| Joint Type:                                                 | Joint Heater  |              |             |      |
| *cores taken at different locations from permeameter testir |               |              |             |      |
| blank cells indicate no                                     | o data availa | able (no cor | e/broken co | ore) |
|                                                             |               | ITS (kPa)    |             |      |
| Core                                                        | Mat 1         | Center       | Mat 2       |      |
| 1                                                           | 402.6         | 284.1        | 307.5       |      |
| 2                                                           | 287.0         | 281.9        | 259.0       |      |
| 3                                                           | 398.6         | 216.6        | 269.7       |      |
| 4                                                           | 303.6         | 304.3        | 389.0       |      |
| 5                                                           | 312.7         | 369.9        | 353.5       |      |
| 6                                                           | 316.4         | 269.1        | 339.2       |      |
| 7                                                           | 387.2         | 270.8        | 339.4       |      |
| 8                                                           | 348.1         | 229.5        | 370.7       |      |
| 9                                                           |               | 205.5        |             |      |
| 10                                                          |               | 243.9        |             |      |
| 11                                                          |               | 224.5        |             |      |
| 12                                                          |               | 205.5        |             |      |
| 13                                                          |               | 210.6        |             |      |
| 14                                                          |               | 234.0        |             |      |
| Average                                                     | 344.5         | 253.6        | 328.5       |      |
| COV                                                         | 13.4          | 18.3         | 14.1        |      |
| Sample Variance                                             | 2129.9        | 2163.0       | 2145.5      |      |

|                 |       | Air (%) |       |
|-----------------|-------|---------|-------|
| Core            | Mat 1 | Center  | Mat 2 |
| 1               | 5.0   | 8.8     | 7.7   |
| 2               | 8.9   | 9.3     | 8.4   |
| 3               | 5.8   | 10.4    | 9.2   |
| 4               | 7.7   | 8.6     | 6.0   |
| 5               | 7.2   | 5.7     | 6.4   |
| 6               | 6.1   | 9.5     | 7.0   |
| 7               | 5.3   | 9.7     | 8.2   |
| 8               | 6.4   | 10.0    | 6.1   |
| 9               |       | 10.7    |       |
| 10              |       | 10.0    |       |
| 11              |       | 10.0    |       |
| 12              |       | 10.2    |       |
| 13              |       | 10.6    |       |
| 14              |       | 10.8    |       |
| Average         | 6.5   | 9.6     | 7.4   |
| COV             | 20.0  | 13.5    | 16.3  |
| Sample Variance | 1.7   | 1.7     | 1.4   |

Joint Type Control \*cores taken at different locations from perme blank cells indicate no data available (no core,

|               | ITS (kPa) |        |        |
|---------------|-----------|--------|--------|
| Core          | Mat 1     | Center | Mat 2  |
| 1             | 368.7     | 240.2  | 381.1  |
| 2             | 331.4     | 152.7  | 287.9  |
| 3             |           | 160.0  | 356.7  |
| 4             | 382.8     | 177.5  | 269.9  |
| 5             | 301.8     | 229.3  | 317.7  |
| 6             | 313.4     |        | 256.7  |
| 7             | 350.1     |        | 324.6  |
| 8             |           |        | 353.6  |
| 9             |           | 202.8  |        |
| 10            |           | 211.7  |        |
| 11            |           | 208.4  |        |
| 12            |           | 174.9  |        |
| 13            |           | 189.2  |        |
| 14            |           | 124.0  |        |
| Average       | 341.4     | 188.2  | 318.5  |
| COV           | 9.3       | 18.4   | 13.9   |
| Sample Variar | 997.9     | 1203.4 | 1965.9 |

|    |             | Air (%) |        |       |
|----|-------------|---------|--------|-------|
|    | Core        | Mat 1   | Center | Mat 2 |
|    | 1           |         | 10.4   | 5.2   |
|    | 2           | 7.0     | 12.6   | 8.5   |
|    | 3           | 7.9     | 12.7   | 6.2   |
|    | 4           |         | 12.8   | 8.8   |
|    | 5           | 6.1     | 10.7   | 7.0   |
|    | 6           | 8.4     | 11.3   | 9.1   |
|    | 7           | 8.4     | 13.2   | 7.3   |
|    | 8           | 7.1     | 12.0   | 7.3   |
|    | 9           |         | 12.5   |       |
|    | 10          |         | 12.2   |       |
|    | 11          |         | 11.1   |       |
|    | 12          |         | 12.0   |       |
|    | 13          |         | 12.4   |       |
|    | 14          |         | 13.7   |       |
|    | Average     | 7.5     | 12.1   | 7.4   |
|    | COV         | 12.1    | 7.8    | 18.2  |
| Sa | mple Variar | 0.8     | 0.9    | 1.8   |

| Project:   | ME I95 NB         |
|------------|-------------------|
| Joint Type | emulsified sealer |

|             | ITS (kPa) |        |        |
|-------------|-----------|--------|--------|
| Station     | Mat 1     | Center | Mat 2  |
| 197+819     | 609.9     | 588.0  | 685.3  |
| 197+856     | 534.8     | 590.6  | 546.1  |
| 197+894     | 579.7     | 651.5  | ~      |
| Average     | 574.8     | 610.0  | 615.7  |
| COV         | 6.6       | 5.9    | 16.0   |
| mple Variar | 1429.5    | 1291.7 | 9700.9 |

| Project:  | ME I95 NB     |
|-----------|---------------|
| Joint Typ | e koch sealer |

|              | ITS (kPa) |        |        |
|--------------|-----------|--------|--------|
| Station      | Mat 1     | Center | Mat 2  |
| 199+570      | 654.4     | 503.0  | 688.1  |
| 199+596      | 531.6     | 336.8  | 603.3  |
| 199+618      | ~         | 493.2  | 686.5  |
| Average      | 593.0     | 444.3  | 659.3  |
| COV          | 14.6      | 21.0   | 7.4    |
| Sample Varia | r 7538.7  | 8700.8 | 2353.6 |

Project:ME I95 NBJoint Typerubberized joint seale

|    |             | ITS (kPa) |        |        |
|----|-------------|-----------|--------|--------|
|    | Station     | Mat 1     | Center | Mat 2  |
|    | 197+014     | 551.4     | 426.7  | 510.5  |
|    | 197+047     | 692.4     | 575.2  | 624.4  |
|    | 197+069     | 463.7     | 492.0  | 616.9  |
|    | Average     | 569.1     | 498.0  | 583.9  |
|    | COV         | 20.3      | 14.9   | 10.9   |
| Sa | mple Variar | 13311.1   | 5539.3 | 4062.5 |

|             |       | Air (%) |       |
|-------------|-------|---------|-------|
| Station     | Mat 1 | Center  | Mat 2 |
| 197+819     | 6.4   | 7.2     | 5.9   |
| 197+856     | 6.5   | 7.3     | 7.3   |
| 197+894     | 6.9   | 7.2     | ~     |
| Average     | 6.6   | 7.2     | 6.6   |
| COV         | 4.5   | 1.0     | 15.0  |
| mple Variar | 0.1   | 0.0     | 1.0   |

| _   |             |       | Air (%) |       |
|-----|-------------|-------|---------|-------|
|     | Station     | Mat 1 | Center  | Mat 2 |
| 1   | 199+570     | 4.4   | 7.1     | 5.6   |
| 1   | 199+596     | 6.3   | 8.2     | 5.8   |
| 1   | 199+618     | 6.9   | 8.1     | 4.7   |
|     | Average     | 5.9   | 7.8     | 5.4   |
|     | COV         | 22.7  | 7.5     | 11.6  |
| San | nple Variar | 1.8   | 0.3     | 0.4   |

|    |             |       | Air (%) |       |
|----|-------------|-------|---------|-------|
|    | Station     | Mat 1 | Center  | Mat 2 |
|    | 197+014     | 5.6   | 7.9     | 6.0   |
|    | 197+047     | 6.5   | 8.2     | 7.3   |
|    | 197+069     | 7.2   | 8.4     | 6.4   |
|    | Average     | 6.4   | 8.2     | 6.6   |
|    | COV         | 12.6  | 3.1     | 10.7  |
| Sa | mple Variar | 0.7   | 0.1     | 0.5   |

| Project:   | CT RT 17 '04 Glastonbury |
|------------|--------------------------|
| Joint Type | e                        |

|             | ITS (kPa) |        |        |
|-------------|-----------|--------|--------|
| Station     | Mat 1     | Center | Mat 2  |
| 1946        | 447.3     | 264.9  | 461.0  |
| 1945        | 470.3     | 276.3  | 539.6  |
| 1944        | 550.5     | 372.1  | 585.8  |
| 1943        | 554.0     | 426.9  | 650.5  |
| 1942        | 469.3     | 255.1  | 490.0  |
| Average     | 498.3     | 319.1  | 545.4  |
| COV         | 10.1      | 23.9   | 13.9   |
| mple Variar | 2512.6    | 5823.0 | 5726.9 |

| Project:   | CT RT44 '04 Pomfret |
|------------|---------------------|
| Joint Type |                     |

|    |             | ITS (kPa) |        |        |
|----|-------------|-----------|--------|--------|
|    | Station     | Mat 1     | Center | Mat 2  |
|    | 1298        | 235.5     | 70.2   | 271.0  |
|    | 1297        | 353.9     | 109.1  | 362.1  |
|    | 1296        | 446.0     | 260.1  | 372.8  |
|    | 1295        | 388.8     | 186.3  | 324.9  |
|    | 1294        | 356.2     | 195.1  | 263.7  |
|    | Average     | 356.1     | 164.2  | 318.9  |
|    | COV         | 21.6      | 45.7   | 15.8   |
| Sa | mple Variar | 5924.8    | 5627.9 | 2537.9 |

Project: CT Rt 17 '04 (Middelton)
Joint Type

|    |             | ITS (kPa) |         |        |
|----|-------------|-----------|---------|--------|
|    | Station     | Mat 1     | Center  | Mat 2  |
|    | 1244        | 645.1     | 573.1   | 537.0  |
|    | 1245        | 640.5     | 492.0   | 763.5  |
|    | 7009        | 767.6     | 630.9   | 594.8  |
|    | 1246        | 709.5     | 594.9   | 740.1  |
|    | 9666        | 813.4     | 822.9   | 719.1  |
|    | Average     | 715.2     | 622.8   | 670.9  |
|    | COV         | 10.6      | 19.7    | 14.8   |
| Sa | mple Variar | 5726.0    | 15112.2 | 9857.8 |

|             | Air (%) |        |       |
|-------------|---------|--------|-------|
| Station     | Mat 1   | Center | Mat 2 |
| 1946        | 7.1     | 13.3   | 9.9   |
| 1945        | 6.7     | 14.1   | 9.4   |
| 1944        | 4.9     | 12.5   | 7.8   |
| 1943        | 5.8     | 10.9   | 8.4   |
| 1942        | 7.1     | 14.1   | 11.6  |
| Average     | 6.3     | 13.0   | 9.4   |
| COV         | 15.0    | 10.3   | 15.5  |
| mple Variar | 0.9     | 1.8    | 2.1   |

|    |             |       | Air (%) |       |
|----|-------------|-------|---------|-------|
|    | Station     | Mat 1 | Center  | Mat 2 |
|    | 1298        | 10.4  | 15.0    | 9.4   |
|    | 1297        | 7.7   | 12.8    | 8.4   |
|    | 1296        | 7.0   | 10.6    | 8.5   |
|    | 1295        | 7.6   | 11.7    | 8.4   |
|    | 1294        | 8.0   | 10.7    | 8.7   |
|    | Average     | 8.2   | 12.1    | 8.7   |
|    | COV         | 16.0  | 15.1    | 4.8   |
| Sa | mple Variar | 1.7   | 3.3     | 0.2   |

|    |             |       | Air (%) |       |
|----|-------------|-------|---------|-------|
|    | Station     | Mat 1 | Center  | Mat 2 |
|    | 1244        | 6.5   | 7.0     | 8.3   |
|    | 1245        | 7.3   | 6.2     | 5.1   |
|    | 7009        | 5.2   | 5.7     | 6.5   |
|    | 1246        | 6.0   | 5.7     | 5.9   |
|    | 9666        | 4.2   | 3.5     | 4.2   |
|    | Average     | 5.8   | 5.6     | 6.0   |
|    | COV         | 20.1  | 23.3    | 25.8  |
| Sa | mple Variar | 1.4   | 1.7     | 2.4   |

| Project:   | CT Rt 17 '05 (Middelton) |
|------------|--------------------------|
| Joint Type | e                        |

|             |         | ITS (kPa) |         |
|-------------|---------|-----------|---------|
| Station     | Mat 1   | Center    | Mat 2   |
| 1244        |         | 980.8     | 585.2   |
| 1245        | 688.0   | 920.7     | 917.3   |
| 7009        | 1036.8  | 794.0     | 1008.1  |
| 1246        | 850.4   | 962.1     | 972.3   |
| 9666        | 1026.3  | 694.8     | 1033.6  |
| Average     | 900.4   | 870.5     | 903.3   |
| COV         | 18.4    | 14.0      | 20.3    |
| mple Variar | 27358.5 | 14944.7   | 33532.8 |

| Project:   | CT RT44 '05 Pomfret |
|------------|---------------------|
| Joint Type |                     |

|    |             |        | ITS (kPa) |          |
|----|-------------|--------|-----------|----------|
|    | Station     | Mat 1  | Center    | Mat 2    |
|    | 1298        | 517.3  | 256.6     |          |
|    | 1297        | 715.4  | 360.4     | 1609.0   |
|    | 1296        | 630.8  | 280.7     | 564.0    |
|    | 1295        | 613.4  | 537.9     | 774.1    |
|    | 1294        | 626.3  | 409.2     | 614.4    |
|    | Average     | 620.7  | 369.0     | 890.4    |
|    | COV         | 11.4   | 30.5      | 54.7     |
| Sa | mple Variar | 4962.4 | 12667.6   | 237522.3 |

|             |         | Air (%) |         |
|-------------|---------|---------|---------|
| Station     | Mat 1   | Center  | Mat 2   |
| 1244        |         |         |         |
| 1245        |         |         |         |
| 7009        |         |         |         |
| 1246        |         |         |         |
| 9666        |         |         |         |
| Average     | #DIV/0! | #DIV/0! | #DIV/0! |
| COV         | #DIV/0! | #DIV/0! | #DIV/0! |
| mple Variar | #DIV/0! | #DIV/0! | #DIV/0! |

|    |             |       | Air (%) |       |
|----|-------------|-------|---------|-------|
|    | Station     | Mat 1 | Center  | Mat 2 |
|    | 1298        | 5.5   |         | 5.0   |
|    | 1297        | 5.8   | 7.4     | 7.7   |
|    | 1296        | 7.0   | 7.4     | 6.1   |
|    | 1295        | 7.4   | 4.7     | 3.3   |
|    | 1294        | 7.2   | 5.6     | 2.7   |
|    | Average     | 6.6   | 6.3     | 5.0   |
|    | COV         | 13.1  | 21.3    | 41.0  |
| Sa | mple Variar | 0.7   | 1.8     | 4.1   |

Project: CT RT 17 '05 Glastonbury
Joint Type

|    |             |         | ITS (kPa) |         |
|----|-------------|---------|-----------|---------|
|    | Station     | Mat 1   | Center    | Mat 2   |
|    | 1946        | 1035.2  | 570.7     | 1213.7  |
|    | 1945        | 929.4   |           | 965.6   |
|    | 1944        | 938.5   | 853.4     | 929.6   |
|    | 1943        | 889.0   | 804.5     | 912.3   |
|    | 1942        | 1261.0  | 845.6     |         |
|    | Average     | 1010.6  | 768.6     | 1005.3  |
|    | COV         | 14.8    | 17.4      | 14.0    |
| Sa | mple Variar | 22472.9 | 17864.4   | 19792.0 |

|               |         |         | Air (%) |         |
|---------------|---------|---------|---------|---------|
|               | Station | Mat 1   | Center  | Mat 2   |
|               | 1946    |         |         |         |
|               | 1945    |         |         |         |
|               | 1944    |         |         |         |
|               | 1943    |         |         |         |
|               | 1942    |         |         |         |
|               | Average | #DIV/0! | #DIV/0! | #DIV/0! |
|               | COV     | #DIV/0! | #DIV/0! | #DIV/0! |
| Sample Variar |         | #DIV/0! | #DIV/0! | #DIV/0! |

| Project:   | VT I91 NB |
|------------|-----------|
| Joint Type |           |

| Project:  | Mass N95 Saugus |
|-----------|-----------------|
| Joint Typ | e               |

|             | Air (%) |        |
|-------------|---------|--------|
| Core        | Mat 1   | Center |
| 1           | 4.4     | 6.5    |
| 2           | 6.79    | 2.4    |
| 3           | 5.73    | 7.9    |
| 4           | 7.13    | 7.1    |
| 5           | 5.61    |        |
| 6           | 5.1     |        |
| Average     | 5.8     | 6.0    |
| COV         | 17.7    | 41.1   |
| nple Variar | 1.0     | 6.0    |

|    |             | ITS (kPa) |        |        |
|----|-------------|-----------|--------|--------|
|    | Station     | Mat 1     | Center | Mat 2  |
|    | 345         | 356.8     | 239.8  | 289.7  |
|    | 678         | 357.2     | 300.4  | 288.8  |
|    | 101112      | 352.0     | 262.7  | 344.8  |
|    | Average     | 355.3     | 267.6  | 307.8  |
|    | COV         | 0.8       | 11.4   | 10.4   |
| Sa | mple Variar | 8.3       | 936.4  | 1030.0 |

|    |             | Air (%) |        |       |
|----|-------------|---------|--------|-------|
|    | Station     | Mat 1   | Center | Mat 2 |
|    | 345         | 3.6     | 8.8    | 6.8   |
|    | 678         | 3.4     | 6.3    | 6.0   |
|    | 101112      | 1.7     | 7.3    | 4.5   |
|    | Average     | 2.9     | 7.5    | 5.8   |
|    | COV         | 35.1    | 17.1   | 20.3  |
| Sa | mple Variar | 1.1     | 1.6    | 1.4   |

Project: ME Rt 5
Joint Type

| [           | ITS (kPa) |         |         |
|-------------|-----------|---------|---------|
| Station     | Mat 1     | Center  | Mat 2   |
| A           | 266.3     | 222.8   | 349.9   |
| В           |           |         |         |
| С           | 314.5     |         |         |
| Average     | 290.4     | 222.8   | 349.9   |
| COV         | 11.7      | #DIV/0! | #DIV/0! |
| mple Variar | 1160.4    | #DIV/0! | #DIV/0! |

|             | Air (%) |         |         |
|-------------|---------|---------|---------|
| Station     | Mat 1   | Center  | Mat 2   |
| A           | 7.7     | 16.8    | 4.6     |
| В           |         |         |         |
| С           | 7.4     |         |         |
| Average     | 7.6     | 16.8    | 4.6     |
| COV         | 2.7     | #DIV/0! | #DIV/0! |
| mple Variar | 0.0     | #DIV/0! | #DIV/0! |