Superpave Implementation

James Mahoney and Jack E. Stephens

Prepared for The New England Transportation Consortium

September 1999

NETCR 18

Project No. 96-1

Prepared by
University of Connecticut
Connecticut Transportation Institute
Connecticut Advanced Pavement Laboratory

This report was sponsored by the New England Transportation Consortium, a cooperative effort of the Department of Transportation and the Land Grant Universities of the six New England States, and the US Department of Transportation's Federal Highway Administration.

The contents of this report reflect the views of the authors who are responsible for the facts and accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of the Departments of Transportation and the Land Grant States, or the US Department of Transportation's Federal Highway Administration. This report does not constitute a standard, specification or regulation.

医海绵的 电压热阻 网络拉拉马克马克

大型的**企**员,这一种大型。

Technical Report Documentation Page

		Documentation rage
1. Report No. NETCR 18	2. Government Accession No. N/A	3. Recepient's Catalog No. N/A
4. Title and Sublitle		September 1999
SUPERPAVE Implementation		6. Performing Organization Code N/A
7, Author(s)		8. Performing Organization Report No.
James Mahoney, Jack Stephens		CAP Lab 99-2
9. Performing Organization Name and Address University of Connecticut Connecticut Advanced Pavement Lab Connecticut Transportation Institute Storrs, CT 06269-3037		10 Work Unit No. (TRAIS) N/A
0.01.0, 0.1. 00200 0001		11. Contract or Grant No. N/A
		13. Type of Report and Period Covered
12. Sponsoring Agency Name and Address New England Transportation Consortiu 179 Middle Turnpike University of Connecticut, U-202 Storrs, CT 06269-5202	m	Final
310115, 01 00209-3202		14. Sponsoring Agency Code NETC 96-1 A study conducted in cooperation with the U.S. DOT
15 Supplementary Notes . N/A		
16. Abstract	* _	
The conversion from viscosity gradical asphalt binders (PGAB) has required the test results from the PGAB should result in disputes between PG looked at possible causes for the temproject also conducted Asphalt Bind the project as well as to learn where the Technicians conducting these to	ed a major change in the testing wed large variations between BAB suppliers and State Highest result variations as well as der Technician Workshops to potential problems may exige	ing equipment and protocols. In laboratories. These variations Inway Agencies. This study Is possible remedies. The Is convey the interim findings of
17. Key Words Binder, Performance Graded		nent is available to the public
Asphalt Binder, Superpave Binder, PGAB	through the National Techr Springfield, VA 22161	· .
19. Security Classif. (of this report) Unclassified	20. Security Classif. (of this page) Unclassified Penyodyption of completed page	21. No. of Pages 21. Price N/A

Form DOT F 1700.7 (8-72)

Reproduction of completed page authorized

Acknowledgements

The authors would like to acknowledge the State Highway Agencies for the complete cooperation throughout this project. The authors would especially like to thank all the people who participated in this project. Without their complete cooperation and willingness to share their experiences this project would never have been possible.

Table of Contents

Technical Report Documentation	11
Acknowledgements	iii
Table of Contents	iv
List of Tables	V
Chapter 1 Introduction	1 -
Chapter 2 Round Robin 98 Performed in Conjunction With NECEPT	3
Chapter 3 Pre-molded DSR Samples	4
Chapter 4 Round Robin 99	7
Chapter 5 Lab Visits – Observations	8
Chapter 6 NETC Binder Technician Workshops	10
Chapter 7 Lab Visits - Equipment Comparisons	11
Chapter 8 Database of Binder Test Results	15
Chapter 9 Summary of Results	16
Chapter 10 Recommendations	19
References	26
Appendix I – Original Proposal	
Appendix II – Round Robin 98 Report	
Appendix III – Pre-molded DSR Samples Information	
Appendix IV - Round Robin 99 Report	
Appendix V – Lab Visits – Observations	
Appendix VI – NETC Binder Technician Workshop Presentations	
Appendix VII – Lab Visits – Equipment Comparisons Test Data	

List of Tables

Table 1 – Results from the Premolded DSR Samples	5
Table 2 – Comparison of Round Robin %1S and %1S Values for Lab Visits	. · · · · · · · · · · · · · · · · · · ·
Table 3 – Average %1S for all Samples Sent Out	17
Table 4 – AASHTO Protocols Referenced in NETC 96-1 Recommendations	

CHAPTER 1 Introduction

The Asphalt industry has undergone dramatic changes over the past several years due to the introduction and implementation of the Superpave system. This new technology has changed both the way an asphalt binder is graded and the way Hot Mix Asphalt is designed. The change from asphalt binder classification by a single viscosity test to performance grading created a number of challenges for the State Highway Agencies (SHAs). Adjustments were needed in material acceptance procedures if the new specifications were to be accommodated. The asphalt binder testing technicians had very limited experience with the test equipment for the determination of the binder properties used in the new performance grading. The early test results showed a large variation in test results between asphalt binder testing laboratories. This variation could cause substantial difficulties between asphalt suppliers and SHAs.

This project was initiated to improve the Performance Graded Asphalt Binder (PGAB) testing which would in turn reduce the between laboratory variation. This study did not address issues relating to the Superpave Mixture but focused only on PGAB issues.

The scope of this study included the following tasks, all pointed toward the goal of improving the reproducibility of the binder test results:

- Development of a round robin testing program to identify the level of variability occurring during testing.
- Observation by the CAP Lab of the actual testing techniques being employed by the SHA technicians.
- Dissemination of information on the techniques observed along with

recommended practices to the technicians through workshops where both SHA technicians as well as private industry technicians could gather to learn about changes to the testing specifications, discuss issues they felt were important and to exchange techniques and ideas between the workshop participants.

- Convey information learned during this project through the use of the CAP Lab website (www.caplab.uconn.edu).
- Distribute copies of the reports of each activity to all of the participants of the Round Robins as well as the workshops.
- Providing telephone support for the SHA technicians.

The original research proposal is attached as Appendix 1. The following chapters summarize the activities undertaken by the CAP Lab for this project

CHAPTER 2 Round Robin 98 performed in conjunction with NECEPT

Working with the Northeast Center of Excellence for Pavement Technology (NECEPT) provided several benefits to this project. Interaction with the technical personnel at Penn State who developed Performance Grading and were now part of NECEPT would lead to early awareness of equipment and protocol changes. A second benefit was the increase in the size of the pool of participating laboratories. The SHA laboratories of New York, New Jersey, Pennsylvania, Maryland, Delaware and the supplier laboratories of the area joined the New England SHAs forming a pool of 20 labs. The major revelation of the 98 Round Robin was the significant variation in test results between the various labs. A detailed statistical analysis was carried out by NECEPT to estimate the variation of coefficients for the components of variance. See the attached draft report for a detailed presentation and conclusions for the 98 Round Robin (Appendix II).

CHAPTER 3 Pre-molded DSR Samples

Premolding the DSR samples was intended to remove the effects of differences in handling times and temperatures from the test conditions. Unfortunately, there was no way to ensure that the molds would remain in a horizontal position and because of this some of the samples slumped badly and required some re-handling. The two samples were the same asphalt binder. The raw overall G* average was 1.401 with a Standard Deviation (St Dev) of 0.121 and the raw average phase angle was 86.6 with a St Dev of 0.9. G* for the second test at lab 105 and both deltas for lab 122 are more than two Standard Deviations from the averages and should be deleted from the computations as outliers. The adjusted G* is then 1.420 with a St Dev of 0.085 and the average phase angle 86.9 with St Dev of 0.30.

Late sample delivery forced some labs to test a day late. The mid portion of Table 1 shows the effect of separating the results into two sets of data with the wild ones referred to above still deleted. One day seems insignificant in the life of a binder but as the samples were poured 7/27/98 it did add 50% to the time since major heating which would have destroyed any steric hardening which may have occurred. Statistical computations must be looked at cautiously as the number of data points with similar conditions is small. The G* of the late group was 0.096 or 6.9 % greater than that of the on-time group with little change in St Dev. At that rate, a two day delay would have given results more than two St Dev greater than the on-time group. The timing did not affect the average phase angle but did increase its variability.

Table 1 - Results from the Premolded DSR Samples

Phase Angle Std Dev 7-29-98 Possible Equipment Variations Note: Lab 105 G*#2 not used in the following calculations G* Average ATS DSR G* Std Dev ATS DSR 0.3 Phase Angle Std Dev 7-30-98 0.5 Phase Angle Angle Std Dev 7-30-98 0.5	I		esuits from			····	, ,			
101		Lab#	· 1	Delta #1	, .	Delta #2		1		
103					<u> </u>					
105		101	1.263	86.87		1				
107		103	1.502	86.64	1.58	86.7				
108		105	1.372	86.91	1.016	87.46		2		
109		107	1.413	87.6	1.414	87.29	<u> </u>			
110		108	1.472	86.79	1.423	86.78				
113		109	1.361	87.29	1.415	87.08	1	into Equation		
121		110	1.363	86.61	1.424	86.56	}			
122		113	1.414	87.16	1.389	87.2				
123		121	1.448	86.55	1.402	86.68				
123		122	1.504	83.6	1.466	84.6				
Overall G* Average 1.401 G* Average without 105 #2 1.420 Overall G* Std Dev 0.121 G* Std Dev without 105 #2 0.085 Overall Phase Angle Average 86.6 Phase Angle Average without 122 86.9 Overall Phase Angle Std Dev 0.9 Phase Angle Std Dev without 122 0.3 Variations in Day of Testing G* Avg Test Performed 7-29-98 1.396 G* Avg Test Performed 7-30-98 1.492 G* Std D Test Performed 7-29-98 0.075 G* Std D Test Performed 7-30-98 0.077 Note: Lab 122 Phase Angles not included in calculations Phase Angle Avg 7-29-98 86.9 Phase Angle Avg 7-30-98 86.9 Phase Angle Std Dev 7-29-98 0.3 Phase Angle Std Dev 7-30-98 0.5 Possible Equipment Variations Note: Lab 105 G*#2 not used in the following calculations G* Average ATS DSR 1.405 G* Average Other DSR Makers 1.438 G* Std Dev ATS DSR 0.032 G* Std Dev Other DSR Makers 0.123 Phase Angle Average ATS DSR 87.1 Phase Angle Avg Other DSR 86.1			l	86.28			1			
Overall G* Std Dev 0.121 G* Std Dev without 105 #2 0.085 Overall Phase Angle Average 86.6 Phase Angle Average without 122 86.9 Overall Phase Angle Std Dev 0.9 Phase Angle Std Dev without 122 0.3 Variations in Day of Testing G* Avg Test Performed 7-29-98 1.396 G* Avg Test Performed 7-30-98 1.492 G* Std D Test Performed 7-29-98 0.075 G* Std D Test Performed 7-30-98 0.077 Note: Lab 122 Phase Angles not included in calculations Phase Angle Avg 7-29-98 86.9 Phase Angle Avg 7-30-98 86.9 Phase Angle Std Dev 7-29-98 0.3 Phase Angle Std Dev 7-30-98 0.5 Possible Equipment Variations Note: Lab 105 G*#2 not used in the following calculations G* Average ATS DSR 1.405 G* Average Other DSR Makers 1.438 G* Std Dev ATS DSR 0.032 Phase Angle Avg Other DSR 86.1 Phase Angle Avg Other DSRs 86.1	<u> </u>	-								
Overall G* Std Dev 0.121 G* Std Dev without 105 #2 0.085 Overall Phase Angle Average 86.6 Phase Angle Average without 122 86.9 Overall Phase Angle Std Dev 0.9 Phase Angle Std Dev without 122 0.3 Variations in Day of Testing G* Avg Test Performed 7-29-98 1.396 G* Avg Test Performed 7-30-98 1.492 G* Std D Test Performed 7-29-98 0.075 G* Std D Test Performed 7-30-98 0.077 Note: Lab 122 Phase Angles not included in calculations Phase Angle Avg 7-29-98 86.9 Phase Angle Avg 7-30-98 86.9 Phase Angle Std Dev 7-29-98 0.3 Phase Angle Std Dev 7-30-98 0.5 Possible Equipment Variations Note: Lab 105 G*#2 not used in the following calculations G* Average ATS DSR 1.405 G* Average Other DSR Makers 1.438 G* Std Dev ATS DSR 0.032 Phase Angle Avg Other DSR 86.1 Phase Angle Avg Other DSR 86.1	Overall G* Average	*******	1.401]	G* Average	without 105	i #2	1.420		
Overall Phase Angle Average 86.6 Overall Phase Angle Std Dev 0.9 Variations in Day of Testing G* Avg Test Performed 7-29-98 1.396 G* Std D Test Performed 7-29-98 0.075 Note: Lab 122 Phase Angles not included in calculations Phase Angle Avg 7-29-98 0.3 Phase Angle Std Dev 7-29-98 0.3 Phase Angle Std Dev 7-30-98 86.9 Phase Angle Std Dev 7-29-98 0.3 Possible Equipment Variations Note: Lab 105 G*#2 not used in the following calculations G* Average ATS DSR 1.405 G* Std Dev ATS DSR 0.032 Phase Angle Avg Other DSR Makers 0.123 Phase Angle Avg Other DSR 86.1								0.085		
Variations in Day of Testing G* Avg Test Performed 7-29-98 1.396 G* Avg Test Performed 7-30-98 1.492 G* Std D Test Performed 7-29-98 0.075 G* Std D Test Performed 7-30-98 0.077 Note: Lab 122 Phase Angles not included in calculations Phase Angle Avg 7-29-98 86.9 Phase Angle Avg 7-30-98 86.9 Phase Angle Std Dev 7-29-98 0.3 Phase Angle Std Dev 7-30-98 0.5 Possible Equipment Variations Note: Lab 105 G*#2 not used in the following calculations G* Average ATS DSR 1.405 G* Average Other DSR Makers 1.438 G* Std Dev ATS DSR 0.032 G* Std Dev Other DSR Makers 0.123 Phase Angle Avg Other DSRs 86.1 Phase Angle Avg Other DSRs 86.1				1				,		
Variations in Day of Testing Ca* Avg Test Performed 7-29-98 1.396 G* Avg Test Performed 7-30-98 1.492 G* Std D Test Performed 7-29-98 0.075 G* Std D Test Performed 7-30-98 0.077 Note: Lab 122 Phase Angles not included in calculations Phase Angle Avg 7-29-98 86.9 Phase Angle Avg 7-30-98 86.9 Phase Angle Std Dev 7-29-98 0.3 Phase Angle Std Dev 7-30-98 0.5 Possible Equipment Variations Note: Lab 105 G*#2 not used in the following calculations G* Average ATS DSR 1.405 G* Average Other DSR Makers 1.438 G* Std Dev ATS DSR 0.032 Phase Angle Avg Other DSR Makers 0.123 Phase Angle Average ATS DSR 87.1 Phase Angle Avg Other DSRs 86.1	Overall Phase Angle Av	erage	86.6]	Phase Ang	le Average v	vithout 122	86.9		
Variations in Day of Testing G* Avg Test Performed 7-29-98 1.396 G* Avg Test Performed 7-30-98 1.492 G* Std D Test Performed 7-29-98 0.075 G* Std D Test Performed 7-30-98 0.077 Note: Lab 122 Phase Angles not included in calculations Phase Angle Avg 7-29-98 86.9 Phase Angle Avg 7-30-98 86.9 Phase Angle Std Dev 7-29-98 0.3 Phase Angle Std Dev 7-30-98 0.5 Possible Equipment Variations Note: Lab 105 G*#2 not used in the following calculations G* Average ATS DSR 1.405 G* Average Other DSR Makers 1.438 G* Std Dev ATS DSR 0.032 G* Std Dev Other DSR Makers 0.123 Phase Angle Average ATS DSR 87.1 Phase Angle Avg Other DSRs 86.1	_	_		t	Phase Angle Std Dev without 122					
G* Avg Test Performed 7-29-98 1.396 G* Std D Test Performed 7-29-98 0.075 Note: Lab 122 Phase Angles not included in calculations Phase Angle Avg 7-29-98 86.9 Phase Angle Std Dev 7-29-98 0.3 Possible Equipment Variations Note: Lab 105 G*#2 not used in the following calculations G* Average ATS DSR 1.405 G* Std Dev Other DSR Makers 0.123 Phase Angle Avg Other DSR 86.1 Phase Angle Avg Other DSR 86.1							· · · · · · · · · · · · · · · · · · ·			
G* Std D Test Performed 7-29-98 0.075 Note: Lab 122 Phase Angles not included in calculations Phase Angle Avg 7-29-98 86.9 Phase Angle Std Dev 7-29-98 0.3 Possible Equipment Variations Note: Lab 105 G*#2 not used in the following calculations G* Average ATS DSR 1.405 G* Std Dev ATS DSR 0.032 Phase Angle Avg Other DSR Makers 0.123 Phase Angle Avg Other DSR Makers 0.123			Variatio	ns in Day o	f Testing	-				
Note: Lab 122 Phase Angles not included in calculations Phase Angle Avg 7-29-98 86.9 Phase Angle Avg 7-30-98 86.9 Phase Angle Std Dev 7-29-98 0.3 Phase Angle Std Dev 7-30-98 0.5	G* Avg Test Performed	7-29-98	1.396	1	G* Avg Te	st Performed	7-30-98	1.492		
Note: Lab 122 Phase Angles not included in calculations Phase Angle Avg 7-29-98 86.9 Phase Angle Std Dev 7-29-98 0.3 Possible Equipment Variations Note: Lab 105 G*#2 not used in the following calculations G* Average ATS DSR 1.405 G* Std Dev ATS DSR 0.032 Phase Angle Avg Other DSR Makers 0.123 Phase Angle Avg Other DSRs 86.1	. •			1				0.077		
Phase Angle Avg 7-29-98 86.9 Phase Angle Std Dev 7-29-98 0.3 Possible Equipment Variations Note: Lab 105 G*#2 not used in the following calculations G* Average ATS DSR 1.405 G* Std Dev ATS DSR 0.032 Phase Angle Avg 7-30-98 86.9 Phase Angle Std Dev 7-30-98 0.5 G* Average Other DSR Makers 1.438 G* Std Dev Other DSR Makers 0.123 Phase Angle Avg Other DSRs 86.1				1						
Phase Angle Avg 7-29-98 86.9 Phase Angle Std Dev 7-29-98 0.3 Possible Equipment Variations Note: Lab 105 G*#2 not used in the following calculations G* Average ATS DSR 1.405 G* Std Dev ATS DSR 0.032 Phase Angle Avg 7-30-98 86.9 Phase Angle Std Dev 7-30-98 0.5 G* Average Other DSR Makers 1.438 G* Std Dev Other DSR Makers 0.123 Phase Angle Avg Other DSRs 86.1		Note: Lab	122 Phase <i>F</i>	angles not	included in	calculations	5	•		
Phase Angle Std Dev 7-29-98 Possible Equipment Variations Note: Lab 105 G*#2 not used in the following calculations G* Average ATS DSR G* Std Dev ATS DSR 0.032 Phase Angle Average ATS DSR Phase Angle Average ATS DSR 87.1 Phase Angle Average ATS DSR 87.1 Phase Angle Average ATS DSR 86.1				_				86.9		
Possible Equipment Variations Note: Lab 105 G*#2 not used in the following calculations G* Average ATS DSR 1.405 G* Std Dev ATS DSR 0.032 Phase Angle Average ATS DSR 87.1 Phase Angle Average ATS DSR 87.1 Phase Angle Average ATS DSR 86.1	, ,		0.3		Phase Ang	le Std Dev 7	'-30-98	0.5		
Note: Lab 105 G*#2 not used in the following calculations G* Average ATS DSR 1.405 G* Std Dev ATS DSR 0.032 Phase Angle Average ATS DSR 87.1 Phase Angle Average ATS DSR 87.1 Phase Angle Average ATS DSR 87.1				_	h-12.00					
G* Average ATS DSR 1.405 G* Std Dev ATS DSR 0.032 Phase Angle Average ATS DSR 87.1 G* Average Other DSR Makers 0.123 G* Std Dev Other DSR Makers 0.123			Possible	Equipment	: Variations					
G* Average ATS DSR 1.405 G* Std Dev ATS DSR 0.032 Phase Angle Average ATS DSR 87.1 G* Average Other DSR Makers 0.123 G* Std Dev Other DSR Makers 0.123		Note: Lab	105 G*#2 no	t used in th	ne following	calculation	ıs			
G* Std Dev ATS DSR 0.032 G* Std Dev Other DSR Makers 0.123 Phase Angle Average ATS DSR 87.1 Phase Angle Avg Other DSRs 86.1								1.438		
Phase Angle Average ATS DSR 87.1 Phase Angle Avg Other DSRs 86.1		F	-	0.123						
Thase Aligie Average Att a Bott										
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Phase Angle Average A	TS DSR	87.1	ī	Phase Ang	le Avg Othe	r DSRs	86.1		
	_			1	,			1.2		

The state labs and CAP Lab used ATS Rheologica DSRs while the other labs used DSRs from different manufacturers. The bottom portion of the Table 1 looks at the effect of instrument. Due to the small number of non ATS instruments used, no evaluation of

brands has been attempted. The average G* for the non-ATS group was slightly above that of the ATS group and the phase angle slightly below. The major difference was in the magnitude of the standard deviations, which was approximately four times as great. This implies that there was a difference between the units. Due to the small number of tests no conclusions can be made as to whether the difference was between or within a brand. Incidentally the instrument used by the lab whose Deltas were deleted was not an ATS and if retained would not increase the St Dev of that group.

Summary: The results for the ATS group had the least St Dev. Delays after pouring and prior to placing in the test instrument appears to increase G* and the St Dev. This would also imply that the higher the temperatures during handling the greater G*. The smaller standard deviations obtained by ATS DSRs may be attributable to the frequent maintenance and calibration the machines are receiving from the manufacturer. Additional details of the Pre-Molded Round Robin are attached as Appendix III.

CHAPTER 4 Round Robin 99

After the Pre-Molded results were reviewed and distributed to all participants, it was decided that a Round Robin in which explicit instructions regarding sample handling during specimen preparation and testing should be conducted. The report of this effort known as Round Robin 99 is in Appendix IV. During all of the Round Robins, the CAP Lab monitored the test results and was able to notify several labs of problems they were unaware of having with their equipment.

The reduction in the variation between laboratories indicates the need for tighter test protocol specifications and adherence to these specifications regarding sample handling and specimen preparation. The current test protocols do not adequately address the issue of sample handling. For example, the test protocols currently state that the samples should be heated until the material has the consistency of SAE 10W30 motor oil. Unfortunately, this leaves a lot of room for interpretation regarding heating temperatures and length of time to heat samples, thus the samples have a vast difference in thermal histories. This difference in thermal histories will cause variations in the test results.

The sample handling and testing procedure utilized for this round robin may not be appropriate for routine testing. The handling procedures were developed to achieve the greatest uniformity of sample handling. The sample handling instructions are located in Appendix IV. Standardized heating temperatures and times need to be developed.

CHAPTER 5 Lab Visits - Observations

The CAP Lab sent a person to five of the six New England State SHA's and to the New York State DOT to observe binder testing. These visits were intended to note departures from the testing protocols. Any techniques which would expedite the testing were also noted provided the technique did not adversely affect the test results. The results from the visits were reported anonymously so as to not embarrass any individuals and encourage everyone to be more open as to the procedures routinely followed. The lab visits indicated that there was very little deviation from lab to lab in regards to the testing techniques. The largest deviation noted from the testing procedure involved the BBR. Several labs were placing the BBR test specimens into the supports and then adjusting the testing loads on the specimens. This caused the beams to deflect before the test had actually begun. The test results did not include any of this deflection and therefore the test results were inaccurate.

The CAP Lab also observed that some of the labs did not do a very good job tracking the amount of time samples were in the Rolling Thin Film Oven (RTFO). This piece of equipment does not have its own timing device on it. Therefore, it requires the operator to track the amount of time the material has been in the oven manually. The AASHTO specification requires the material to be in the oven for 85 +/- 1 minute. The time limits on this test are quite tight because of the rapid rate of aging occurring in the oven. Not adhering to these strict time limits will cause large differences in the material and erroneous test results.

The use of glass cleaning ovens or ignition ovens for cleaning glassware was a major time saver. The glassware is cleaned by burning the asphalt off of the glass. This method of cleaning the glassware is a major improvement from using solvents to accomplish the same task. The glass cleaning oven is faster than solvents and is more environmentally friendly. Detailed visit observations as circulated to the participants can be found in Appendix V.

CHAPTER 6 NETC Binder Technician Workshop

A one day binder technician workshop was held in January, 1999. The intent of the workshop was to update the binder technicians as to the progress being made during the project. The workshop also presented an opportunity to inform the technicians as to the upcoming work being done as part of the project. The topics discussed during the workshop include: the Round Robin 98 which was performed in conjunction with NECEPT, the pre-molded DSR samples, the lab visits where observations were made, the upcoming Round Robin 99 and the lab visits which were going to be made during the spring of 1999 to run samples on the state labs equipment. Additional material related to the January 1999 Binder Technician Workshop including slides used is attached as Appendix VI.

CHAPTER 7 Lab Visits - Equipment Comparison

The CAP Lab followed up Round Robin 99 by visiting the asphalt binder testing labs and running samples on the lab's equipment. The between laboratory variation found in the round robin results can not be broken down into that caused by equipment differences and that due to technician handling. The first visitations by CAP Lab personnel to the state laboratories monitored the technicians. A second series of visits were undertaken in an attempt to determine what variability was assignable to the equipment. The purpose of the visits was to determine the degree of variability caused by the testing equipment. If successful, the results could be combined with the Round Robin 99 results to give a better picture of the between laboratory variation. The same person was used to perform the testing at each facility. This was done to eliminate variations which could be caused by multiple operators.

The CAP Lab prepared samples out of the same material used for Round Robin 99. The samples for both the Round Robin 99 and the visitations were all prepared at the same time to ensure the materials were similar. The results obtained from the visits can not be directly compared to the Round Robin 99 results due to differences in sample handling. The CAP Lab samples were prepared to ensure their uniformity. The methods used to prepare the samples did not match the techniques used by the laboratories during the Round Robin testing. Each visitation sample was placed in its own small heat resistant container to avoid repeated re-heating of the samples which would change the properties of the material.

The testing during the visits included Dynamic Shear Rheometer (DSR) testing of original binder and rolling thin film oven (RTFO) residue testing as well as pressure aging vessel (PAV) residue tested in the Bending Beam Rheometer. Both the RTFO and the PAV conditioning of the visitation samples was done at the CAP Lab. The DSR testing was performed at 58° C and 64° C for both the original binder and RTFO residue using the 25 mm parallel plates. The testing performed using the BBR was performed at –18° C. To make the testing of the PAV residue uniform throughout the visits silicone beam molds were used. The same beam molds were used in each lab. The silicone beam molds were chosen because of their ease of use and cleanup. The CAP Lab brought their own tools for the trimming process so that the results would apply to the basic test assemblies present at each lab.

All of the DSR testing performed by the CAP Lab was done in the same six month manufacturer calibration period as Round Robin 99 was performed. The manufacturer calibration could change the settings on the DSR and would make drawing conclusions between Round Robin 99 and the samples run on each lab's equipment very difficult. The laboratories were asked to prepare both the DSR and BBR as they did for the Round Robin samples. This included verifying the temperatures of the equipment in the same manner as was done for the Round Robin. The labs were also asked to calibrate their BBRs as they did for Round Robin 99.

The CAP Lab ran two DSR original binder samples, two DSR RTFO samples and three pairs of beams on the BBR. For the DSR samples, two specimens were mounted in the DSR. One specimen was mounted and tested at both 58° C and 64° C, the second specimen was mounted and tested at 64° C only. This testing regime was similar to the one employed for Round Robin 99. The following pattern was repeated for all of the samples which were to be tested in the DSR. The DSR samples were heated for 20 minutes at 135° C. Each specimen was mounted and tested as soon as possible. The DSR specimens were trimmed using a heated trimming tool. The BBR samples were heated for 45 minutes at 163° C before pouring. The beams were allowed to stand on the countertop and cool for 45-50 minutes. The beams were then placed in an ice bath for 5-7 minutes. An ice bath was used to ensure thermal history uniformity from lab to lab. The beams were then soaked in the BBR bath at –18C for 60 minutes and then tested. Figures 1 through 6 show the averaged values obtained at each of the state binder labs.

Table 2 shows the %1S values for lab visits for the four New England States which participated in both Round Robin 99 and the lab visits and the corresponding %1S values for the four states from Round Robin 99. The %1S value represents one standard deviation as a percentage of the average.

Table 2
Comparison of Round Robin 99 %1S values for selected states and %1S values for Lab Visits

The state of the s			
	Four States		Total
	Round	-	12 Lab
	Robin 99		Round
Sample & Temperature		Lab Visits	Robin
G*, Original Binder, %1S, 58° C	4.51	4.83	4.90
G*, Original Binder, %1S, 64° C after 58° C	6.70	4.74	5.71
G*, Original Binder, %1S,	5.39	6.05	5.83
64° C new specimen			
G*, RTFO, %1S, 58°C	6.31	4.43	7.17
G*, RTFO, %1S, 64° C after 58° C	6.91	4.41	8.03
G*, RTFO, %1S, 64° C new	8.12	5.68	8.48
specimen			
Stiffness, %1S	3.64	4.19	5.65
m-value, %1S	2.08	1.52	2.80

The values obtained for the lab visits are close to the values obtained from Round Robin 99. The smaller the %1S value the closer the test results were to each other. The difference for the G* of the original material appears random with the visitation %1S greater for one sample and less for two. It would be expected that the RTFO %1S values would be lower for the CAP Lab visits due to homogenization of the samples after the RTFO aging at the CAP Lab. For the Round Robin samples, which were conditioned by each lab, greater variation in the material probably existed when the specimens were poured. This greater variability of the Round Robin samples can not be charged to the equipment as the equipment did not change. The numerical difference in average G* value for the two series is due to the difference in conditioning but the difference in %1S is probably due to differences in handling. The data from the lab visits can be seen in Appendix VII.

CHAPTER 8 Database of Binder Test Results

A portion of this project was intended to build a database where results for binders supplied by the same shipper to different states could be compared. This task could not be completed because most of the states were not recording the supplier's lot numbers with the binder test results from the 1998 construction season. This meant that there was no guarantee that tests were actually on the same binder lot even though the material had come from the same supplier on approximately the same day.

The first of a days of a call you still the beautiful.

er in the entire of the entire

that is a digital thought of the control to the original of the control of the co

CHAPTER 9 Summary of Results

With the implementation of the new equipment, protocols and criteria of the Superpave system, The New England Transportation Consortium initiated this study to identify possible causes for the between-laboratory test variations and recommend solutions to reduce these variations. The major goal was to assist the state agencies with implementation of Superpave Performance Graded Asphalt Binder testing.

After some initial adjustments, the six states were comparably equipped and round robins were conducted as a basis for determining what difficulties existed. Test results by the different labs from Round Robin 98 differed substantially. For one of the tests, the lowest result was approximately half of the highest. Such variation would make use of the results for QC/QA very difficult, so a workshop was held to look for differences in the procedures used by the reporting labs.

When the premolded DSR samples were processed, the variations between reporting labs were greatly reduced though not eliminated. One of the goals of premolded DSR samples was to determine if the variations were due to handling by the technicians or equipment differences. Handling differences for the premolded samples were reduced by preparing all samples for machine mounting by the CAP Lab prior to distribution. The reduction in variation indicated sample handling was a factor.

At the end of the ensuing workshop, which stressed sampling handling, the last round robin (Round Robin 99) was distributed with precise handling, temperature and timing instructions. The detailed instructions included with the Round Robin 99 samples

attempted to eliminate problems with sample handling discovered during the project. The standard deviation for the test results reported by the laboratories was small. Table 3 contains the averages for the %1S (excluding outliers) for each of the testing stages throughout this project. The %1S value is the ratio of the standard deviation for that set of test results to the average for all of the test results expressed as a percentage.

Table 3 - Average %1S for each set of Samples Sent out during this Project

	Round Robin 98	Premolded Samples	Round Robin 99			
G*, Original	9.64%	5.99%	5.48%			
Phase Ang. Orig	0.86%	0.35%	0.51%			
G*. RTFO	9.67%	N/A	7.89%			
Phase Ang. Orig.	0.83%	N/A	0.47%			
m-value	4.04%	N/A	2.80%			
Stiffness	9.62%	N/A	5.65%			

The last effort was the identification of equipment differences. Identical samples were packaged in salve cans at the CAP Lab and James Mahoney, manager of the CAP Lab spent a day at each laboratory processing and testing the material. Very little difference was observed from lab to lab. The results of these visits can be seen in chapter 7.

Overall, the variation of test results for each Round Robin has decreased after each workshop and each laboratory visit. The largest decrease in variation was brought about by including explicit instructions regarding heating times, heating temperatures and limiting the amount of time the specimens are allowed to stand prior to testing. In order to realize this reduction in test variation for production testing, explicit heating and timing instructions need to be developed and followed.

It is very apparent that some form of continued effort will be necessary if the between laboratory variation is to be contained when very small changes in test handling or equipment can change results. This continued effort should include Round Robins as well as technician workshops. The Round Robins are a good method to ensure testing uniformity between laboratories as well as identifying equipment problems. The technician workshops are an excellent forum for technicians to discuss issues with changes in the test protocols, equipment changes and exchange information they may have acquired over the previous construction season.

CHAPTER 10 Recommendations

The following recommendations are drawn from the major findings of this project. The sources for these recommendations were from all aspects of the project. These aspects include the lab observations, workshop discussions, Round Robin results and discussions with testing agencies outside of the New England region.

A number of recommendations are made concerning the techniques of carrying out binder testing. Several other recommendations stress the need for precise timing and temperature control for steps in the testing process. Some of the recommendations provide guidance for steps inadequately described in the current testing specifications.

The last recommendations address somewhat different problems. Superpave binder testing is a new endeavor. As with any new endeavor, many changes can be expected to the testing procedures and these last recommendations attempt to address problems brought forth by these changes. Table 4 provides a quick reference as to the specification(s) each recommendation is referencing.

Table 4, AASHTO Protocols Referenced in NETC 96-1 Recommendations

										•								
AASHTO							Re	com	mer	ndatio	on N	umb	er					
Protocol*	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
MP-1	X		Х	Х	X	Х												
PP-1	Χ		Χ		X													<u> </u>
TP-1	X		X		X								X	X	X		ļ	ļ
TP-3	Х		Х		Х													<u> </u>
TP-5	Х		X		X	Х	X	X	X	X					<u> </u>	X	ļ	ļ
PP-6	Х		X	Х	Х	Х												<u> </u>
T-40	X	X	X		X							<u> </u>	<u> </u>					<u> </u>
T-240	Х		X		X			<u> </u>				X		<u> </u>	1	X		
TP-48	Х		X		X	X				<u> </u>	X	<u> </u>	<u> </u>	1]	<u> </u>		<u> </u>

MP-1 Specification for Performance Graded Asphalt Binder

PP-1 Practice for Accelerated Aging of Asphalt Binder Using a PAV

TP-1 Method for Determining the Flexural Creep Stiffness of Asphalt

- Binder Using the Bending Beam Rheometer
- TP-3 Method for Determining the Fracture Properties of Asphalt Binder in Direct Tension
- TP-5 Method for Determining the Rheological Properties of Asphalt Binder Using a Dynamic Shear Rheometer
- PP-6 Practice for Grading or Verifying the Performance Grade of an Asphalt Binder
- T-40 Sampling Bituminous Material
- T-240 Effect of Heat and Air on a Moving Film of Asphalt (RTFO Test)
- PP-26 Practice for Certifying Suppliers of Performance Graded Asphalt Binders
- TP-48 Method for Viscosity Determination of Asphalt Binder Using Rotational Viscometer
- Based upon the improvements made in the test deviations in the Round Robins, improved standardized handling (time and temperature) procedures need to be developed. Standardized handling procedures would help to reduce the amount of variation occurring between laboratories.
- 2. Unlined paint cans should be used for sample containers. The lining used in paint cans was never expected to stand oven temperatures and may melt into the asphalt. Paint cans are easy to fill and most importantly are the easiest to stir for uniformity when re-heating the material for testing. Stirring is important for all samples but will become an increasingly larger issue as modified asphalts become more common. This is also an issue as QC/QA becomes more widely practiced. A state lab may have a way to stir samples in containers other than paint cans but another lab which becomes involved in testing dispute resolution may not have this capability.
- Limit the amount of time the original sample is heated. As any heating causes binder to age thus affecting test results, any heating beyond that necessary for easy stirring and pouring must be avoided. The length of heating time required

to completely melt the binder depends on the PG grade as well as any modifiers that may be present.

- 4. When testing polymer modified binders, obtain sample heating instructions from the manufacturer of the material. Binders which have been heavily modified with polymers can be expected to require handling at higher temperatures than binders which have not been modified. The manufacturer should be able to provide temperatures to which the modified binder can be heated without damaging the polymer modifier. Over heating can damage some polymer additives. Destruction of the polymer additives may cause the binder to appear much softer than it is when handled properly.
- 5. All binder samples should be thoroughly stirred prior to testing to ensure their homogeneity. Particular care should be given to homogenizing polymer modified binders as some polymers tend to settle in the sample container.
- Original binder, as it is in the rapid aging portion of the aging curve, is affected by heat aging more than PAV samples and should be heated only once. For minimum variation in test results, the original material sample should only be heated until the material is able to be stirred and poured.
- 7. The amount of time DSR samples stand in the silicon rubber molds should be as short as possible limited to one hour. By allowing these samples to remain in the molds, steric hardening can occur. The rate at which steric hardening occurs varies greatly from binder to binder and variations of steric hardening are difficult to quantify. Avoid steric hardening by limiting time before mounting.

- 8. Warm the testing plates to testing temperature before setting the zero gap on the DSR. Once the zero gap is set, changing temperature greatly alters the dimensions causing a false gap reading.
- 9. Trim DSR samples with a heated trimming tool. The use of room temperature trimming tools may cause some of the binder material to be pulled out from between the test plates. Since the material around the perimeter of the sample has the largest moment arm, it is the most sensitive portion of the sample. Therefore, a deficient quantity of material on the outside perimeter of the plates can cause a substantial error in the measured complex shear modulus.
- 10. Most DSR instrumentation has an offset between the temperature sensor and the true sample temperature. Each lab should be equipped to measure the temperature between the DSR plates. This can be performed with either a thermistor or a thermocouple. With either temperature measuring system, the measuring device needs periodic calibration against a certified temperature measuring device.
- 11. When calibrating the temperature of the Rotational Viscometer, the spindle should be in the sample and the spindle should be rotating. This will help to reduce the temperature gradients present in the sample. Caution should be used to prevent the thermocouple from becoming entangled with the spindle.
- 12. Care should be taken observing the length of time binder is left in the Rolling
 Thin Film Oven. At this stage in aging, the binder ages easily and a few minutes

can cause significant aging. This is the only piece of equipment which does not have an automatic timing system. This requires the operator to pay particular attention to the length of time the sample material is left in the oven. This can be difficult as the operator is usually busy performing some of the many other tests. A simple kitchen timer may be used as a reminder.

- 13. BBR beams must be cooled sufficiently for ease in de-molding without deforming the beam. Ice baths should be used whenever possible. The ice bath provides a uniform between laboratory temperature for de-molding specimens. Some binders may not become stiff enough in an ice bath for demolding and will need to be placed in a freezer.
- 14. The aluminum BBR molds should be lined with plastic strips. The use of the glycerin-talc mixture as a bond breaker over all of the beam mold parts will cause the BBR bath fluid to need frequent changes as the glycerin-talc mixture will cloud the fluid. Even more important, uneven application of this mixture to the beam molds will cause uneven beam cross-sections and affect test results.
- 15. The use of straight alcohol in the BBR bath if allowed by safety codes is the most desirable fluid to use in the bath. The ethylene glycol, methanol and water mixture while not flammable is dense causing the beams to float in the BBR bath. This makes temperature conditioning difficult and increases the chances the beams will be damaged while placing them in testing supports.
- 16. The use of glass cleaning ovens or ignition ovens to clean glassware is a huge improvement over cleaning the glassware with solvents. Cleaning glassware

with this technique is not nearly as labor intensive as using solvents and there is no chance of contaminating the next binder sample with traces of solvents. Also, with the ovens there are no solvents which need to be disposed.

17. Over the course of the year, several test samples should be sent out to laboratories for testing. The intention of these samples is to allow the laboratory the opportunity to test with as little pressure as possible. The goal is to allow the labs to test the samples as closely as possible to their standard testing technique. Most labs prepare quite differently for testing "pedestal samples" such as the AMRL Proficiency samples than they do for routine testing. By having samples which are not held as "pedestal samples", each lab would have an opportunity to discover potential problems which they otherwise may not be able to detect. This can best be done by having samples where the labs identity is held in confidence and the lab's results are compared to a large pool of data. This also allows the technicians to readily compare their results with those of others. With this concept, there is no penalty for poor performance by labs and yet it would be a very powerful tool to diagnose problems which could exist.

18. As the specifications continue to change and the equipment evolves to meet these changes, a forum for the binder technicians to learn about these changes needs to be maintained. The workshop participants have noted the importance and need for the workshops. The workshops allowed the participants to learn about upcoming changes to the specifications and equipment. The workshops also allowed the participants to voice their concerns about problems they have with the specifications. The feedback from the technicians performing the testing is very important. This provides information as to which areas of the specification may require additional scrutiny.

References

- 1. AASHTO, June 1998 AASHTO Provisional Standards, 1998.
- 2. AASHTO Materials Reference Laboratory, Performance-Graded Binder Samples, www.nist.gov/aashto/amrl/services/sect3b.html, June 1, 1999.
- 3. Anderson, David and Marasteanu, Mihai, Manual of Practice, NECEPT, 1999.
- 4. McDaniel, Rebecca S., Results of a Superpave Binder Testing Program of the North Central Asphalt User Producer Group, September 1996.
- 5. Wisconsin Department of Transportation, *Combined State Binder Group Round Robin 99-1*, March 17, 1999.

Appendix I
Original Proposal

Proposal to; The New England Consortium

Project: SUPERPAVE Implementation

Project Number: 96 - 1

Submitted by: C A P Lab, University of Connecticut

Response to NE Consortium Project Number 96-1

SUPERPAVE Implementation

New England, like the rest of the United States, has used viscosity at 60 degrees C or penetration at 25 degrees C as the prime factor in binder classification. This did not permit comparisons of the performance in thin films as found on aggregate or at low winter temperatures. The SHRP binder tests provides data for such comparisons. As SHRP test data is not available for pavements more than a few years old, selection of design values for the new tests have been based on accelerated testing or extrapolation of short term performance. Each using agency feels the need for the immediate collection of actual field performance data to verify the predicted performance. Every state can be expected to collect field data but several years will pass before any one state has a statistically sound quantity of data. As conditions tend to be similar through out New England, pooling data will make sound statistical analysis possible much sooner.

Area wide pooling of data must be carried out with great care to ensure that the results collected by different agencies have the same significance. Past experience with the application of AASHTO and ASTM test methods has shown that different interpretations of a test method can occur for years after the method has been published. This results both from differences in laboratory equipment and personnel background. As the SHRP program implements both new techniques and equipment, careful control of laboratory work is essential. Round robin testing can be used to both identify problem points in procedures and to determine the degree of conformity of individual laboratories.

Organization for "SUPERPAVE" Implementation:

This project will be under the supervision of the CAP Lab staff. Jack E. Stephens, the director and James Mahoney, the laboratory manager will assign time to the project. Dr. Norman Garrick, the Civil Engineering Department professor responsible for bituminous studies will assist on computer applications. A coordinating committee with a representative from each New England state will advise the project. Research assistants at the laboratory supplemented by student labor will provide additional support time as needed. The Lab has the available SHRP binder and mix equipment in duplicate so that equipment down time should not interfere with testing schedules.

Task 1: Establish a WEB site on the Internet

The University of Connecticut has a well established computer center with long experience in networking. Students at the five branches have networked with the main campus computer center for some 40 years. The Computer Center conducts short courses on WEB site establishment. Should any difficulties be experienced in setting up a web site, the staff of the computer center and of the Engineering Computer Science Program would be available for counsel. The WEB site will be set up through the Transportation Institute. All cooperating laboratories will be expected to forward their SHRP testing results to the CAP Lab. Material for the WEB site will be prepared by a research assistant and reviewed by the CAP Lab director or manager before placement at the WEB

site. Relative linking to other pertinent WEB sites will be included. An information sheet will be supplied all potential users.

Task 2: Develop Round Robin Testing Program

As literally all asphalt testing is related to state usage, the advisors from the states will be able to supply a list of the laboratories equipped for SHRP binder testing. The Director will approach all laboratories and request support through cooperation in a Round Robin testing program. When a sufficient number have joined, the CAP Lab director as a member of the Northeast Users Producers Group will contact the northeast suppliers of P G grade asphalts to secure binders for Round Robin testing. It is anticipated that some suppliers will also be Round Robin testers. AMRL methodology and practices for collecting and distributing samples will be followed as applicable and to the extent practical. The range of grades will be determined by the application of SuperPave methodology to the New England area.

Once testing commences, each laboratory will be asked to bi-monthly fax reports to the CAP Lab. Data at the Web site concerning the Round Robin testing will be presented in statistical format and updated bi-monthly. As SHRP testing is new to most laboritories, the first Round Robin can be expected to show substantial deviations. Using analyse of the data to aid in correcting short comings, successive Round Robins should show progressively better uniformity between laboratories

Task 3: Observe Operation of SHRP Binder Equipment at State Highway Agency Laboratories.

The CAP Lab Director or Manager will visit each SHA laboratory and observe calibration, sample preparation and test procedures for the Rotational Viscosimeter, Dynamic Shear Rheometer, Rolling Thin Film Oven, Pressure Aging Vessel and Bending Beam Rheometer. Any non-specification procedure observed will be noted as an aid in weighting test results and possibly reducing data scatter. Procedure deviations that appear to improve the efficiency or accuracy of the test method will be noted and distributed to the other states by posting at the WEB site. Each laboratory visited will receive a report of the observations at that laboratory. The laboratory observations will compliment the Round Robin testing.

Task 4: Other Activities that Will Aid the State Highway Agencies (SHA) Laboratories.

As The New England States adopt PG Grading, test results of locally available binders should become available. The Stastes will be encouraged to send in routine test results for posting at the WEB-Site. Contact will be made with SHAs, binder producers, University laboratories and User Producer Groups across the country and the Federal Materials group requesting reports or other information as to improvements found in techniques for carrying out SHRP testing that would make for more efficient use of equipment, methods or personnel. Any procedures found worthy would be posted at the WEB site.

Task 5. Final Report

A final report will be prepared including sections of statistical results of the round robin testing, effectiveness of the current SHRP test methods and a summary of non-specification procedures that would improve efficiency or accuracy of testing. Any short comings found in procedures that affect interlab comparisons of data will be noted and corrections suggested.

Schedule of Activities

First priority will be given to the establishment of the advisory committee. The committee members will be asked to bring to the first meeting lists of laboratories and suppliers.

A WEB site for New England will be established on the Internet where results of P G Binder routine testing can be posted.

The CAP Lab will immediately contact area laboratories for support of a Round Robin Testing Program using AASHTO provisional methods with any variations agreed to by the advisory panel.

The Director will then approach the suppliers for commitments of materials.

Samples will be distributed to laboratories.

As testing progresses, visits will be made to the laboratories for observation of testing.

As available, testing results will be posted at the WEB site.

Throughout the project, contacts with other agencies will be made and any material concerning SHRP testing improvements or changes posted at the WEB site.

A final statistical analyses will be made and results distributed

Progress reports will be submitted to the Consortium quarterly. A final report will summarize the work.

Work Schedule

Month of First Year

Establish Project Committee
Committee Meetings
Task #1 Establish & Update WEB-Site PG Binder Test Results
Task #2 Contact AMRL for Round Robin Procedures
Contact Binder Suppliers to Collect Round Robin Samples
Arrange with Labs for Round Robin Participation and Distribute Samples
Receive and Analyse data
Update Round Robin at WEB-Site
Task #3 Observe Testing at Labs
Post at WEB-Site promising Procedure/technique variation
Task #4 Contact non-New England Labs and others for Developments
Post Developements at WEB-Site
Task #5 Quarterly Reports
Final Report

1	2	3	4	5	6	7	8	9	10	11	12
x									-		
x			x			,X			X		
X (X	X	х	X	х	X	х	Х	X	x	х
Х	х						-				
х	Х				X				x		
	х				x				х		
х	х	Х	х	х	X	Х	X	х	х	Χ.	Х
х	x	Х	Х	Х	Х	х	х	Х	х	x	х
	x	x	х		х	x			х	x	
	х	х	х	х	х	х	х	х	Х	х	х
		x	х			Х	х			x	x
		x	x	х	х	X	X	x	х	x	х
		х			х			х			х

Work Schedule

Month of Second Year

Establish Project Committee

Committee Meetings

Task #1
Establish & Update WEB-Site
PG Binder Test Results

Task #2 Contact AMRL for Round Robin Procedures

Contact Binder Suppliers to Collect Round Robin Samples

Arrange with Labs for Round Robin Participation and Distribute Samples

Receive and Analyse data

Update Round Robin at WEB-Site

Task #3
Observe Testing at Labs

Post at WEB promising Procedure/technique variations

Task #4
Contact non-New England Labs
and others for Developments

Post Developements at WEB-Site

Task #5 Quarterly Reports

Final Report

	1	2	3	4	5	6	7	8	9	10	11	12
			<u>.</u>	•								
	х	-		х			Х			X		
	x	х	х	Х	х	X	x	Х	х	х	х	x
ŕ	÷											
		х				x				х		
	·	x				x				X		٤
	x	х	x	х	х	х	×	х	х	x	X	х
	х	x	x	х	х	х	x	x	х	x	x	х
		х	x			х	х			х	x	
	X	Х	х	х	х	х	х	x	x	X	x	x
	Х			x	x			x	x			
	X	X	X	Х	X	X	Х	X	X	Х	X	Х
			Х			Х			X			х
											Х	Х
	-		· · · · ·									

Updated 10, 1996

Date of First Appointment: 1946

Birthdate:	8/17/23	Birthplace: Eaton, Ohio
Education:	B.S. M.S. Ph.D.	1947 University of Connecticut 1955 Purdue University 1959 Purdue University
Experience:	1946- 1948-50 1958- 1958-65 1962-63 1993-95	University of Connecticut: Instructor 1946-47; Assistant Professor, 1950; Associate Professor, 1959; Professor, 1962-88; Emeritus Professor, 1989-; Department Head, 1965-72 Director Conn Avanced Pavement Lab, 1996 — Engineer, Connecticut Highway Department Owner, Jack E. Stephens Soils Testing Laboratory Soils and Foundation Consultant, A. J. Macchi Engineers Pavement Consultant, Commissioner of Connecticut Highway Department Consultant to Vermont Transportatio Agency, Implementation of SHRP

Professional Societies:

North East Asphalt User Producers Group:
American Society of Photogrammetry; American
Society of Civil Engineers; American Society of
Engineering Education; American Congress of
Surveying and Mapping; American Road Builders
Association; Association of Asphalt Paving
Technologists; Connecticut Academy of Science
and Engineering; Highway Research Board;
American Society of Testing Materials; Phi Kappa

Phi; Tau Beta Pi; Chi Epsilon; Sigma Xi

Honors or Distinctions:

Automobile Safety Foundation Fellowship, 1958-59; Citation, Teaching Excellence, Western Electric Fund, 1974;

University of Connecticut Alumni Association Distinguished Public Service Award, 1982; University of Conn. Engineering Alumni Award, 1986:

University of Conn. Advisory Boards: Center for Real Estate and Urban Economics Research 1966--;

Joint Highway Research Advisory Council 1962-;

Transportation Institute 1974-88; Technology Transfer Center 1984-; CAP Lab, 1996--

Other Tecnical Activities:

SHRP Asphalt Advisory Panel, TRB 1986-98 ConnDOT Pavement Task Force, Chrm 1995-

NETTCP, Chr Committe for Standardizing Forms, 1995-Conn Soc Prof Eng, Laboratory Committee, 1995-

Professional Societies:

Conn Society of Civil Engineers, Director 1964,

Second Vice-President, 1967-68, First

Vice-President, 1968-69, President, 1969-70,

Honorary Member, 1969;

Conn Section, American Society of Civil Engineers, Vice-President, 1965-66, President, 1966-67,

Appendix I Director, 1967-69

American Road and Transportation Builders,
Education Division, Director, 1962-65, Vice
President, 1976, President, 1977;
Director Transportation Institute, Univ. of Conn.
1974-77; Committees A2DO4 and A2HO2, Transportation
Research Board, Chrm. Transp. Comm. and Director,
Connecticut Academy of Science and Engineering

Field of Specialization:

Highway Materials

Research Interest:

Problems Associated with Asphalt Paving (Including Mix Design Problems, Asphalt Rheology and Composition, Pavement Durability, Physical Specifications with Chemical Composition Specifications)

Publications:

Journal Articles:

- Stephens, J. E. and H. A. Sawyer, Jr. 1957. Under-Reinforced Concrete Beams Under Long Term Loads. J. Amer. Concrete Inst., Proc. V. 54. 29(1):21-29.
- Gant, E. V., J. E. Stephens and L. K. Moulton. 1958. Measurement of Forces Produced in Piles by Settlement of Adjacent Soil. Highway Res. Board Bull. 173:20-37.
- Stephens, J. E. and W. H. Goetz. 1960. Designing a Fine Bituminous Mixture for High Skid Resistance. Highway Res. Board Proc. 39:173-90.
- Stephens, J. E. and W. H. Goetz. 1961. A Study of the Effects of Aggregate Factors on Pavement Friction. Highway Res. Board Bull. 302:1-17.
- Stephens, J. E. 1963. Discussion: Field Testing of a Nuclear Density Device on Bituminous Concrete. Proc. Assoc. Asphalt Paving Technol. 32:145.
- Stephens, J. E. 1963. Discussion: Control of Asphalt Concrete
 Construction by the Air Permeability Test. Proc. Assoc. Asphalt Paving
 Technol. 32:167-69.
- Stephens, J. E. 1963. Discussion: Methods to Eliminate Reflection Cracking in Asphalt Concrete Resurfacing over Portland Cement Concrete Pavements. Proc. Assoc. Asphalt Paving Technol. 32:226-27.
- Stephens, J. E. 1963. Discussion: Asphalt Viscosity as Related to Pavement Performance. Proc. Assoc. Asphalt Paving Technol. 32:347-51.
- Stephens, J. E. 1963. Discussion: Factors That Control Asphalt Requirements of Bituminous Paving Mixtures as a Method for Determining the Proper Asphalt Content. Proc. Assoc. Asphalt Paving Technol. 32:549-51.
- Stephens, J. E. 1964. Discussion: The Compaction of Asphaltic Concrete on the Road. Proc. Assoc. Asphalt Paving Technol. 33:277-83.
- Breen, J. J. and J. E. Stephens. 1966. Split Cylinder Test Applied to Bituminous Mixtures at Low Temperatures. ASIM J. Mater. 1(1):66-76. Appendix I

- Stephens, J. E. and J. J. Breen. 1966. A Preliminary Report on the Fatigue of a Bituminous Mix at Low Temperatures. Proc. Can. Technol. Asphalt Assoc. 11.
- Stephens, J. E. 1957. Discussion: Statistical Evaluation of Equipment and Operator Effects on Results of Asphalt Extraction Tests. Proc. Assoc. Asphalt Paving Technol. 36:253-56.
- Stephens, J. E. 1967. Discussion: Symposium on Compaction of Asphalt Concrete. Proc. Assoc. Asphalt Paving Technol. 36:357-67.
- Stephens, J. E. 1967. Discussion: Thermal Expansion and Contraction Characteristics of Utah Asphaltic Concretes. Proc. Assoc. Asphalt Paving Technol. 36:700-02.
- Stephens, J. E. and J. J. Breen. 1967. The Glass Transition Temperature and the Mechanical Properties of Asphalt. Proc. Can. Technol. Asphalt Assoc. 12.
- Stephens, J. E. 1968. Application of Statistical Principles to Quality Control and Acceptance of Aggregates. Proc. Assoc. Asphalt Paving Technol. 37:265-73.
- Stephens, J. E. and J. J. Breen. 1969. The Interrelationship Between the Glass Transition Temperature and Molecular Characteristics of Asphalt. Proc. Assoc. Asphalt Paving Technol. 39:706-12.
- Stephens, J. E. and K. Sinha. 1978. Effect of Aggregate Shape on Bituminous Mix Character. Proc. Asso. Asphalt Paving Techn. 47.
- Stephens, J. E. 1982. Field Evaluation of Rubber-Modified Bituminous Concrete. Transportation Research Record 843:11-21.
- Stephens, J. E. and G. E. Hoag. 1984. Volatiles in MC-3000 Bituminous Paving Mixtures. Asphalt Paving Technology, Vol. 53, pp. 186.

Technical Reports

- Stephens, J. E. 1966. Reduction of Apparent Aggregate Variation Through Improved Sampling. Rep. No. JHR 66-1. Civil Eng. Dept., University of Connecticut.
- Breen, J. J. and J. E. Stephens. 1966. Fatigue and Tensile Characteristics of Bituminous Pavements at Low Temperatures. Rep. No. JHR 66-3. Civil Eng. Dept., University of Connecticut.
- Stephens, J. E., J. J. Breen, R. F. Dawson and K. C. Sinha. 1966. A Study of the Incorporation of Protective Construction and Slanting Techniques in an Urban Planning Project. Rep. No. CE 66-9. Civil Eng. Dept., University of Connecticut.
- Stephens, J. E. and G. J. Gromko. 1967. An Investigation of the Brittle-Plastic Behavior of Asphalt Mixtures by Use of an Impact Device. Rep. No. CE 67-12. Civil Eng. Dept., University of Connecticut. (Also published in: Highway Res. Record No. 256. pp. 22-36.)
- Stephens, J. E. 1973. Final Report. Bituminous Mix Density by Coated Specimen. Project 67-5. Civil Eng. Dept., University of Connecticut. Appendix I

- Stephens, J. E. 1973. Final Report. Rainfall and Runoff Study of Small Drainage Areas. Project 51-2. Civil Eng. Dept., University of Connecticut.
- Stephens, J. E. and S. Mokrzewski. 1974. The Effect of Reclaimed Rubber on Bituminous Concrete Pavement Mixtures. Rep. No. JHR 74-75. Civil Eng. Dept., University of Connecticut.
- Stephens, J. E., R. Fitch and L. B. Shih. 1974. Hot White Traffic Paint— Laboratory and Summer Condition Study. Rep. No. JHR 74-76. Civil Eng. Dept., University of Connecticut.
- Stephens, J. E. 1974. Effect of Aggregate Shape on Bituminous Mix Character. Project 63-9 Final Report. Report No. JHR 74-87. Civil Eng. Dept., University of Connecticut.
- Stephens, J. E., T. Pastor and J. Pelleccione. 1976. Split Cylinder Test for Tension Strength of Concrete. Project 75-2 Final Report. Report No. JHR 76-97. Civil Eng. Dept., University of Connecticut.
- Stephens, J. E., T. Pastor and J. F. Pelliccione. 1977. Statistical Analysis Applied to Management Decisions. Project 75-4 Final Report. Report No. JHR 77-104. Civil Eng. Dept., University of Connecticut.
- Stephens, J. E. 1979. Measurement of Bridge Deck Status by Dynamic Mcdulus. JHRAC Report No. JHR 79-129. Civil Eng. Dept., University of Connecticut.
- Stephens, J. E. 1981. Recycled Rubber in Roads, Final Report. Report No. CE 81-138 Civil Eng. Dept., University of Connecticut.
- Stephens, J. E. 1982. Cost of Deferring Highway Maintenance. Report to Transportation Committee, Connecticut General Assembly, Connecticut Academy of Science and Engineering, 410 Asylum Street, Hartford, CT.
- Stephens, J. E. and Hoag, G. E. Volatiles in MC-3000 Bituminous Paving Mixtures, Final Report Project 81-1, JHRAC Report No. JHR 82-143, Civil Eng. Dept., University of Connecticut.
- Stephens, J. E., D. W. Sundstrom and H. E. Klei. 1983. The Addition of Lignin from Casohol Plants to Asphalts, Final Report. Project 80-3, JHRAC Report JHR 83-149.
- Stephens, J. E., C. F. Davis and M. F. Makuch. 1984. An Analysis of Highway Pavement Deterioriation and a General Technique for Optimization of Maintenance/Deconstruction, Final Report. Project 82-4, JHRAC Report JHR 84-156.
 - Stephens, J. E., Rivenburgh, J. An Evaluation of Aging of Recycled Asphalt, Final Report Project 83-3, JHRAC Report No. JHR 86-166, Civil Engineering Dept., University of Connecticut.
- Stephens, J. E. 1987. Waste Conversion for Public Construction, Report to Connecticut General Assembly, Connecticut Academy of Science and Engineering, 410 Asylum Street, Hartford, CT.
- Stephens, J. E. 1989. Nine Year Evaluation of Recycled Rubber in Roads, Final Report. Project 86-8, JHRAC Report JHR 89-183.

- Stephens, J. E., C. F. Davis and H. H. Ridgeway. Further Developments of Optimization Procedures in Pavement Management, Final Report. Project 83-1, JHRAC Report 89-186.
- Stephens, J. E. 1990. The Effects of Temperature Cycles on the Aging of Bituminous Concrete, Final Report. Project 86-9, JHRAC Report 90-190.
- Stephens, J. E. and W. Santosa. 1992. Aging of Bituminous Concrete, Final Report. Project 87-5, JHRAC Rep No. JHR 92-211. Civil Eng. Dept.

James Mahoney 200 West Road, Apt 115 Ellington, CT 06029 (H) 860-870-5959 (W) 860-486-5956

PROFESSIONAL EXPERIENCE

Laboratory Manager, Connecticut Advanced Pavement Laboratory, University of Connecticut, March 1996 - Present. Manage daily lab operations, including: lab construction; Strategic Highway Research Program (SHRP) testing equipment setup; training; supervision of student labor. Attended SHRP training short courses sponsored by the Federal Highway Administration.

Adjunct Professor, University of Connecticut - Torrington Branch, Fall 1995 - Present. Classes taught include Statics and Dynamics.

Computer Consultant, Cornwall Planning Group, 1993 - Present. Research recommend and secure new equipment, maintain computer operations, and development of database format and specialized business applications.

Vice President, James J. Torrant, Inc., 1987 - 1996. Performed wide range of management responsibilities including: work schedules; extensive public interface; supervising field work, equipment repairs, computerization of operations, and accounting functions.

EDUCATION

Master of Science; Geotechnical Engineering, University of Connecticut, August 1995. Thesis research included the development and implementation of a laboratory testing program.

Bachelor of Science; Civil Engineering, University of Connecticut, May 1993.

<u>AWARDS -</u> RECOGNITION

E. Russell Johnston, Jr. Award, 1992. Excellence in Civil Engineering Award; Top ranked Junior Civil Engineering student.

Tau Beta Pi, National Engineering Honor Society, Inducted in 1992.

Chi Epsilon, National Civil Engineering Honor Society, Inducted in 1992.

PROFESSIONAL ORGANIZATION

Member, American Society of Civil Engineers, 1991 - Present.

Appendix II

Figure 1. A statement of extreme engineers of a second of the engineers of the engineers

Round Robin 98 Report Performed in Conjunction with NECEPT

1998 NORTHEAST DSR-BBR ROUND ROBIN

A JOINT EFFORT BETWEEN:

North East Center for Excellence for Pavement Technology Regional Pooled Fund Study Work Order 18, Task R3

New England Transportation Consortium Superpave Implementation Project 96-1 Connecticut Advanced Pavement Laboratory

Workshops at both Penn State and UConn.
Preliminary statistics and slides by CAP Lab

Round Robin distribution carried out jointly

Statistical Analysis by NECEPT

Draft Report prepared by NECEPT, assisted by CAP Lab Personnel: D. A. Anderson

J. Mahoney

M. O. Marasteanu

J. Stephens

Final Report expected by late summer.

DRAFT

TABLE OF CONTENTS

	Pa	age
1.	INTRODUCTION	1
2.	MATERIALS AND TESTING PROGRAM Materials Testing Program Test Results	3
3.	STATISTICAL ANALYSIS	5
4.	CONCLUSIONS AND RECOMMENDATIONS	.19
5.	REFERENCES	.21
7.	APPENDIX A Round Robin Announcement	23
8.	APPENDIX B Testing Program	25
9.	APPENDIX C Round Robin Test Results	31
10.	APPENDIX D Plots of Round Robin Test Results	55
11.	APPENDIX E Slides Used in Dr. Jack Stephens' Presentation	91
12.	APPENDIX F Statistical Analysis Details	101

LIST OF FIGURES

	Page
Figure D1. Rotational viscosity data for unaged PSU1 and PSU4 at 135°C	56
Figure D2. Rotational viscosity data for unaged PSU1 and PSU4 at 165°C	57
Figure D3. Rotational viscosity data for unaged PSU2 and PSU3 at 135°C	58
Figure D4. Rotational viscosity data for unaged PSU2 and PSU3 at 165°C	59
Figure D5. G* data for unaged PSU1 and PSU4 at 70°C	60
Figure D6. G* data for unaged PSU1 and PSU4 at 76°C	61
Figure D7. G* data for unaged PSU2 and PSU3 at 64°C	62
Figure D8. G* data for unaged PSU2 and PSU3 at 70°C	63
Figure D9. G* data for RTFOT PSU1 and PSU4 at 70°C	64
Figure D10. G* data for RTFOT PSU1 and PSU4 at 76°C	65
Figure D11. G* data for RTFOT PSU2 and PSU3 at 64°C	66
Figure D12. G* data for RTFOT PSU2 and PSU3 at 70°C	67
Figure D13. Stiffness data for PAV PSU1 and PSU4 at -12°C	68
Figure D14. m-value data for PAV PSU1 and PSU4 at -12°C	
Figure D15. Stiffness data for PAV PSU2 and PSU3 at -12°C	
Figure D16. m-value data for PAV PSU2 and PSU3 at -12°C	
Figure D17. Stiffness data for PAV PSU1 and PSU4 at -18°C	72
Figure D18. m-value data for PAV PSU1 and PSU4 at -18°C	73
Figure D19. Stiffness data for PAV PSU2 and PSU3 at -18°C	74
Figure D20. m-value data for PAV PSU2 and PSU3 at -18°C	75
Figure D21. Stiffness data for pre-PAV 1 and 4 at -18°C	
Figure D22. m-value data for pre-PAV 1 and 4 at -18°C	77
Figure D23. Stiffness data for pre-PAV 2 and 3 at -18°C	78
Figure D24. m-value data for pre-PAV 2 and 3 at -18°C	79

Figure D25.	Strain sweeps G* data for unaged PSU1	80
Figure D26.	Strain sweeps phase angle data for unaged PSU1	81
Figure D27.	Strain sweeps G* data for unaged PSU2	82
Figure D28.	Strain sweeps phase angle data for unaged PSU2	83
Figure D29.	Strain sweeps G* data for unaged PSU3	84
Figure D30.	Strain sweeps phase angle data for unaged PSU3	85
Figure D31.	Strain sweeps G* data for unaged PSU4	86
Figure D32.	Strain sweeps phase angle data for unaged PSU4	87
Figure D33.	Complex viscosity data for the reference fluid at 64°C	88
Figure D34.	Complex viscosity data for the reference fluid at 76°C	89
Figure D35.	Complex viscosity versus capillary viscosity for the reference fluid at 64°C	90

LIST OF TABLES

	Page
Table 3.1. Variance components and corresponding coefficients of variation	
obtained in the round robin	9
Table 3.2. Summary of D1S and D2S values obtained in the round robin	12
Table 3.3. Outliers omitted in the statistical analysis performed in the round robin	
Table C.1. Rotational viscosity data	
Table C.2. G* test results for the unaged asphalt binder samples.	
Table C.3. Phase angle test results for the unaged asphalt binder samples	
Table C.4. G* test results for the RTFOT asphalt binder samples.	
Table C.5. Phase angle test results for the RTFOT asphalt binder samples	
Table C.6. Stiffness test results at -12°C for the PAV asphalt binder samples	
Table C.7. m-value test results at -12°C for the PAV asphalt binder samples	
Table C.8. Stiffness test results at -18°C for the PAV asphalt binder samples	
Table C.9. m-value test results at -18°C for the PAV asphalt binder samples	
Table C.10. Stiffness test results at -18°C for the pre-PAV asphalt binder samples	
Table C.11. m-value test results at -18°C for the pre-PAV asphalt binder samples	
Table C.12. Complex viscosity test results for the reference fluid	
Table C.13. G* strain sweeps test results for the unaged asphalt binder samples	
Table C.14. Phase angle strain sweeps test results for the unaged asphalt binder samples	

1. INTRODUCTION

Background

In 1996 a round robin was held in the Northeast to evaluate the repeatability and reproducibility of dynamic shear rheometer (DSR) measurements. This round robin is described in detail elsewhere. ⁽¹⁾ From this round robin it was concluded that both the repeatability and reproducibility for the DSR were unsatisfactory for specification purposes, regardless of the manufacturer, and that improvements in both the repeatability and reproducibility of the DSR measurements were needed. ⁽¹⁾

Rather than simply conduct a second round robin as a follow-up to the first round robin, it was decided that an effort should be made to identify current testing practice and to improve, if possible, that practice. Therefore, prior to a second round robin, two Binder Technician Workshops were held in January of 1998, one at the CAP Lab at the University of Connecticut and one at NECEPT at Penn State University. At these binder technician workshops the techniques and procedures used by the laboratories in the northeast were reviewed. A detailed description of the two two Binder Technician Workshops is given elsewhere. (2)

Following the two workshops samples where sent to the workshop participants as part of the second round robin (see Appendix A for round robin announcement). The main objective of this round robin was to provide support for NECEPT work plan R-6 that addresses binder QC/QA issues. As a consequence, the round robin included specification testing for both DSR and BBR, RTFOT aging followed by PAV aging, as well as tests on the DSR reference fluid, DSR strain sweeps, and rotational viscometer testing.

Twenty laboratories, including state agencies, asphalt binder suppliers, and private laboratories participated in this round robin. A number of the participants were not able to send a complete set of information due to equipment limitations and to busy schedules. Nevertheless, the statistical procedure used with the test data allowed for a robust analysis of the results.

David Anderson, Mihai Marasteanu, and Charles Antle developed the testing schedule and the instructions sent to the round robin participants. Mihai Marasteanu was responsible for creating the Excel files sent to the participants for data input. Mihai Marasteanu and Jim Mahoney were responsible for organizing the round robin data for further analysis. Charles Antle, Mihai Marasteanu, and David Anderson were responsible for the statistical analysis. Jack Stephens and Mihai Marasteanu made presentations on the round robin results at the workshops held at NECEPT and CAP Lab in January 1999.

Scope of This Report

This report documents the development and the results of the second round robin held in the northeast in spring-summer 1998. Specifically, this report includes:

- 1. Instructions and testing schedule sent to participants.
- 2. Test results.
- 3. A commentary of the test results and the statistical analysis of the round robin results.
- 4. Conclusions and recommendations.

The chapters that follow present these topics in detail. Supporting information is contained in the appendices to this report.

2. MATERIALS AND TESTING PROGRAM

As mentioned in the previous chapter, the main objective of this round robin was to provide support for NECEPT work plan R-6 that addresses binder QC/QA issues. As a consequence, the round robin included specification testing for both DSR and BBR, RTFOT aging followed by PAV aging, as well as tests on the DSR reference fluid, DSR strain sweeps, and rotational viscometer testing.

Materials

Two sets of asphalt binders were sent to the participants. The first set contained four asphalt binder samples in the unaged condition. The four samples were labeled PSU1, PSU2, PSU3, and PSU4. However, PSU1 was identical with PSU4 and PSU2 was identical with PSU3. The asphalt binder in the PSU2 and PSU3 samples was a plain PG 64 - 22, while the asphalt binder in the PSU1 and PSU4 samples was a modified PG 70 - 22. Each participant received enough material to be able to perform a complete MP1 set of tests.

The second set contained four asphalt binders that have been previously aged in the PAV at the CAPLab facility. The four samples were labeled 1, 2, 3, 4, but similar to the previous set, samples 1 and 4 were identical and samples 2 and 3 were identical. These samples were used only for BBR testing at – 18°C.

Testing Program

The testing program included specification testing for DSR including strain sweeps, BBR testing, tests on the DSR reference fluid, and rotational viscometer testing. The 8-mm parallel plate testing was not included in the round robin. They will be soon replaced with the 12-mm plates and therefore there was no benefit to include additional testing in the round robin. A detailed description of the testing program is given in Appendix B. No other special testing instructions were given; it was assumed that each laboratory was familiar with and used the current AASHTO test methods.

Test Results

Each of the participating laboratories received, in addition to the samples to be tested and the testing program, a floppy disk with specially formatted Excel files to input the test results. This approach simplified considerably the handling of the large volume of data received from the participants. The test results from the participating laboratories are tabulated in Appendix C. The identification of the participants was coded and each participant received only their own individual code number. Plots of the test results are given in Appendix D. Additional interpretation of the test results is given in Dr. Jack Stephens' presentation displayed in Appendix E. The tabulated data was further used to calculate the variability within and between laboratories. A detailed description of the statistical analysis performed in this study is provided in the next chapter.

3. STATISTICAL ANALYSIS

The testing program described in chapter 2 consisted of several separate experiments performed on each of the materials sent to the participants. Each of these experiments were by design nested experiments. The analyses of the resulting data from these experiments were performed using the Nested Procedure in the SAS statistical package. The SAS procedure provided estimates for the appropriate variance components that were the basis for the evaluation of the sources of variation which occur with each of the measurement processes. This approach is detailed in the subsequent paragraphs.

Two models were used for the analysis of variance. The first model was used with the data obtained on the asphalt binder samples for which aging was not required:

 $Y(i,j) = \mu + LAB(i) + ERR(i,j,)$ (1)

where

ERR(i,j)

Y(i,j) = the Y value measured by laboratory i using sample j

 μ = μ is the overall mean for Y(i,j)

LAB(i) = the laboratory effect for laboratory i in the study. This is the laboratory bias at laboratory i under the conditions that were present when these measurements were made. This bias may well depend upon conditions as well as materials. Thus, a separate analysis was done for each material. The LAB(i) effects (bias) are assumed to be normal random variables from some population with mean of zero and variance of VAR(LAB). The VAR(LAB) or the coefficient of variation due to the Lab, CV(Lab), is needed to establish a bias statement.

the final error component in the measured values and it is often called the experimental error. It is better described as the within laboratory measurement error. It is assumed to be from a normal population with mean of zero and variance of VAR(ERR) with corresponding coefficient of variation of CV(ERR). The CV(ERR) is for a single measured value of a given item. The standard deviation, which is equal to the square root of the VAR(ERR), is the within laboratory D1S, an estimate of the "repeatability" used in the precision and bias

statement.

The second model was used with the data obtained on the asphalt binder samples for which aging was required:

$$G^*(i,j,k) = \mu + LAB(i) + AGING(i,j) + ERR(i,j,k)$$
 (2)

where

Y(i,j,k) = the Y value at LAB i using material from AGING run j (at LAB i) with sample k

(from AGING run j in LAB

 μ = μ is the overall mean for Y(i,j,k)

LAB(i) = same as in the first model

AGING(i,j) = is the effect of run j of AGING at laboratory i and is assumed to also be a normal random variable with mean of zero and variance of VAR(AGING) with corresponding coefficient of variation of CV(AGING). The CV(AGING) or coefficient of variation due to replicate aging runs is needed in order to establish a precision and bias statement.

ERR(i,j,k) = same as in the first model.

A summary of the estimated variance components obtained by applying the two models described above to the test data is given in table 3.1. Detailed descriptions of each of the analysis of variance performed in this study are given in Appendix F. Table 3.1 also includes the corresponding coefficients of variation for the variance components, which are needed to make judgements and recommendations. The coefficients of variation were calculated as a percentage of the overall mean for the measurement of interest. Some important observations can be made based on the results summarized in table 3.1. For the DSR based specification, G* dictates the amount of variation observed in G*/sinδ. The phase angle δ has a very small coefficient of variation, typically less than 0.5%, and has almost no influence on the variability of the specification values. An interesting trend is noticed in the DSR results on the aged materials. For asphalt binders PSU1 and PSU4 (identical) the coefficients of variation due to laboratory effects, at both test temperatures, were lower than the coefficients of variation due to aging. The opposite situation is noticed for PSU2 and PSU3 (identical) for which the aging effects are lower than the laboratory effects. This trend is not noticed in the BBR data. However, the BBR stiffness data on PAV-aged materials revealed a different trend. At the higher test temperatures, characterized by smaller stiffness values, the laboratory effects are significantly lower than the laboratory effects at the lower temperatures characterized

by higher stiffness values. This observation is valid for both PSU1&PSU4 and PSU2&PSU3. For the pre-PAV materials the laboratory coefficients of variation were similar with the coefficients of variation for the PAV materials at the lower temperature. This suggests that the aging process, including both RTFOT and PAV, is very repeatable from one laboratory to another.

The coefficients of variation that correspond to the appropriate sources of variation provide the basis for the estimation of the D1S and D2S for both the within laboratory (repeatability) and between laboratories (reproducibility) sources of variability. In all cases the within laboratory D1S is simply the within laboratory standard deviation, or if a percentage D1S is desired, it is the error coefficient of variation CV(ERR). This represents the best estimate of the standard deviation for the repeated measurements on a given material at a given laboratory. If we have two such measured values for the same material at a given laboratory, then the difference of the two measured values will be a random variable with mean zero and a standard deviation of 1.414 D1S. It follows that this difference in absolute value should be less than 2.8 D1S, with a probability of 95%. This value of 2.8D1S represents the within laboratory D2S value.

The measures for the reproducibility, i.e., the between laboratories D1S and D2S are not so simply defined. The D1S in this case is the standard deviation of a random measurement of a given material if we choose a laboratory at random, then choose an AGING run at random (if any aging is included), then perform the measurement on the sample. This entire process is to be repeated so that the set of such values will have different laboratory effects, different AGING effects (if aging is required), and different measurement effects. This standard deviation is a good indicator of the variation to be expected when measured values are obtained from various laboratories. If two identical materials are sent to two different laboratories, and each of these then age the samples and then measure a property of interest, the difference in these two measurements should be less than 2.8D1S, with a probability of 95%. This value of 2.8D1S represents the between laboratories D2S value. A summary of the D1S and D2S values obtained in this study are given in table 3.2.

It should be mentioned here that the data from some laboratories were deleted from the analyses when it became clear that their inclusion would have distorted the results in an unreasonable manner. Engineering judgement and consideration of means and standard deviations were used to select the outliers that were omitted in the statistical calculations. All such omissions were noted in the extensive statistical analyses presented in Appendix F. A summary of the laboratories that have data removed as outliers is given in table 3.3. Please note that in the case of the DSR test data if one laboratory had its G* results

removed as outliers its G*/sinô results would be also removed as outliers. Discussions with the affected laboratories made it clear that the data in these cases were not at all representative of their ability to carry out these tests in the future. These extremes do, however, add to the evidence that there must be some means for each laboratory to evaluate their own performance carefully in the future, with or without the aid of outside help.

One of the means available for monitoring performance on the DSR 25-mm parallel plate testing is Cannon Instrument Company viscosity standard (reference fluid) N2700000SP. The fluid, a polybutene, is considered to be Newtonian at 52°C and above, and as a consequence the viscosity written on the bottle is approximately equal to the complex modulus G^* divided by the measurement frequency in radians per second, $\eta = |G^*|/\omega$. The fluid is linear over a wide range of strains and is significantly less temperature-dependent than asphalt binders. This makes the fluid a good tool for verifying the calibration of a rheometer, provided that the temperature measuring system of the rheometer is first properly calibrated.

In this round robin, the reference fluid was tested at two temperatures, 64°C and 76°C, using a combination of two strain levels, 1% and 10%, and two frequencies, 1rad/s and 10rad/s. Each test was replicated once. The results are summarized in figures 3.1 and 3.2 in Appendix D. The statistical analysis performed on the reference fluid data indicated that at both test temperatures laboratory, replicate, frequency, and strain level had significant effects on the reference fluid data. The effects were stronger for laboratory, replicate and frequency, which were characterized by p-values of 0.0001, than the strain effect characterized by a p-value of 0.05. However, this conclusion should be interpreted with caution as only 5 laboratories sent complete information for the reference fluid testing. In addition, due to the limited amount of test data available no outliers were eliminated from the set of data. Figure 3.3 in Appendix D shows the percent differences of the results from the viscosity value of 264.5 Pa.s at 64°C. No reference fluid viscosity value is given on the bottle for 76°C.

The strain sweeps performed in this round robin did not indicate any significant strain dependency for the complex modulus and the phase angle. The results did indicate however increased levels of testing noise, especially in the phase angle data. The noise is associated with the performance of the equipment rather than tested material properties. The strain sweeps test results are displayed in graphic format in Appendix D.

Table 3.1. Variance components and corresponding coefficients of variation obtained in the round robin.

							CTS			CV%	
Condition	Test	Parameter	Sample	Temperature	Mean	Lab	Aging	Error	Lab	Aging	Error
				135°C	1014	71.7		26.3	7.1%		2.6%
		•	PSUI&PSU4	165°C	285	38.0		9.6	13.4%		3.4%
	RV	Viscosity		135°C	450	38.7		7.6	%9.8		2.2%
			PSU2&PSU3	165°C	126	13.6		5.0	10.8%		4.0%
				70°C	1395	82.2		51.1	2.9%		3.7%
		:	PSU1&PSU4	J.92	765	43.2		28.4	. 5.6%		3.7%
		<u>*</u>		64°C	1458	111.8		55.4	7.7%		3.8%
			PSU2&PSU3	70°C	702	44.3		29.1	6.3%		4.1%
Tank			-	70°C	75.9	0.336		0.798	0.4%		1.1%
			PSU1&PSU4	76°C	78.0	0.478		0.343	%9.0		0.4%
	DSR	Ø		64°C	86.4	0.410		0.281	0.5%	-	0.3%
			PSU2&PSU3	70°C	87.8	0.735		0.274	%8.0	٠	0.3%
				70°C	1439	8.98		54.5	%0.9		3.8%
			PSU1&PSU4	76°C	782	44.1	•	29.4	2.6%		3.8%
		G* /sin 8		64°C	1462	101.2		55.1	%6.9		3.8%
			PSU2&PSU3	70°C	702	44.4		29.2	6.3%	•	4.2%
		•									

Buble 3.1. Variance components and corresponding coefficients of variation obtained in the round robin, cont'd.

	Error	4.4%	3.7%	5.1%	4.4%	%9.0	0.5%	0.2%	0.5%	4.6%	3.8%	5.1%	4.4%	
CV%	Aging	7.5%	8.4%	4.1%	3.6%	%9.0	%9.0	0.2%	0.2%	7.8%	%9.8	4.2%	3.6%	
	Lab	2.9%	3.9%	2.6%	6.8%	0.5%	0.5%	%9.0	0.7%	3.0%	3.9%	5.7%	%8.9	
	Error	145.6	65.2	168.6	. 89	0.395	0.400	0.190	0.197	159.9	70.3	170.5	68.34	
STD	Aging	248	150.1	136.5	55.9	0.423	0.456	0.159	0.129	270.8	160.3	138.7	56.53	
	Lab	95.7	6.89	184.9	105.2	0.329	0.341	0.526	0.608	106.1	73.5	188.7	106.4	
,	Mean	3299	1784	3313	1555	71.0	73.2	82.8	84.8	3490	1863	3339	1561	
	Temperature	70°C	J.92	64°C	70°C	.70°C	2°97	64°C	70°C	70°C	2°97	64°C	70°C	
	Sample	DCI11.8.DCI14	F30164 304	Det 12.9. Det 13	rockrock	NGT11.8.0C11.	rocierso4	DC112 8.DC113	rsuzærsus	DOTT1 0.DOTT4	rs01&rs04	CITOG. DCT 12	rs02&rs03	
	Test Parameter	·		<u>-</u> <u>-</u>			e	0			•	C* /sin o		
	Test						Ç	USK	ŕ					
ndix	Condition						£ C	KIFOI	·					

Table 3.1. Variance components and corresponding coefficients of variation obtained in the round robin, cont'd.

	Error	3.4%	3.8%	4.2%	3.4%		1.7%	1.5%	2.0%	2.2%	4.5%	3.3%	1.7%	2.3%
CV%	Aging	4.6%	2.5%	4.0%	2.7%		1.6%	1.1%	1.0%	1.3%				
	Lab	6.2%	10.1%	4.2%	9.7%		2.5%	3.3%	3.0%	5.1%	%8′6	10.9%	3.7%	5.6%
	Error	4.6	10.7	6.2	11.1		0.0057	0.0041	0.0070	9900'0	7.348	688.6	0.0058	0.0071
STD	Aging	6.2	7.1	5.9	9.8		0.0052	0.0032	0.0037	0.0039				
	Lab	8.3	28.2	6.3	31.3		0.0081	0.0094	0.0104	0.0148	16.15	32.26	0.0131	0.0173
	Mean	134	279	149	323		0.327	0.281	0.351	0.293	164	297	0.352	0.310
	Temperature	-12°C	-18°C	-12°C	-18°C		-12°C	-18°C	-12°C	-18°C	, 00 +) (1)	7001)_0T-
	Sample	DCT11 & DCT14	rs01&rs04	DCT 17.9. DCT 13	F302&F303	٠	Detti & Detti	r3010&r304	DCT 17 8.DCT 12	rouzerous	1&4	2&3	1&4	2&3
4	Test Parameter		0	a			٠,	1	Ħ		Č	n .		EI -
	Test					BBR						; ;	BBK	
	Condition					PAV						; ; ;	PRE-PAV	

Table 3.2. Summary of D1S and D2S values obtained in the round robin.

ppend						Within	hin	Betv	Between
≍Condition =	Test	Parameter	Sample	Temperature	Mean	DIS	D2S	DIS	D2S
	•		t			. (i	
			PSIII&PSII4	135°C	1013.6	7.6%	7.3%	7.5%	21.3%
	ΔΩ	Vicoocity		165°C	284.5	3.4%	9.5%	13.8%	39.0%
	4	v iscusity	Del 12 & Del 13	135°C	450.2	2.2%	6.1%	8.9%	25.1%
			1 30202 1300	165°C	126.2	4.0%	11.2%	11.5%	32.5%
			DCTI1 & DCTI	70°C	1394.8	3.7%	10.4%	%6.9	19.6%
		* <u>*</u>	ractor act	2°97	765.1	3.7%	10.5%	%8.9	19.1%
		<u>-</u> 2	DCI 10 8-DCI 13	64°C	1457.6	3.8%	10.7%	8.6%	24.2%
Ē.			F30202	70°C	702.1	4.1%	. 11.7%	7.5%	21.3%
1 ank		-	DCTI1 & DCTIA	70°C	75.9	1.1%	3.0%	1.1%	3.2%
	נייל	υ	rs01&rs04	76°C	78.0	0.4%	1.2%	%8.0	2.1%
	ASC	0	DC1128-DC113	64°C	86.4	0.3%	%6.0	%9.0	1.6%
			rocker son	70°C	87.8	0.3%	%6.0	%6.0	2.5%
			DC111.8.DC117	70°C	1438.6	3.8%	10.7%	7.1%	20.1%
		۵ :: //- * کا	roctor so-	2°97	782.1	3.8%	10.6%	%8.9	19.2%
·			Delizarania	64°C	1461.6	3.8%	10.7%	7.9%	22.3%
-			1307051	70°C	701.8	4.2%	11.8%	7.6%	21.4%

Table 3.2. Summary of D1S and D2S values obtained in the round robin, cont'd.

				·		Within	nin	Between	reen
Condition	Test	Parameter	Sample	Temperature	Mean	· D1S	D2S	DIS	D2S
						-	-		-
			DC111 6.DC114	70°C	3298.5	4.4%	12.5%	9.5%	26.0%
		-	FSUI&FSU4	76°C	1783.6	3.7%	10.3%	10.0%	28.2%
		<u>"פ</u>	CT TO C O CT YOU	64°C	3312.8	5.1%	14.4%	%9.8	24.3%
•			FSU2&FSU3	2°07	1554.5	4.4%	12.4%	8.8%	25.0%
•			Litor o tiror	70°C	70.98	%9.0	1.6%	%6:0	2.7%
			PSUI&PSU4	2°97	73.24	0.5%	1.5%	1.0%	2.7%
RTFOT	DSR	Ø		64°C	82.79	0.2%	%9.0	0.7%	2.0%
			PSUZ&PSUS	70°C	84.8	0.2%	0.7%	%8.0	2.2%
				70°C	3490.2	4.6%	13.0%	9.5%	26.9%
			PSUI&PSU4	J.92	1863.1	3.8%	10.7%	10.2%	28.8%
		G*/sin d	CT TOOL O CY TO C	64°C	3338.8	5.1%	14.4%	8.7%	24.5%
			PSU2&PSU3	70°C	1560.9	4.4%	12.4%	8.9%	25.1%
-									

Table 3.2. Summary of D1S and D2S values obtained in the round robin, cont'd.

penc						Within	hin	Between	veen
x.Condition	Test	Parameter	Sample	Temperature	Mean	D1S	D2S	D1S	D2S
				-12°C	134.4	3.4%	%2.6	8.4%	23.9%
		Ċ	P S∪1&PS∪4	-18°C	279.3	3.8%	10.8%	11.1%	31.4%
		Ω	DCI 17 & DCI 13	-12°C	149.0	4.2%	11.8%	7.1%	20.2%
. 6	ţ		1 20 20 1 20 2	J.81-	322.6	3.4%	6.7%	10.6%	30.1%
PAV	BBK		DC111 0.DC114	-12°C	0.327	1.7%	4.9%	3.4%	%1.6
		;	rs01&rs04	-18°C	0.281	1.5%	4.1%	3.8%	10.8%
		Ħ	DCI 12 & DCI 12	-12°C	0.351	2.0%	2.6%	3.7%	10.5%
			roczerscy	-18°C	0.293	2.2%	6.3%	5.7%	16.1%
		c	1&4	7001	164.26	4.5%	12.7%	10.8%	30.5%
מממ	d d	n	2&3) oī-	296.540	3.3%	9.4%	. 11.4%	32.2%
rke-rav	DDK	1	1&4	C.81	0.352	1.7%	4.7%	4.1%	11.5%
		I I .	2&3) (1.	0.310	2.3%	6.5%	%0:9	17.1%

Table 3.3. Outliers omitted in the statistical analysis performed in the round robin.

Laboratory identification number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20			X X X X X X X X X X X X X X X X X X X	
Temperature	135°C 165°C 135°C 165°C	70°C 76°C 64°C 70°C	70°C 76°C 64°C 70°C	70°C 76°C 64°C 70°C
Sample	PSU1&PSU4 PSU2&PSU3	PSU1&PSU4	PSU1&PSU4 PSU2&PSU3	PSU1&PSU4 PSU2&PSU3
Parameter	Viscosity	<u>*</u>	ω	G* /sin &
Test	RV		DSR	
Condition			Tank	

Table 3.3. Outliers omitted in the statistical analysis performed in the round robin, cont'd.

Laboratory identification number 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	X X X X	X X	X X X
Laboratory ide 1 2 3 4 5 6 7 8 9 1			
Temperature	70°C 76°C 64°C 70°C	70°C 76°C 64°C 70°C	70°C 76°C 64°C 70°C
Sample	PSU1&PSU4 PSU2&PSU3	PSU1&PSU4	PSU1&PSU4 PSU2&PSU3
Parameter	<u>*</u>	ω	G* /sin 8
Test		DSR	
Spudition	·	RTFOT	

Table 3.3. Outliers omitted in the statistical analysis performed in the round robin, cont'd.

Laboratory identification number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20		X	
Temperature	-12°C -18°C -12°C -18°C	-12°C -18°C -12°C -18°C	-18°C
Sample	PSU1&PSU4 PSU2&PSU3	PSU1&PSU4	1&4 2&3 1&4 2&3
Parameter	Ø	a	so a
Test		BBK	BBR
Condition		PAV	PRE-PAV

4. CONCLUSIONS AND RECOMMENDATIONS

The round robin held in the northeast in 1998 provided an extensive set of data that was statistically analyzed to identify and quantify the sources of variability in the testing of asphalt binders. The experimental design of the round robin made possible the analysis of the contributions of both RTFOT and PAV aging process in addition to the laboratory effects and the effects of the final measuring process.

The magnitude of the various sources of variability and of the resulting D1S and D2S were summarized in chapter 3. A detailed description of the statistical analysis performed is given in Appendix F. A few important comments should be made here. All the components of variance have been estimated with a very large degree of accuracy as evidenced by their large degrees of freedom. This is due to the pooling of this information over the laboratories. That is why particular care was taken to exclude all the unreasonable outliers in the data set so that this pooling would not be affected by the inclusion of bad data points. The laboratory component was estimated with the least accuracy. This is a characteristic of round robin studies in general.

In this study, different asphalt binders were tested at different temperatures. It was very fortunate that when the components of variance were evaluated for different temperatures or different materials it was found that the corresponding coefficients of variance remained quite stable. This is important because the data can be further pooled to provide increased accuracy in the estimation of the components needed in the development and evaluation of QA/QC plans.

The study also indicated that more research is needed to further investigate some of the issues addressed in this study. One issue is the increased laboratory variance component observed in BBR tests where higher stiffness values are measured. Another issue is the effect of frequency and strain level on the reference fluid viscosity measured with the DSR equipment. The statistical analysis indicated that both were significant, but the set of data was very limited due to the reduced number of laboratories that sent data. The testing program proposed in this study should be repeated in order to obtain a complete set of data that would validate if strain level and frequency have a significant effect on the measured reference fluid viscosity.

REFERENCES

- 1. Precision of Dynamic Shear Rheometer in the Northeast Round Robin Study, NECEPT Regional Pooled Fund Study, PTI Report 9932, May 1999.
- 2. Northeast DSR-BBR Workshop, NECEPT Regional Pooled Fund Study, PTI Report 9930, September 1998.

APPENDIX A ROUND ROBIN ANNOUNCEMENT

CAPLab

Connecticut Advanced Pavements laboratory

NEAU/PG

Northeast Asphalt User/Producer Group

ROUND ROBIN ANNOUNCEMENT

April 6, 1998

You are invited to participate in a round robin organized by NECEPT and the Connecticut Advanced Pavements Laboratory (CAPLab). The round robin is a follow up of the two DSR/BBR Test Procedure Workshops held in January. You will find enclosed the asphalt binders to be tested in the round robin, the testing instructions and a floppy disk containing an Excel 5.0 file to input the test results. If you have any questions please contact

Mihai Marasteanu
NECEPT
201 Research Office Building
The Pennsylvania Transportation Institute
University Park, PA 16802
Tel. No. (814) 863-8010
FAX No. (814) 865-3039

mom1@psu.edu

After you finish all your testing, enter the test results in the Excel file contained in the provided floppy disk and return the disk to the above address. We expect to receive the floppy disk with your results between May 15th and May 31st, 1998.

e-mail:

Thank you for your participation.

APPENDIX B

And the state of t

ego (jake o su zerese) se ile su zerese.

ROUND ROBIN TESTING PROGRAM SENT TO PARTICIPANTS

1. MATERIALS AND TESTING SCHEDULE

1.1. Reference Fluid

The reference fluid (viscosity fluid) is not supplied with the samples shipped to you. It must be purchased separately from Canon Instrument. The part number for the viscosity standard is: N2700000SP. Canon can be reached at Canon Instrument Company, PO Box 16, State College, PA 16804, Tel: (814) 353-8000, Fax.: (814) 353-8007. When ordering the material, ask for a 55ml container. The fluid should come with a calibration at 64°C (other temperatures, such as 58 and 70°C may be included but they are not needed in this work.) A small amount of viscosity fluid will last for a considerable amount of time and there is a definite expiration date for the fluid. It should not be used beyond the expiration date.

The objective in using the reference fluid is to test at two temperatures, two frequencies, and two strain levels. Because different models and brands of rheometers vary in their sensitivity it is difficult to recommend a common set of test conditions. Try to use the following schedule:

- Mount the reference fluid between the 25-mm plates with the usual sample bulge and start the testing at 64°C and 1 rad/s (if you cannot set your machine for 1.0 rad/s skip to 10 rad/s.)
- Increase the stress or strain until you are in the lower limit of the range of stress or strain that can be reliably measured by the instrument. At this point the strain will likely be 0.5 to 2 percent. This will be your "low strain" measurement.
- Increase the stress or strain by a factor of 10 20 and obtain a second reading. This will be your "high strain" measurement.
- With the same sample, increase the frequency to 10 rad/s and repeat the above.
- With the same sample, increase the temperature to 76°C and repeat the steps above.

The fluid is very linear in the 64 to 82°C range. You can vary your strain values from 0.5 to 60 percent when making measurements but also stay within the capabilities of you instrument. Not all instruments can cover this range of strain values when testing the fluid.

If you want to validate the calibration of your rheometer, your measured G* value in Pa (at 10 rad/s and 64°C) should be equal to ten times the 64°C viscosity value in Pa-s (printed on the bottle). If the two values disagree by more than 3 to 4 percent the calibration of your DSR may be suspect.

1.2. Asphalt Binders for BBR Testing - No Aging Required

You will receive four, three ounce cans of material for BBR testing. They are labeled as 1, 2, 3, and 4. The testing required is shown in Figure 1. Each can contains sufficient material for preparing a set of two or three test beams. From each can, prepare one set of beams for testing at -18°C. The beams should be poured simultaneously, not at different points in time. If you prepare a set of three beams, report the values from the first two beams tested. Do not test three beams and selectively report the data from two of the beams. Use the third beam in the set only in the event that one of the first two beams break or is otherwise destroyed during the testing operation. If possible, measure the thickness of the two mold end inserts used to cast each beam and enter the average of the two measurements as the thickness of the sample in the BBR software.

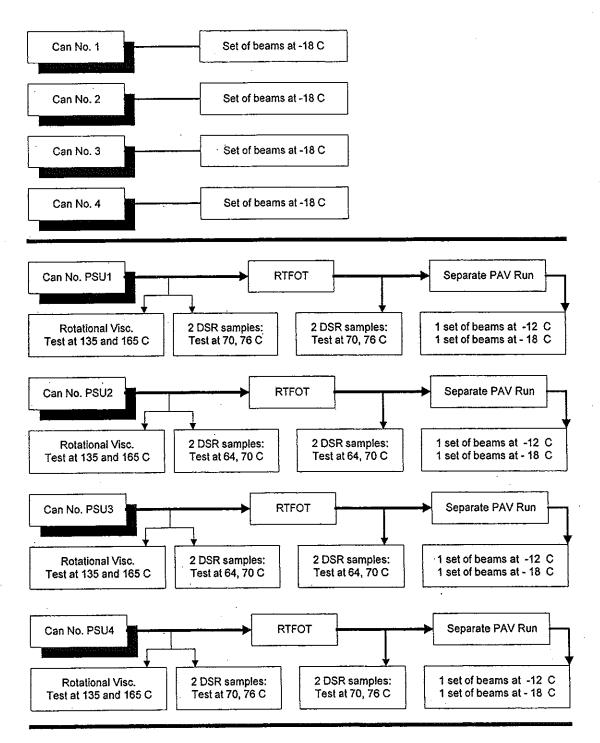
1.3. Asphalt Binders for Aging - RTFOT and PAV Aging Required

The asphalt binders in the one-quart cans labeled PSU 1 through PSU 4 are for RTFOT aging followed by PAV aging. A flow diagram describing the aging and testing sequence for the asphalt binders in the cans labeled PSU 1 through PSU 4 is shown in the attached figure. The material is to be aged in the RTFOT (use all 8 bottles and mix them together before pouring the material for the PAV and the DSR testing; mass loss is not required in this experiment) followed by aging in the PAV. Use a separate PAV runs for the material in each of the four cans. This will require four separate PAV runs. The schedule of testing for samples PSU1 through PSU4 is as follows:

- Tank material one viscosity test. Test the tank material in the rotational viscometer at 135°C and 165°C by increasing the temperature from 135°C to 165°C.
- Tank material two DSR tests using the 25-mm plate. This means mounting two separate samples in the DSR. The two samples may be tested immediately one after the other.
- Tank material one strain sweep. Once the grading temperature has been determined, if your equipment permits, conduct strain sweeps on a sample from each can, PSU1 through PSU4. See Section 1.3.1 for additional directions.
- RTFOT residue two DSR tests using the 25-mm plate. Again, this means mounting two separate samples in the DSR. The two samples may be tested immediately one after the other.
- PAV residue two BBR beams at -12°C and two BBR beams at -18°C.
- * Note: This round robin does not include any testing with the 8mm DSR plate.

The above testing schedule must be repeated for each of the four cans, PSU1 through PS4. Use 70°C as the starting temperature for PSU1 and PSU4. Use 64°C as the starting temperature for PSU2 and PSU3.

1.3.1. Strain Sweeps


The current version of the AASHTO specification requires strain sweeps (AASHTO Designation: TP5-93, Edition 1C, June 1997). Specific instructions for determining strain sweeps are given in the specification. The strain sweep must be conducted on a newly mounted sample at the grading temperature.

For the purposes of this round robin, conduct one strain sweep (four sweeps in total) on the unaged material from cans PSU1 through PSU 4. The strain sweep is conducted at the grading temperature. A copy of the Annex to the specification that describes how strain sweeps are to be measured is attached. If you do not know how to do a strain sweep please contact your rheometer manufacturer. You may need new software in order to conduct the strain sweep. If you are unable to conduct strain sweeps, proceed with the other testing and omit the strain sweeps.

2. REPORTING OF DATA

A 3.5 in floppy disk is included with this instruction sheet or with the test samples. The floppy disk includes an Excel spreadsheet file for entering the data. The worksheets within the file have been protected so that you do not have to worry about changing the format. Please enter the data as directed on the spreadsheet. The floppy is to be returned to the address printed on the floppy. Do not try to reformat the file. If the file format does not fit the data, call Jim at 860-486-5956 (UConn) or Mihai at 814-863-8010 (NECEPT).

In general, all data should be reported to three significant digits, e.g. 64.1°C, 981, 0.000675, etc. The only exception is the R² for the BBR, which should be entered as per the data sheet for your BBR.

Note: In the above, "2 DSR samples" means to mount two separate samples in DSR and test one after other. A "set of beams" means two BBR beams molded at same time and tested one after the other.

APPENDIX C ROUND ROBIN TEST RESULTS

Table C1. Rotational viscosity data.

Call IIO. Test Tellip	-	2	3	4	5.	9	7	6	8	10	11	13	14	16	17	18	19	20
	52		22	12	21	200	*2			8Z-80	7.7		66		2.2			<u></u>
	1010	1054	1050	1013	1055	1000	1005	947	1200	1440	995	1050	1127	968	1050	066	875	935
	1010		1050	1013	1055	1000	1005		1188		995	1038	1127	961	1050		998	935
	1010		1050 1050	1013	1055	1000	1002		1188		995	1050	1127	957	1050		866	935
	273	290	263	275	288	295	280	382	325	312	274	288	304	256	295	280	193	253
	273		263	263	288	295	280	÷	325		274	288	304	256	295	268	193	253
	273		263	275	288	295	278		325		274	288	304	256	295	•	193	253
			265			295			325								-	
	425	536	438	438	450	475	435	519	448	732	440	438	445	417	488	425	313	378
	425	_	438	438	450	463	433		445		440	438	445	416	488	422	312	378
	425	•	435	425	450	463	433		445	•	440	438	445	415	488		313	378
			437			463			445						•			
	117	157	135	113	126	135	118	123	123	216	126	113	120	113	140	120	75	108
	117		130	113	126	135	115.0		120		126	113	120	112	140	117	73	108
	117		133	113	126	135	118		120		126	113	120	112	140		74	108
		-	133			135			118	·-								
	425	535	433	425	450	200	448	545	443	655	445	438	448	442	563	425	390	400
	425		433	425	450	200	450		443		440	450	448	438	563	423	385	400
	425		433	425	450	200	445		443		440	438	448	436	563		385	400
			433			200			443				•					ŧ
	116	158	140	113	128	145	125.0	346	123	205	124	125	121	115	160	120	09	108
	116		138	113	128	140	123		123		124	125	121	114	155	118	61	108
	117		138	113	128	140	125.0		125	•	124	125	121	115	160		62	108
		•	138			140			123									
	995	1054	1010		1030	1025	1083	951	1125	1320	066	-	1130	961	μ.	1035	808	940
	995		1010	1000	1030	1025	1080		1113		995	1025	1130	962	1150	1006	807	940
	995		1005		1030	1025	1083	•	1113		995		1130	962	_		808	940
			1010	-		1025			1113					•				
	268	293	285	275	285	290	295	388	300	420	276	275	307	269	325	295	179	255
	268		285	263	285	290	298		300		274	275	307	270	325	276	173	255
	268		283	263	285	290	298		300		274	275	307	271	325		173	255
	-		283			295	-		300									

Table C2. G* test results for the unaged asphalt binder samples.

20	1425	768	1435	184	080	803	1492	723	į	1497	7.07	7	4447	<u>+</u>	- 60		1451	797	2		1423	\alpha_1
19	1411				404 404			653	}	1423				-	9		1354	5			í	33
18	1355			729	1433			623	}		205	C C C	2	5041			1453	}			ļ	790
17	2674 1480	775	1454	4174	1/28	743	3/6	2,8	403	1764	200	0 · 0	473	/901	878	423	2954	022	750	2974	1535	808
16	1799			880	1538			730	3	1656	2				821		1651	3				1004
15	1299	691	1362	741	7250	929	2010	677	<u> </u>	1180	2 6	റ്റ	i i	1550	800		4470	2 5	200		1260	710
14	1391	768	1718	964	1490	730	1863	5 5	5	1517	2 1	Č	1	2115	1044		1997	1207	0C/		1744	939
13	1441	770	1472	810	1451	969	4455	726	120	1441	- 6	222	,	1413	200				<u>.</u> 0/			778
1	1583	833	1459	787	1349	661			† 00 —	4400	2 2	2 2 2		1392	673		_		cs/		1413	765
10	1300	720	1280	724	1420	685	0	က် ကို	700	4440	1 6	069		1430	691				/53		1320	729
.6	1232		,	674	1344			i.	000	1001	+ OC				637		30,7	1188				662
8	1620	006			1353	629				7 500	0001	167						•	912			
7	1263	692	1270	685	1326	641			656	320	1413	678	349	1398	670	343	┞—		717		1395	766
9	2604 1434	2	1342		1379	723		1498	745	107	149/	753		1444	726		2461			_	1415	
r.	1444	752	1432	. 760	1359	691		1393	681	-		700		1436	708		╄	1452	768		1380	765
4	1365	,		785	1503			:	653	_	1470			989				1313				777
ო	1414	777	1421	787	1426	677		1430	670		1429	678		1492				1439			1445	
2	1229	629	1226	662	1380	648		`	684		1431	671		1405			+	•				733
_	1411	784	1351	758	1400	674		1384	665		1387	671	******	1413	682			1405	279		1475	815
	1									M							T T		***			
Target test temp,	64	92	70 2	9/	64	20	76	64	20	9/	64	70	9/	94	2	76	64	20	9/		5 2	92
Rep. no.	-		7		-	•		7			_			ç	1	•	-			ç	4	
Sample Rep. ID no.	PSU1	•			PSU2	l))					PSU3	•		***			PSU4					•

দ্ধিble C3. Phase angle test results for the unaged asphalt binder samples. তু

)en		70.00	***																			
ample II 1D	Rep. no.	targer test temp, °C		_	2	က	4.	5	9	7	80	တ	10	~	5.	4	5	6	17	200	19	70
PSU1	1	64		·					74.2									`	73.9			
		20		75.5	76.5	76.4	76.4	76.2	75.8	76.3	76.0	76.4	76.8	75.8	75.5	76.0	76.1	75.9	76.0	75.6	76.0	75.6
		76		77.4	78.2	78.6		77.8		78.5	79.2		79.0	77.4	77.3	77.9	77.9		77.9			77.5
	7	64							74.2										74.0	١		
		20		75.7	76.4	76.3		76.2	75.9	76.3			76.8	76.0	75.5	74.6	76.0		76.1			76.0
		9/		77.8	78.2	78.6	78.4	78.1		78.5		78.5	79.0	77.8	77.5	76.9	78.2	79.3	78.2	78.0	78.7	77.9
PSU2	1	64		86.2	86.5	86.7	86.3	86.3	86.4	86.5	88.2	9.98	86.8	86.4	86.4	86.3	84.3	87.0	85.7	86.5	87.0	85.9
		0,		87.6	87.3	88.4		86.9	87.9	87.6	91.1		88.2	87.5	86.4	88.2	87.7		86.6			87.2
_		9/								··									87.3			
	7	64		86.3	86.2	86.7		86.1	86.1	86.4	•		86.8	86.4	87.4	85.6	82.7		85.7			86.3
		70		87.6	87.4	88.3	88.1	87.4	87.9	87.7		88.0	88.2	87.6	87.4	86.8	86.9	88.7	86.6	87.7	88.6	87.5
		76								89.1									87.7			
PSU3	1	64		86.3	86.6	86.8	86.7	86.1	86.4	86.3	87.5	9'98	86.8	86.3	86.2	86.4	85.9	86.8	85.8		86.8	86.3
		2		87.8	87.3	88.3		87.6	87.5	87.5	90.3		88.3	87.9	87.0	87.6	87.3		87.3	87.7		87.5
		9/			_					88.5						•			88.3			
	2	64		86.0		86.6	•	86.4	86.4	86.3			86.7	86.5	86.3	85.3	86.1		84.9	86.4		86.5
		2		87.3	87.2	88.3	88.1	87.6	87.5	87.5		87.9	88.2	87.9	87.4	86.6	87.9	88.6	86.2		88.5	87.7
		76								88.6									86.6		_	
PSU4	1	64		-			-		74.1										73.1			
		20		75.7	75.6	76.2	76.6	75.6	75.7	75.7	75.9	76.6	76.6	75.7	75.6	75.9	76.0	76.1	75.0	75.4	76.8	75.8
		76			-	78.4		77.8		77.8	79.1		78.8	77.9	77.5	78.2	78.0		6.9/			7.7.7
	~	64							74.1				•	*					73.3			
		70		75.6				75.8	75.8	75.5			76.7	76.1	75.6	74.9	75.8		70.0			75.8
		92				78.3	78.7	77.5		9.77		78.6	78.8	77.7	77.6	77.0	77.4	78.2	76.7	77.7	78.9	7.7.7

Table C4. G* test results for the RTFOT asphalt binder samples.

														_					_
20	3506	1900	3512	1941	1608) } -	3484	1643		3529	1668	3464	1603		2625	1969		3924	2145
19	3442			1	3115			1481		3794			1761		2250	26.25			1745
18	3138	1656			33/0	3				3082	1462				2444	1835	} -		
17	5534 2833	1482	2717	1385	2923	617	3187	1435	704	3264	1488	3924	1593	719		1973		3688	2027
16	3184	1761			3500	5				3332	1564					2743			
15	3280	1790	3240	178	4890		3850	1700			2090	3150				2160		3470	2000
14	3509	1923			3516			1997			1900	3056		3		2006		3819	
13	3370	1747	3315	1786	3383	7 0		1615		3252	1576	2388		3		3332		3281	_
11	3092	1617	3237	1671	3230	1/4-	3308	1474			1480	2108	2 5	200			20/-	3251	
10	3040	1700	3590	2000		0001	3450	1660		3360	1600	0800	1550	255		3080	080	2900	1610
8	3543	1985			2776	1558	·-	.:		2771	1358						2/01	_	
7	2679	1426	2784	1480	3254	1520	3305	1549		3031	1405	2006	2000	1434		3008	cnal	3080	1644
ဖ	5978 3250		5949 3216		3173	1538	3188	1572		3185		1070	7010	1333	5723	3033	i i	3008	
ĸ	3565	1914	3588	1896	3244	1498	3178	1483		3299	1574	. 7000	3301	/9cl		3142	1701	3094	1695
4	3400	1846			2815	1347				2766	1290						1493		
က	3277	1790	3296	1870	3044	1391	3127	1409		3990	1813	(3360	1506		3449	1908	25.28	1950
2	2003	1663	2832	1597	3172	1546	3340	1513		3195	1559	 { ;	3307	1572		3239	1690	2277	1701
-	3300	1857	3403	1858	3381	1592	3380	1571		3364	1555		3335	1544		3287	1788	0000	3280 1790
Target test temp,	49	2 92	64 70	76	64	2 2	o 4	2	76	64	2 2	76	64	20 20	8	70	9/	46	76
Rep. no.	-		7		F		~			ķ	-		7		F			7	
Sample ID	PSU1				PSU ₂					51130	252				PSU4				

	50	0.7	73.0	70.7	73.0	2.7	84.7		82.7	4.7		82.5	4.5	(82.6	4. 9.		0.1	72.1		9.69	8.
	19	71.2			7	83.3 8	<u>~</u>			85.4 8		82.8		•		84.4	- -	71.3				73.3 7
	8		73.3			⊢	84.8					82.8	84.8						73.0			
•	17			69.8 71.9	73.7	-	84.0	84.9	82.9	84.8	86.5	H	84.1	85.8	82.7	84.8	85.8		73.9		9.69	72.2
	9	72.1	74.6			83.3	85.4			·		83.5	85.7					69.4	71.6			
	15	6.02	73.3	70.8	73.3	81.4	84.2		81.9	84.3		81.4	83.2		81.2	83.7		80	71.9		70.7	73.0
	14	70.9	73.1	69.8	72.3	82.7	84.3		81.9	84.0		81.9	84.0		81.8	83.9		70.2	72.4		70.1	72.3
	13	70.5	72.8	7.0.7	72.9	82.8	84.7		82.6	84.6		82.9	84.7		82.7	84.7		70.9	73.2		70.8	73.1
	11	71.4	74.0	71.4	73.5	83.2	85.1		82.9	84.9		82.7	85.1		83.2	84.9		71 4	73.6	,	71.2	73.5
	10	72.0	74.3	71.0	73.2	83.0	85.0		82.8	84.9		83.3	85.3		83.3	85.3		72.1	74.4		72.5	74.8
	∞	703	73.1			84.0	87.0					84.3	87.1					74.7	74.7	:		
ples.	7	71.8	74.1	71.5	73.4	82.5	84.5		82.6	84.6		82.9	84.7		83.0	84.9		7	72.8	i	70.8	73.0
der sam	g	69.4	:	69.3		82.9	84.8		82.9	84.7	·	82.8	84.8		82.8	84.7		69.3	<u>:</u>	69.4	71.2	
alt binc	ß	70.6	73.2	70.6	73.2	82.9	84.8		83.0	84.9		83.0	84.8		82.7	84.5		7.4.7	73.7	}	70.8	73.1
T aspl	4	74.2	73.3	-		83.8	85.7					83.9	85.8					7.0.4	75.3	?		
e RTFC	6	71.2	73.7	71.2	73.4	83.4	85.5		83.4	85.5		82.9	85.1		83.0	85.2		0 0 6	73.3	5.	70.9	73.1
s for the	2	7. 7.	73.5	71.6	73.4	82.9	84.4		83.0	84.8		82.8	84.6		82.4	84.8		7 7.7	73.0	?	70.4	72.8
t result		70 5	72.7	70.4	72.6	82.4	84.4	******	82.4	84.4		82.6	84.5	889969	82.6	84.7	*****	1	70.7		70.5	72.7
ngle tes	Target test temp, °C	64	92	64 70	76	4	0	76	64	0	76	7,	· o	9	4	70	آ	64))	···	70	76
hase a	p. Tal	9 1			- [~	╀		_		_					- -		1~	┡				
CS. F	le Rep no.			- 2		1			-2									-			N .	
Beble C5. Phase angle test results for the RTFOT asphalt binder samples.	now II	PSU1				PSU2						PSU3	} }					PSU4				

Table C6. Stiffness test results at -12°C for the PAV asphalt binder samples.

	20	304	255	207	156 130	100	259	218	178	144	115	90	231	197	162	<u></u>	106	83	254	215	176	142	112	87
	19	270	224	180	109	82	301	250	200	ξě	120	92	268	225	183	991	115	88	265	222	181	2	114	89
	18	302	250	200	2 2	9	282	235	189	OC.	116	88	261	219	177	¥	111	86	253	212	171	65	107	83
	17	284	234	186	112	35	289	239	190	60	114	86	224	187	151	920	93	7.1	241	200	161	127	66	.76
	16	297	245	196	2 2 2 2 3	92	273	227	185	8	117	91	260	219	178	ě	114	89	246	209	173	142	114	91
	15				8					æ						() ()						184		
	14	299	248	198	121	83	306	253	203	0	124	94	270	227	184	89	117	91	273	229	186	9 7	118	93
	13	284	237	191	151	8	278	233	188	1	116	83	235	198	162	2	102	79	236	198	160	823	. 100	77
	11	314	261	210	1 56	86	313	261	209	88	130	100	259	218	178	#	113	89	266	224	182	47	117	92
•	10	286	236	190	149 115	88	295	245	196	#	118	91	245	206	167	:: ::	106	82	241	202	164	163	103	80
, cont'd	80	275	228	182	## 111	85	289	240	191	Ç.	117	89	253	213	174	è	111	87	241	202	164	33	103	80
amples	7	278	230	184	146 113	87	274	227	181	#	112	85	239	199	163	ö	104	81	233	193	157	7.	66	77
oinder s	9	264	220	177	139 107	82	243	201	162	8	66	75	233	196	159	82	100	78	228	192	156	2	66	78
sphalt	2	265	219	174	136 105	79	266	219	175	2	106	80	256	215	176	ä	112	87	253	212	173	663	110	98
PAV a	4	270	226	184	147 115	89	267	223	181	3	113	87	205	172	140		83	70	199	167	136	601	98	67
for the	ო	259	240	193	153 120	91	271	228	186	20	119	93	221	185	151	Š	92	74	232	196	159	25.2	101	79
: -12°C	7	295	241	191	158 116	88	294	242	192	<u> </u>	116	88	255	214	174	**	112	88	274	222	179	<u>4</u>	113	88
sults a	-	312	261	212	169 133	102	296	249	201	3	125	96	238	202	166	ä	107	83	252	212	174	971	11	86
Table C6. Stiffness test results at -12°C for the PAV asphalt binder samples, cont'd	Loading time	σ.	15	30	60 120	240	8	15	30	09	120	240	œ	15	30	09	120	240	8	15	30	09	120	240
5. Stiff	Rep. no.	~					2						_						2					
,	Sample ID	PSU3				•							PSU4					•	•					
Арр	endix l	l																						•

Table C7. m-value test results at -12°C for the PAV asphalt binder samples.

20	0.270	0.283	0.298		0.327			0.269	0.287					0			0	—		<u> </u>				0.384
19		0.258	0.284	50e 0	0.335	0.360	_		0.300		0.346	0.370	0.270		_		0.372	0.398			0.322	9 8 8	0	0.389
18	0.282	0.300			0.360	0.381	_				0.367	0.391	0.291			6369		0.423	0.297	0.319	0.343		0	0.416
17	0.297	0.299	0	# C	0.366	0.388	0.258		0.308	3 3 5	0.361	0.387	0.292	_		0.870		0.423	0.293	0.313	0.338	<u> </u>		0.410
16	0.267	0.277	0.288	0 298	0.309	0.319	0.257	0.272	0.288	978.0	0.321	0.337	0.271	0.290	0.312	6 6 6 6 6	0.354	0.376	0.277	0.292	0.309		0.343	0.359
15				8					_	8						0.346		- 2		_	~			
14	0.266	0.285		0.327	0.348	0.369	0.270	0.289	0.310	0 332	0.353	0.375	0.285	0.305	0.327	678.0	0.371	0.393	0.287	3 0.309	0.333	O	3 0.381	0.405
13	0.265	0.287	0.312	926 0	0.361	0.384	0.254	0.278	0.304	088.0	0.356	0.382	0.281	0.309	0.340	0.363 (0.37)	0.402	0.432	0.299	0.323	3 0.350	6	0.408	7 0.429
7	0.268	0.288	0.309	0.331	0.353	0.374	0.269	0.287		976 0	0.345	0.365	0.284	0.305	0.329	8		0.400	0.283	0.304	0.328	0		0 397
10	0.253	0.272	0.294	9360	0.336	0.358	0.255	0.274	0.295	9318	0.336	0.356	0.283	0.306	0.331	9500	0.382	0.407	0.282	0.306	0.332	0.358	0.385	0.411
8	0.252	0.274			0.347	0.371	0.270	0.288	0.308	0 328	0.347	0.367	0.289	0.307	0.327	0.347	0.367	0.387	0.296	0.315	0.335	938 0	0.376	0.396
7	0.278	0.294	0.311	0.828	0.345	0.362		·.					0.286	0.308	0.333	0.358	0.383	0.408	0.293	0.309	0.328	3 0	0.365	0.384
ဖ	0.265	0.286			0.357		0.266		0.314	0.339	<u> </u>		0.286		0.338	0 365	,,	0.419	0.287	_	0.336	198.0	_	
ທ	0.271	0.292	0.314	333		0	0.273		0.309		åC					638.0	§0	0.401	0.279			7.5	~	
4	0.261			6.00	0.342		0.256	0.277			0.345		_			* E	0.367	0.392					0 362	
8	0.249				0.341								4-			0.048	0.374	_				0.32	0.343	
2	0.294			x.x	0 360					- 1000	0.361					7,00	0 382					0 364	0 384	
-	0.259	0.278	2000	201	0.340	0.360	0.258	0.279	0.304		0.347	269	0.286	0.309	0.334	0 m c U	0.384	0.409	0.257	0.284	0.307	283	0.359	4000
Loading time	80	15.			120	240	8	, 7.	30	000	120	240	8	7.	30	9	120	240	8	ر 1	2 - 2	90	120	01-0
	-	•					6	1					-	•					6	4				
Sample Rep. ID no.	1120	3											01130	1306										

						- ₹ ; , ,	Table $C/$. In-value lest results at -12 C tof the FA V aspirate united samples,			cont a.										
Samble ID	Rep. Lo	Loading time	1	2	က	4	5	9	7	8	10	11	13	14	15	. 16	17	18	19	20
PSU3	-	8	0.269	0.306	0.272	0.269	0.295	0.282	0.286	0.289	0.288	0.280	0.278	0.289		0.290	0.294	0.287	0.280	0.266
 	ı	15	0.291							_		0.303	0.301	0.310			0.317	0.311	0.305	0.288
		30	0.316	0.345	0.322	0.312	0.342	0.331	330	0.332	0.335	0.328	0.327	0.333		0.330	0.343		0.333	0.313
		09	0.340	0 305	8	933 93	g	0.357	() ()		698 Q	23 23 0	0.353		0 0 0	0.352	808	0.364		0.338
		120	0.365	0.385	0.374		392	383	.376	377	0.383		o ,			.373	0.394	0.391	0.389	0.363
1		240	0.390	0.405	0.400	_		0.408		_	0.407	0.404	0.404	0.401		0.394	0.420	0.418		0.388
	2	8	0.267		-	_		_	287	288		_	0.271	0.286		274	0.292	0.273		0.262
		15	0.292		_								0.295	0.308		_	0.315	0.298		0.280
		30	0.319		0.304	0.316	0.339		0.331	0.332	0.335	0.325	0.321	0.333			0.341	0.326	0.337	0.301
		9	0.245	9366	0.823	# 0 344	0.364	992.0	0.354	9380	5 0 0	946	8 8 0	9326	93 0	0.333	1980	\$ 25 0	10 0	1200
		120	0.372		0.343	0.365	0.389		0.378	0.379	0.382	0.367	0.374	0.383			0.393	0.381	0.386	0.341
-		240	0.399	0.409	0.362	0.390	0.413	0.409	0.401	0.402	0.406	0.388	0.401	0.408		0.372	0.419	0.409	0.411	0.361
PSU4	1	8	0.248	0.268	0.264	0.266	0.263				_		0.254	0.267		-	0.278	0.272		0.246
		15	0.270	0.285	0.285	0.285	0.283	0.284		0.295			0.279	0.286		0.286	0.300	0.292		0.266
		30	0.294	0.303	0.309	0.305	305	0.308	0.306	308	0.311	0.304	0.306					0.315	0.313	0.288
		9	0 0	22 0	0330	3336	8	8	7.C. O	0 %0		926		00 10 10	6000	88	2 2 0 0	60 60 60	0.00 C	030
		120	0.343	0.340	0.356	0.347	350	0.357		333	0.351	0.348	0.360	0.349				0.360	0.365	0.332
		240	0.367	0.358	0.380	0.368		0.381	0.360	0.345	0.371	0.370	0.388	0.370		0.359	0.396	0.382	0.390	0.354
r1	2	8	0.257	0.306	0.267	0.266	0.268	0.268	0.287	0.270	0.268	0.266	0.271	0.271		0.246	0.284	0.275	0.266	0.254
		15	0.278	0.316	0.286	0.285		0.286	0.301	0.290	0.288	0.283	0.292	0.288		0.263	0.305	0.295	0.286	0.276
		30	0.302	0.326	0.307	0.306	0.308	0.306	0.316		0.311	0.303		0.307			0.329	0.317	0.309	0.301
		09	0.325	0 336	0.328	6.327	6326	0.326	0330			2250	0.339	9350	0 305	0.301	0 352	533		0328
		120	0.349	0.346	0.349	0.348	0.350	0.346	0.345		0.356	0.341		0.345			0.376	0.362	0.354	0.350
•			0,10	_	0.274	0000	0.074	7 220 0	10000		0200	0.264	1 200 0	1200		0000	007	7000	010	1100

Table C8. Stiffness test results at -18°C for the PAV asphalt binder samples.

1	Ren Loading				T ,	 -		,	1	٥	÷	7 7	13	14	τ.	. Œ	17	8	9	70
time		*********	_	2		4	ç	٥	_	•	2		2	:	<u></u>				1	
C	*********		157	502	424		451	425	342	463	436	498	444	506		425	443	508	533	463
0 4	*****		200	757	278	7 7.7	397	369	291	398	387	432	382	437		368	382	439	462	403
<u> </u>	****	***	7 00 0	- L	5 6	-	300	9 7 6	2/2	236	328	368	321	368		314	319	369	389	341
200			33/	525	520	- 💥		2 8	317	980	7	908	265	308	288	997	264	304	324	285
00			3 6		2	3 200	, occ	200	160	229	727	252	214	250		223	214	248	267	236
021 040			786	190	171		183	166	126	182	184	202	170	202		184	170	197	216	192
747	` 11 ^		100	801	115	╢	466	426	335	436	488	514	480	526		397	453	592	531	385
o 1	~ ·		200	130	386	-	404	368	286	378	421	446	411	456		347	391	514	460	333
<u>'</u>	~ ~		200	252	325		342	309	237	318	355	375	346	384		294	329	431	390	279
? (2		100 K	200	44.0	-***	200	988	961	263	868	***	265	œ \$4	88	248	Ë	Ŗ	380	ä
9 5)		000	225	2,7 2,7 2,7	% -	23.2	207	159	215	239	255	231	259	- 2	209	220	290	269	192
7 6) (185	7 2 2	175	162	185	165	127	173	192	206	184	207		174	176	232	217	157
	۱۰ د	W.	532	52K	521	╈	576	511		504	613	611	500	619		494	519	965	581	519
•	ט ט		707	2 4 5	450		504	438		434	521	528	426	534	-	415	450	515	200	453
<u>∵</u> ∂			000	243	277	_	423	366		365	436	446	356	446		349	378	432	418	382
9 8			400	2	7 2 2	- 300	2	***		556	953	9.6	262	998	88	296	314	998	 	Ω (Ω)
ō Ç	_ (9 (2 6	277	<u> </u>	284	240		242	288	299	232	294		250	254	287	272	257
7	_ (208	194	197		227	188		192	229	237	182	233		209	203	228	216	204
*7	ء اا د	*	202	101	515	┪	564	500	409	520		615	525	579		527	543	599	259	400
•	ی د		040	100	737		494	431	344	450		536	454	501		459	469	518	488	347
CL (., (004	0 7	7 2		14	25.0	283	375		447	382	419		386	394	432	407	292
30	٠,		465	404	က် ကို	- 33	2 #	3	200			96		345		324	90	9	938	7
Θ (_ ,			3 8	9 6	933	370	225	181	249		301	250	279		273	264	287	271	205
120	، بي		700	707	175		223	185	142	199		241	197	222		226	210	227	215	169
7	ŧ	S	217	202	?	7	7	1												

20	4 7 7 7 1 1 2 1	23	88	263 263	7	20	89	28	9 4	i Si	စ္က	35	4	9 2	2 5	<u> </u>	2	27		23
	-			~~~		⊩	<u> </u>		**** -		!			~~		╢			₩	
19	585	508	420	344 273	210	531	462	385	60 C	202	482	416	320		7 0 7	478	411	344	98	237
18	609	523	438	3 58	227	623	537	447	368	231	540	466	391		1000	520	449	376	311	254
17	528	457	383	3.65 25.5	203	559	480	403	332	212	450	288	325	6 63 7 63 7 63	2 4	441	380	319	597	7
16	518	448	382	3 2 \$	221	493	426	360	300	204	457	398	335	088	107	455	400	341	288	240
15			· · · · · ·	65			,		%					9					34	
4	616	530	442	293 293	233	610	525	438	990	230	532	460	386	000	200	516	445	373	308	251
13	561	491	416	343	219	582	507	424	946	225	487	425	361	9 5	7 7 7	470	407	343	282	230
, E	599	516	436	380	233	623	540	455	37.5	247	517	448	380	£ 0	200	507	441	37.1	309	254
10	575	494	409	335	213	563	480	401	68.8	207	476	411	345	98	404	480	414	348	586	236
80	489	419	352	235	187	519	445	372	300	196	450	390	328		777	453	392	330	276	226
	404	343	280	176	133	375	315	258	208	129	334	281	231	5	- t					
9	200	434	360	296	188	513	441	367	385	188	452	392	329	2 2 2	720	418	360	305	25	203
2	558	478	398	325	206	549	470	398	328	204	464	410	349	B (200	10/	412	347	388	234
4	483			289 236		541			258		╂	333	_	¥ ;		╢				}
ო	513	445	371	368	200	541	470		321		444	388	328		777	1/8	405	340	283	230
2	565	487	406	324	205	570	482		326		╁╌	408		****		183	777	353	284	-
	541					╟			0.00		1-			9 9		192			-	!
_																				
tep. Loading 1 2 3 4 5 6 7 8	"	#	30	120	240		. 15	30	8	240	8	7	30	99	120	240	, (30	90	120
Rep. I	-					2					-					6	4			
Sample FID	PSU3	; ;				Il					PSU4					ij				

Table C9. m-value test results at -18°C for the PAV asphalt binder samples.

20	0.212	0.229	0.249	0.263	0.287	0.307	0.229	0.242	0.256	0.274	0.285	0.299	0.205	0.230	0.258		0.315	0.343	0.230	0.239	0.248	0.257	0.267	0.276
19	0.219	0.236	0.255	0.274	0.292	0.311	0.205	0.225		0.27	0.294	0.317	0.227	0.251	0.277	¥08 0	0.330	0.357	0.214	0.239	0.267		0.322	0.349
18	0.218	0.240	0.265	683	0.314	0.339	0.219	0.240	0.263	0.286	0.309	0.332	0.221	0.243	0.269	0.294	0.319	0.344	0.221	0.245	0.272	9 23 6	0.325	0.351
17	0.223	0.245	0.268	0.291	0.314	0.338	0.219	0.240	0.264	0.288	0.312	0.336	0.212	0.236	0.262	888 60	0.314	0.340	0.218	0.241	0.265	0.290	0.315	0.339
16	0.216	0.227	0.239	0.230	0.262	0.274	0.217	0.227	0.237	0.248	0.258	0.269	0.234	0.238	0.242	9770	0.250	0.255	0.227	0.236	0.245	9870	0.263	0.272
. 15	-			0.270			-			0.220						0.281								
14	0.224	0.241	0.260	6.23	0.297	0.315	0.215	0.237	0.261	0.285	0.309	0.333	0.223	0.247	0.273	687 0	0.325	0.351	0.220	0.243	0.269	0.234	0.319	0.344
13	0.222	0.243	0.268	0.293	0.318	0.342	0.223	0.245	0.268	0.294	0.315	0.338	0.225	0.251	0.280	9000	0.337	0.366	0.210	0.239	0.271	9 303	0.335	0.367
11	0.205	0.227	0.251	0.275	0.299	0.324	0.222	0.239	0.259		0.297	0.317	0.209	0.234	0.262	0.240	0.318	0.346	0.220	0.241	0.264	1870	0.310	0.332
10	0.191	0.215	0.241	0.267	0.293	0.319	0.222	0.241	0.262	682.0	0.305	0.326	0.240	0.258	0.278	0.298	0.317	0.337						
8	0.218	0.238	0.260	0.282	0.304	0.326	0.218	0.238	0.260	0.263	0.305	0.327	0.221	0.245	0.270	9820	0.321	0.347	0.225	0.246	0.270	65 0	0.317	0.341
7	0.240	0.259	0.280	108.0	0.322	0.343	0.239	0.256	0.275	0.294	0.313	0.332							0.258	0.277	0.298	0.319	0.340	0.362
9	0.211	0.235	0.261	0.286	0.312		0.215	0.238	0.263	0.280	0.314	0.339	0.228	0.252	0.278	0.304	0.330	0.356	0.227	0.251	0.277	908	0.331	0.357
5	0.198	0.223	0.251	0.278	0.306	0.333	0.206	0.230	0.256	2820		0.334	0.212	0.236	0.262	0.288	0.313	0.339	0.204	0.229	0.257	0.285	0.312	0.340
4	0.221	0.238	0.257	0.276	0.295	0.314	0.216	0.237	0.259	0.281	0.303	0.325	0.224	0.244	0.265	0287	0.309	0.331	0.209	0.235	0.263	262.0	0.320	0.348
3	0.204	0.230	0.258	6 286	0.314	0.343	0.221	0.241	0.263	0.285	0.307	0.330	0.232	0.253	0.275	897.0	0.321	0.344	0.246	0.272	0.301	6.334	0.360	0.389
2	0.240	0.257	0.275		0.313	0.331	0.244	0.260	0.278		0.314	0.332	0.233	0.257	0.283	9.369	0.336	0.362	0.235	0.259	0.286	513	0.340	0.367
-	0.211	0.231	0.253	0.275	0.297	0.319	0.213	0.232	0.253	0.274	0.296	0.317	0.220	0.241	0.264	0 288	0.311	0.334	0.209	0.234	0.262	682.0	0.317	0.345
Sample Rep. Loading ID no. time	8	15	30	09	120	240	8	15	30				8	15				240	8	15	30	909	120	240
Rep. no.	-						2	•	. •				-						2					
Sample ID	PSU4												PSU2											

Table C9. m-value test results at -18°C for the PAV asphalt binder samples, cont'd.

20	0.219 0.239 0.261 0.305 0.327 0.224	0.253	0.259 0.285 0.285 0.292 0.300 0.304
6		0.274 0. 0.302 0. 0.359 0. 0.220 0. 0.241 0. 0.265 0.	
<u>®</u>	00000000	0 2 0 0 0 0 0	
7	00000000		21 0.310 21 0.225 21 0.225 41 0.244 32 0.265 34 0.285 36 0.306
<u></u>			
16		000000	0.291 0.230 0.217 0.235 0.235 0.270 0.270
15	0.289	8	
14		0.273 0.321 0.324 0.222 0.241 0.263	0.306 0.224 0.264 0.265 0.308 0.329
13	0.198 0.227 0.259 0.323 0.356 0.356	3.267 3.342 3.342 3.206 3.230 3.257	0.337 0.337 0.239 0.263 0.309 0.332
7	.239 .239 .263 .263 .313 .313 .338		302 326 211 232 232 255 301 324
10	233 255 278 278 326 326 350 229 253	0.279 0.279 0.330 0.330 0.356 0.221 0.241 0.262 0.262 0.264	305 327 220 220 239 304 326
∞	200000	0.274 0 0.319 0 0.341 0 0.219 0 0.238 0 0.259 0	301 0. 322 0. 218 0. 236 0. 256 0. 256 0. 315 0.
7	200000	0.302 0 0.343 0 0.343 0 0.263 0 0.278 0 0.295 0	0.238 0.238 0.238 0.238 0.258 0.258 0.298 0.315
	7		
9	0000000		0000000
s.	0 0 0 0 0		0.314 0.245 0.235 0.259 0.309 0.333
4	0.222 0.242 0.264 0.264 0.309 0.331 0.235	0.262 0.289 0.316 0.343 0.217 0.236 0.257	0.299 0.320 0.218 0.237 0.259 0.301 0.323
က	SSSSSS	0.271 0.325 0.348 0.204 0.228 0.228	0.336 0.237 0.235 0.260 0.310 0.335
2		0.286 0.330 0.351 0.245 0.259 0.275	0.335
-		0.254 (0.254 (0.306 (0.331 (0.231 (0.231 (0.231 (0.231 (0.231 (0.231 (0.254 (0.	0.300 (0.324 (0.255 (0.326 (0.325 (0.
Rep. Loading no. time	240 240 8 8	30 60 60 120 240 8 8 8 30 30 60	120 240 8 15 30 60 120 240
Rep. no.	- 2	4-	6
Sample ID	PSU3	PSU4	
Appendi	x II	1	ı

Table C10. Stiffness test results at -18°C for the pre-PAV asphalt binder samples.

					****	.		••			*****			_											
	20	327	273	219	62	135	103	282	236	192	154	122	92	434	372	311	\$33	205	163	434	374	311	922	206	163
	19	341	287	233	186	146	112	364	306	246	951	153	117	579	497	409	334	264	206	562	474	396	318	254	197
	82	336	277	221	823	134	102	349	289	230	181	139	106	515	443	369	8	240	188	539	459	379	ä	243	191
	17	300	253	206	164	129	100	316	264	214	69	132	101	516	443	371	908	247	195	563	484	403	8	265	208
	16	267	222	181	146	117	93	271	225	183	148	118	94	358	307	257	12 C1	182	153	413	354	298	240	207	172
	15				468						62						Ş		•				3		
	14	340	283	227	0.1	139	106	342	286	230	382	141	107	545	464	382	800	244	189	546	462	376	301	235	181
	5	312	259	210	391	128	97	297	248	200	157	121	92	516	443	364	908	239	187	531	459	382	7	249	194
	72	316	265	214	121	134	102																		
	11	336	280	224	8/3	139	107	347	287	229	181	141	109	585	506	421	8	277	217	563	483	402	088	266	211
	10	313	260	209	£93	126	96	304	252	202	190	125	96	545	467	392	œ 69	255	200	537	458	378	100	245	192
	8	314	261	210	166	129	98	297	247	195	25	119	90	478	409	338	24	218	171	490	420	346	ä	227	179
	7	222	180	141	901	82	62	228	184	144	:::	83.8	62	395	329	266	6) 6)	165	127	356	297	239	ö	148	114
	9	317	217	208	69	125	94	259	215	172	:2 22	103	79	527	451	370	ş	233	179	494	423	346	2	219	169
	5	312	260	210	991	128	98	309	262	212	167	129	66	544	473	395	S.	259	203	534	465	388	(†) (*)	252	197
	4	309	257	207	63	126	97	314	264	212	167	130	66	510	434	366	908 808	248	199	512	449	376	2 15	253	202
	က	284	237	190	9	116	88	301	257	209	89	1 31	101	528	447	372	8	235	183	526	449	368	8	238	186
	7	311	256	203	69	122	93	322	263	208	163	126	95	576	507	402	 0	260	203	542	460	377	905	244	190
	ν-	341	284	228	Ø.	138	105	328	274	221	22	136	104	550	472	393	Š.	257	202	543	468	388	\$ 65	255	201
				***				l					***		***	***			, , , , , , , , , , , , , , , , , , , 		****	***		****	***
Loading	time	Ø	15	30	9	120	240	8	<u></u>	30	9	120	240	8	<u></u>	30	9	120	240	8	15	8	9	120	240
Rep 1		· ~						2						1						7					
Sample		~					ı							2					ļ	I					

Table C10. Stiffness test results at -18°C for the pre-PAV asphalt binder samples, cont'd.

١.	1 %	ာတ	· 1~		္က	0	-	2	ર	***	S	~	_		G		_		~	4	7			
70	37	3	26		18	150	43	37	રુ	93	7	17	28	24	19	10	12	93	29.	24,	9		12	97
19	580	488	412	88	265	204	559	478	396	320	256	200	353	292	233	26	142	106	326	272	218	22 #	133	101
₩	515	438	381	233	233	181	526	447	369	299	237	183	317	264	211	1 65	128	97	317	262	209	165	127	96
17	511	442	372	100	249	198	529	458	383	313	252	199	329	276	223). -	138	106	304	255	207	99	129	66
16	457	392	328	22	224	180	453	389	327	1,7	227	187	301	252	205	791	129	101	300	252	204	8	131	103
15		•		122				-		100						88						195		
4	538	455	371	200	232	178	553	471	386	308	241	184	341	283	227	54	139	105	344	285	229	i.	140	107
13	526	450	377	808	246	192	537	463	388	1.10	254	199	302	256	206	163	126	97	307	257	208	162	127	97
12	514	445	370	305	239	188	492	420	347	8	229	176	323	270	218	£ 22	134	101	312	260	210	166	129	86
7	592	508	423	8	277	216	585	502	416	7,	276	218	343	285	230	181	140	107	351	291	233		143	110
5	539	459	374	ā	239	185	518	443	365	298	235	182	330	274	221	2	134	102	318	264	212	ě	130	86
8	472	403	332	597	216	170	482	409	340	k	221	174	304	251	201	12	123	93	-					
7	359	300	243	262	152	118	373	313	252	262	158	122	220	178	139	6	82	62	218	177	136	901	81	61
9	540	456	377	#0£	238	183	516	439	363	ë;	230	177	305	253	204	99	123	93	314	260	209		127	92
rc.	544	466	388	7 7 7	251	196	541	465	387	(<u>0</u>	255	200	288	243	197	Įģ.	123	94	306	257	207	:01	127	97
4	498	424	354	288	232	182	485	417	347	280	225	175	290	242	194	3	118	91	321	569	219	1. 1. 1.	137	106
ო	 					181	┝								_				325	274	222	8	136	103
2	! 	_			-	188	⊢		-	•		-				***		-	H					92
	 					197	⊢		-						- 1	***		_	⊢					105
									***								***		 	***	****		****	***
Rep. Loading no. time	∞	15	30	09	120	240	œ̈́	<u>1</u>	တို	09	120	240	8	<u> </u>	Ĉ	9	120	240	8	15.	300	29	120	240
Rep. L	_						2						-						2					
Se R]						
apgradiy Di Di Di	II "												4											

Table C11. m-value test results at -18°C for the pre-PAV asphalt binder samples.

Table C11. m-value test results at -18°C for the pre-PAV asphalt binder samples, cont'd.

3 19 20	.242 0.225 0.235 .266 0.255 0.246 .292 0.287 0.259	0.351 0 0.351 0 0.383 0 0.235 0 0.280 0 0.382 0 0.342 0	0.284 0.337 0.337 0.392 0.419 0.281 0.304 0.330
17 18	215 0 238 0 264 0	290 0 316 0 341 0 218 0 272 0 329 0 357 0	0.269 0.285 0.293 0.305 0.319 0.335 0.370 0.388 0.396 0.415 0.264 0.291 0.288 0.313 0.315 0.338
16	0.230 0 0.246 0 0.263 0	0.286 0.242 0.242 0.249 0.256 0.256 0.272	
15		3 8	
4.	3 0.254 0 0.281 9 0.310	7 0.368 7 0.368 5 0.397 8 0.271 5 0.271 6 0.306 8 0.374 9 0.374	0.282 0.305 0.331 0.382 0.407 0.285 0.307 0.354
13	8 0.223 7 0.250 9 0.279		7 0.267 4 0.323 4 0.323 4 0.326 3 0.407 1 0.270 7 0.296 5 0.323 4 0.352
12	22 0.218 19 0.247 19 0.279		0 0.267 3 0.294 9 0.324 6 0.383 5 0.413 1 0.271 0 0.297 0 0.297
11	52 0.222 75 0.249 00 0.279	26 0.339 77 0.369 37 0.234 33 0.255 39 0.255 48 0.323 76 0.346	78 0.280 33 0.303 31 0.329 60 0.380 4 0.405 62 0.291 65 0.310 67 0.331
- P).247 0.252).267 0.275).289 0.300	331 0 326 0.333 0.352 0.355 0.377 0.239 0.237 0.261 0.263 0.286 0.291 0.334 0.348 0.359 0.376	293 0.278 331 0.303 335 0.331 359 0.386 400 0.414 0.282 0.305
8	000		
9	.238 0.281 .267 0.298 .299 0.318	0.363 0.357 0.395 0.376 0.238 0.271 0.266 0.292 0.297 0.316 0.358 0.365 0.358 0.366	0.280 0.327 0.306 0.345 0.334 0.364 6.362 0.364 0.390 0.404 0.418 0.424 0.278 0.327 0.304 0.344 0.333 0.364
ಬ	0.229 0.2 0.255 0.2 0.284 0.2	0.341 0.3 0.341 0.3 0.370 0.3 0.250 0.2 0.277 0.2 0.331 0.3 0.358 0.3	30000
4	0.234 0. 0.257 0. 0.281 0.	0.330 0.354 0.0255 0.0255 0.0343 0.343 0.373 0.3	2.860 0.307 0.331 0.331 0.378 0.378 0.264 0.267 0.313
п	0.233 0 0.258 0 0.285 0	0.340 0.367 0.235 0.235 0.259 0.285 0.388 0.338	0.276 2 0.298 0 0.323 0 0.373 0 0.398 0 0.259 0 0.289 0
		0.341 0.362 0.362 0.255 0.275 0.298 0.344 0.366	0.312 0.033 0.353 0.356 0.396 0.417 0.316 0.351 0.351
2	0.261 0.280 0.300		
1 2	0.205 0.261 0.233 0.280 0.263 0.300	0.323 0.323 0.323 0.323 0.325 0.225 0.226 0.228 0.278 0.334 0.332 0.332 0.332 0.332 0.332	
-	0.205	0.323 0.323 0.353 0.250 0.278 0.278 0.334 0.362	0.277 0.301 0.326 0.377 0.403 0.278 0.300 0.325 0.325
-	0.205	0.323 0.323 0.353 0.250 0.278 0.378 0.334	0.277 0.301 0.326 0.377 0.403 0.278 0.300 0.325
Sample Rep. Loading 1 2	0.205	0.323 0.323 0.353 0.250 0.278 0.278 0.334 0.362	0.277 0.301 0.326 0.377 0.403 0.278 0.300 0.325 0.325

Table C12. Complex viscosity test results for the reference fluid.

				-										
50	290 278 276 271	146	138	134	131	298	280	286	273	144	138	134	132	
19	261 270 249 262	128	125	126	120	•								
82	262					278		-	272			134	131	
17	278			134	126			271	285			125	125	
14	276 272 272 272 266	139	138	139	138	292	292	289	288	146	146	144	145	
13	272 271 271 264 271	131	133	131	132								·	
11	267			127	127			270	265			124	125	
10	272 271 270 270	128	128	129	130	267	268	266	264	128	128	128	128	
O	262 255	120	128	127	125									
-	261			126				258				124 0	} : !	
9	269 268 269 269	425	132	132	133	276	271			140	136	2		
2	270	202		132	131			251	250			122	124	
4	276 270 261	607	22 5	128	127				:					
.	262 262 259	8C7	178	127	127	256	25.5	254	252	107	2 5	1 5	7 2	
	,									¥		***		8
Frequency rad/s	t	10		- Ç	2 5	2 ~		- 5	2 5	2	- ·	- 4	<u> </u>	?
Strain %	101	20	-	2 -	- 5	2	- 5	2 +	- 5	2 .	- ;	£ ,	- 5	2
Target test Replicate temperature	64 64 64	64	76	0/	0 / 2	0/3	4 2	40 6	40	40	9/	<u>1</u>	76	ο/
Replicate	-				•		7							

Table C13. G* strain sweeps test results for the unaged asphalt binder samples.

Α			İ	İ		Ī	Ì			İ		ľ		ľ			
opendi Oldi	Sample Loading		-	ო	4	5	9	7	6	8	10	13	14	16	17	19	20 .
k I																	
Psu ₁	N.	~	354	1330	1290	1427	1401	1308	1540	1498	1297	1740	1672	1760	1455	1410	1471
	4	_	1358	1330	1300	1410	1362	1290	1520	1507	1293	1746	1679	1760	1384	1400	1449
	9	~	1362	1330	1300	1418	1353	1279	1510	1513	1288	1753	1669	1760	1444	1410	1440
	œ	,	1359	1330	1290	1420	1354	1274	1510	1512	1288	1759	1670	1750	1491	1410	1433
	. 0	<u></u>	1360	1330	1280	1435	1346	1274	1500	1514	1284	1761	1668	1740	1439	1410	1434
	12	~	1362	1340	1290	1415	1344	1270	1490	1514	1282	1761	1670	1740	1432	1410	1431
	4	<u> </u>	1362	1340	1280	1413	1338	1267	1480	1507	1282	1764	1665	1740	1452	1410	1428
	. 	~	1358	1330	1270	1413	1329	1270	1470	1504	1287	1766	1666	1730	1441	1410	1427
	. 6	*-	1357	1330	1270	1398	1326	1274	1460	1504	1290	1769	1665	1720	1433	1410	1429
	2 2	~~	1356	1330	1270	1393	1320	1272	1460	1502	1292	1768	1663	1720	1432	1420	1428
	22	<u></u>	1357	1330	1260	1399	1317	1266	1460	1501	1289	1769	1661	1710	1436	1420	1426
	24	~	1353	1330	1260	1414	1314	1262	1460	1497	1283	1778	1661	1710	1428	1420	1422
	79	~	1354	1330	1260	1400	1312	1261	1470	1494	1277	1778	1662	1700	1432	1420	1421
	28		1352	1330	1260	1402	1310	1257	1480	1492	1267	1774	1661	1690	1431	1420	1421
	်	_	1350	1330	1250	1388	1309	1265	1480	1489	1260	1772	1662	1690	1431	1420	1419
PSU2	2		1464	1390	1140	1306	1423	1370	1610	1375	1378	1756	1792	1640	1942	1400	1525
[] }	4	-	1465	1390	1130	1321	1448	1344	1590	1382	1384	1762	1813	1640	1891	1400	1504
	· დ	_	1465	1390	1120	1323	1449	1333	1580	1384	1388	1765	1815	1630	1899	1390	1488
		_	1463	1400	1110	1314	1448	1330	1580	1383	1389	1770	1808	1630	1842	1390	1482
	5	<u>_</u>	1464	1390	1110	1310	1444	1325	1570	1377	1393	1774	1811	1630	1890	1400	1482
	2	~	1466	1400	1120	1317	1447	1326	1570	1380	1391	1778	1811	1620	1902	1410	1480
	4	~	1465	1400	1120	1327	1440	1330	1590	1376	1397	17771	1815	1620	1895	1400	1480
	. 6	<u></u>	1465	1400	1110	1321	1442	1331	1620	1375	1395	1778	1814	1610	1897	1400	1484
	. c	_	1464	1390	1110	.1352	1442	1333	1630	1374	1408	1779	1817	1620	1880	1400	1491
γ.	2 0	_	1464	1390	1110	1324	1441	1334	1620	1377	1414	1781	1817	1610	1874	1410	1483
	2 2	_	1464	1390	1100	1309	1442	1329	1600	1378	1409	1784	1816	1600	1882	1410	1481
	1 2	<u>~</u>	1464	1390	1110	1307	1441	1319	1570	1379	1395	1785	1816	1600	1861	1410	1482
	20		1463	1390	1100	1347	1445	1319	1560	1379	1382	1785	1818	1600	1877	1410	1477
	200		1463	1390	1100	1319	1445	1329	1580	1374	1373	1789	1818	1610	1865	1410	1478
	200		1462	1390	1090	1340	1447	1322	1590	1373	1371	1786	1818	1610	1860	1410	1474
	2															!	

Table C13. G* strain sweeps test results for the unaged asphalt binder samples, cont'd.

20		1484	1467	1456	1453	1450	1445	1452	1458	1453	1443	1443	1446	1449	1451	1446	1523	1498	1484	1476	1482	1482	1476	1479	1477	1473	1467	1467	7 1 2	1 \$ 1 C	14/2	
19	-	1410 1		1400 1	1410 1	1410 1	1410 1	1410			_		1430	1430	1430	1430	1330	1330	1330	1340	1340		1340	1340	1340	1340	1340	1350	2000	1350	1350	1
17	_	2233 1	2338 1	2286 1	2264	2283		_					2229	2227			1603	1650	1620	1594	1629	1595	1587	1597	1583	1581	1567	1561	000	1555	1566	
16		1570	1570	1570	1560	1560	1550	1550	1540	1540	1540	1540	1540	1540	1550	1550	1980	1970	1970	1960	1960	1950	1940	1930	1930	1920	1010	1810	000	1900	1890	
14		1999	2007	2010	2017	2012	2007	2016	2012	2011	2011	2009	2006	2007	2005	2003	1839	1822	1829	1833	1839	1829	1829	1826	1824	1829	1823			_	1821	7
5.		2177	2188	2201	2208	2210	2213	2216	2215	2222	2220	2223	2226	2228			1509	1511											_	<u> </u>		701
10		1402	1399	1407	1410	1416	1416	4 4 2 2	1424	1435	1438	1432	1424	1408	1405	1404	1306	1297	1296	1299	1300	1305		1313		_						(
ω		1331	1329	1331	1336	1234	7007	1001	1261	1220	1220	1329	1331	1327	1330	1332	1204	1304	1200	1303	1202	1300	1300	1300	1297	200	1234	1290	1289	1287	1284	
6.		1690	1670	1660	1650	1620	2 6	200	1010	1800	1600	1640	1660	1640	1840		+						790				82			815	811	
7		1475	1453	1435	1426	1 2 2	1400	1450	1455	1432	145	1450	1420	1473	1429	1470									_				1408	1409	1407	
မ		1459	1438	1430	4 4 5	7440	1417	1407	1401	1401	286	1585	1000	1000	2007	7 200	0801	1500	1500	0.40	040	1350	12.40	_ ~		_ '	1338	1336	1335		_	
5		1404	1305	2 2 2	1000	200	1391	1383	1389	1366	1390	1400	00.00	200	15/8	13/8	130									_	_	1317	1331	- ,	_	_
4		1550	1530	200	0701	0761	1530	1520	1530	1520	1520	1510	0761	0261				1120	1120	1120	1130	1120	1110	0711	1120	1120	1110	1110	1110	1110	1110	
က		7 4 4	7 7 2 2	2 2 2	1420	1420	1420	1420	1420	1410	1410	1410	1400	1400	1400	1390	1390											<u></u>				
-		0077	200	100	1403	1407	1411	1409	1409	1409	1409	1407	1410	1409	1408	1408	1407	1389	1385	1388	1385	1383	1382	1382	1380	1380	1379	1378	1377	1277	1275) -
																***					***		****	****						***	###	*
Loading	DI III	(۷,	4 (©	œ	5	12	14	16	9	50	22	54	5 9	28	30	2	4	တ	œ	9	7	4	10	38	20	22	24	† G	9 8	9
Sample Loading	3	1	PSU3															PSU4														

Table C14. Phase angle strain sweeps test results for the unaged asphalt binder samples.

	-	•		٠.													_	_													_
- 8	20	76.0	76.0	76.0	76.0	76.0	76.0	76.0	76.0	76.0	76.0	76.0	76.1	76.1	76.1	76.1	86.5	86.4	86.4	86.4	86.4	86.4	86.4	86.4	86.4	86.4	86.4	86.4	86.4	86.4	86.4
	19	75.9	75.9	75.9	75.9	75.6	76.0	76.0	76.0	76.1	76.1	76.1	76.2	76.2	76.3	76.3	86.7	86.7	86.7	86.7	86.7	86.7	86.7	86.8	86.8	86.8	86.8	86.8	86.9	86.9	86.9
	4	76.0	76.0	76.1	75.7	75.7	76.1	75.7	75.7	75.9	76.1	75.8	76.1	76.2	75.8	75.8				:	:		- ,	- 12 - 12 			*	٠	,		
	9	76.5	76.3	76.2	76.2	76.3	76.3	76.3	76.3	76.4	76.4	76.4	76.5	76.5	76.6	76.6	85.3	85.3	85.8	85.5	85.4	85.3	85.5	85.6	85.5	85.6	85.6	85.5	85.7	85.3	85.6
	7	74.1	74.6	74.8	74.6	74.6	74.7	74.5	74.8	74.7	7.4.7	74.8	74.8	74.8	74.7	74.8	87.2	87.0	86.9	86.9	86.9	86.9	86.8	86.8	86.8	86.8	86.8	86.8	86.8	86.9	86.9
	5	74.7	74.6	74.6	74.6	74.6	74.6	74.6	74.6	74.6	74.6	74.7	74.7	74.7	74.7	74.7	85.1	85.6	85.6	85.5	85.6	85.5	85.5	85.6	85.5	85.5	85.6	85.5	85.6	85.6	85.6
	9	77.1	76.8	76.8	7.97	76.7	7.97	7.97	76.8	76.8	76.8	76.9	76.9	76.9	77.0	77.0	85.9	85.8	85.9	85.9	85.8	85.8	85.8	85.8	85.8	85.8	85.8	85.8	85.8	85.8	85.9
	6	Lin		-	-		:							٠		,	88.0	87.0	86.7	86.5	86.4	86.3	86.2	86.3	86.3	86.2	86.2	86.2	86.2	86.2	86.2
	8	77.3	76.3	76.0	75.8	75.8	75.7	75.6	75.6	75.6	75.7	75.7	75.7	75.7	75.8	75.8	87.1	86.9	86.8	86.8	86.7	86.7	86.7	86.7	86.7	86.8	86.8	86.8	86.7	86.7	86.7
	9	76.4	76.3	76.3	75.9	76.0	76.2	76.4	76.2	76.2	76.2	76.2	76.2	76.3	76.2	76.3	85.3	86.1	86.7	86.3	86.4	86.5	86.3	86.4	86.3	86.3	86.3	86.3	8 6	86.3	86.3
	z,	76.1	75.8	75.9	76.0	76.0	75.8	76.1	76.2	76.1	76.2	76.1	76.3	76.3	75.9	76.3	86.6	86.4	86.4	86.3	86.1	86.4	86.1	86.5	86.5	87.6	87.4	27.7	2 6	86.1	86.3
	4	77.0	76.7	76.6	76.6	76.6	76.6	76.6	76.6	76.7	76.7	76.7	76.8	76.8	76.8	76.9	86.9	86.7	86.7	86.6	86.7	86.7	86.7	86.7	86.7	86.7	200	200.7	200.7	86.7	86.7
	င	76.7	76.5	76.4	76.3	76.2	76.3	76.3	76.4	76.4	76.4	76.4	76.5	7.0	76.5	76.6	87.1	800	86.7	86.7	86.7	86.7	86.7	86.7	86.7	86.7	7 60	00.7	7 000	200.7	86.7
	-	75.7	75.8	75.7	75.7	75.6	75.7	7 7	75.7	75.7	75.7	75.2	75.0	75.0	75.8	75.8	86.2	1 0	, , ,	- 08	80.0	86.4	86.0	9 9		- c	9 6	00.0	00.0		86.1
											***				***			***							***	***		***		****	
	Loading time	٥	ı. ¬	ۍ ۱	O	o Ç	5 5	4 5	<u> </u>	5 č	2 6	3 6	7 6	† (d	0 6	9 0	3	1 =	ŧ «	> «	÷ =	5 5	<u> </u>	<u> </u>	5 6	<u> </u>	2 8	3 7	4 6	8 8	3 6
	Sample TD TD	11 0	5														00113	1001											•		

Table C14 Phase angle strain sweeps test results for the unaged asphalt binder samples, cont'd.

20	86		8		86.4		86.4									_													75.7	_
19	86.8	86.8	86.8	86.8	86.8	86.8	86.8	86.8	86.8	86.8	86.8	86.9	86.9	86.9	86.9	76.5	76.5	76.5	76.6	9.9/	76.6	76.6	7.9.7	76.7	7.97	76.8	76.8	76.9	76.9	76.9
17											·																			
16	83.8	84.1	84.0	84.0	84.0	84.2	84.3	84.3	83.9	83.9	84.4	84.2	84.3	84.0	84.3	75.0	74.9	74.9	75.2	7.4.7	74.7	75.0	74.8	74.9	75.1	75.2	75.1	74.8	75.3	75.1
14	87.4	87.2	87.1	87.1	87.0	87.0	87.0	87.0	87.0	87.0	87.0	87.0	87.0	87.0	87.1	75.5	75.3	75.3	75.3	75.3	75.3	75.4	75.4	75.4	75.5	75.5	75.6	75.6	75.6	75.7
13	86.0	86.0	85.8	85.9	85.9	85.8	85.7	85.6	85.6	85.7	85.6	85.7	85.7	85.7	85.7	74.8	75.0	74.8	75.0	75.1	74.9	75.1	75.1	75.1	75.1	75.1	75.2	75.2	75.2	75.2
10	85.4	85.3	85.3	85.3	85.3	85.3	85.3	85.3	85.3	85.3	85.3	85.3	85.3	85.3	85.3	75.6	75.4	75.4	75.4	75.4	75.4	75.4	75.5	75.5	75.5	75.5	75.5	75.5	75.6	75.6
6	88.0	87.0	86.6	86.5	86.4	86.3	86.2	86.2	86.2	86.2	86.2	86.2	86.2	86.2		79.4	78.6	78.2	78.0	77.9	77.8	77.8	77.8	77.8	77.9	77.9	77.9	6 44	77.9	77.9
. 80	87.1	86.8	86.8	86.7	86.7	86.7	86.7	86.7	86.7	86.7	86.7	86.7	86.7	86.7	86.7	76.9	76.7	76.6	76.6	76.6	76.6	76.6	76.7	76.7	76.7	76.7	76.7	76.8	76.8	76.8
ø	85.9	86.1	86.2	86.3	86.4	86.3	86.3	86.3	86.3	86.4	86.4	86.3	86.4	86.4	86.3	76.0	75.5	76.4	76.3	75.8	76.0	75.9	76.0	76.1	76.1	76.2	78.1	7 6	76.2	76.2
ıo .		1 68	86.5		86.5	80.00	86.3	86.4	80.00	86.4	86.4	86.4	86.1	30.00	80.00	75 G	75.5	75.0	75.5	75.0	75.5	75.6	75.0	75.5	7.5.5	75.0	7 4 6 6	75.0	75.7	75.5
4	8 98	86.0	80.00	20.00	86.5	80.00	86.5	2 6	80.0	, w	, w	9 9 7	2 8	2 4	8 8 8 8	77.3	7.7.	77.0	7.5	7.0	77.0	7.0	77.0	5.77	17.7	1.7	17.7	17.1	77.7	77.2
က	87.4	8 8	9 6	2000	7.00	86.7	200.7 26.7	2 CO	7.00	, y	. v	7.00	200	7.00	96.7															
-	, a	0.00	2 % 3 %	2.00	200.4	200.6	200	7. 6	00.0	4.00	200	2.00	7.00	7.00	2.00	200.2	10.6	70.07	77.0	13.0	70.0	75.6	5.0	0.07	7,00	1 O	7.0.	75.6	75.7	75.7
																	***					***		***						****
Loading	c	4 ~	† (d	0 6	٥	5 £	7 7	± 4	<u>0</u>	<u> </u>	2 6	7 6	† 6	Q 8	× 6	3	ν,	4. (٥ ۵	ο ;	2 9	2 ;	<u>+</u> 4	<u>و</u>	<u> </u>	₹ 8	7.7	24	8 8	30 8
Sample Loading ID time	5	2002															PSU4													

APPENDIX D PLOTS OF ROUND ROBIN TEST RESULTS

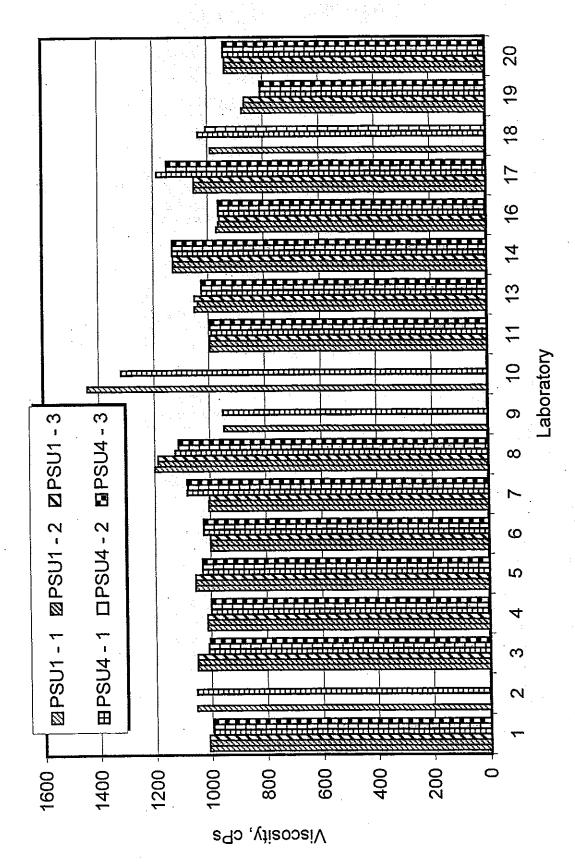


Figure D1. Rotational viscosity data for unaged PSU1 and PSU4 at 135°C.

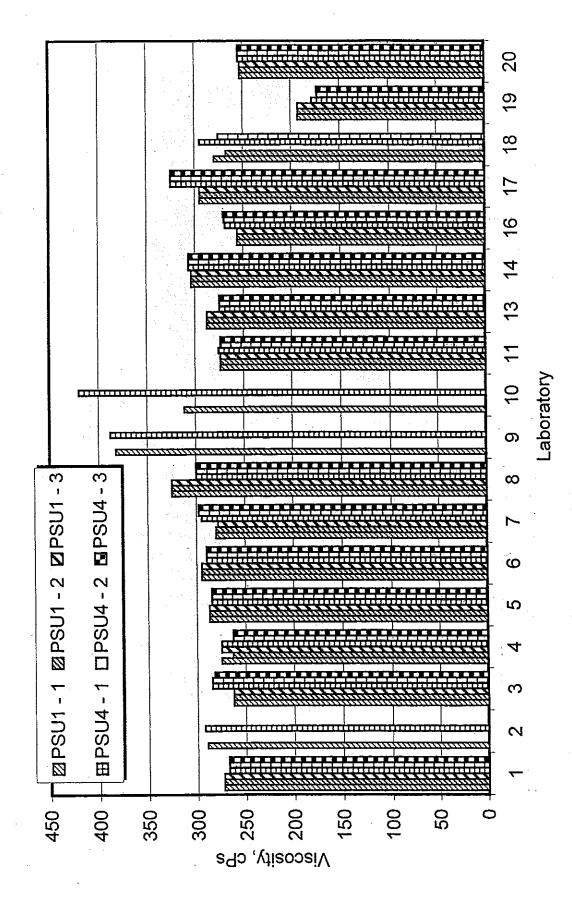


Figure D2. Rotational viscosity data for unaged PSU1 and PSU4 at 165°C.

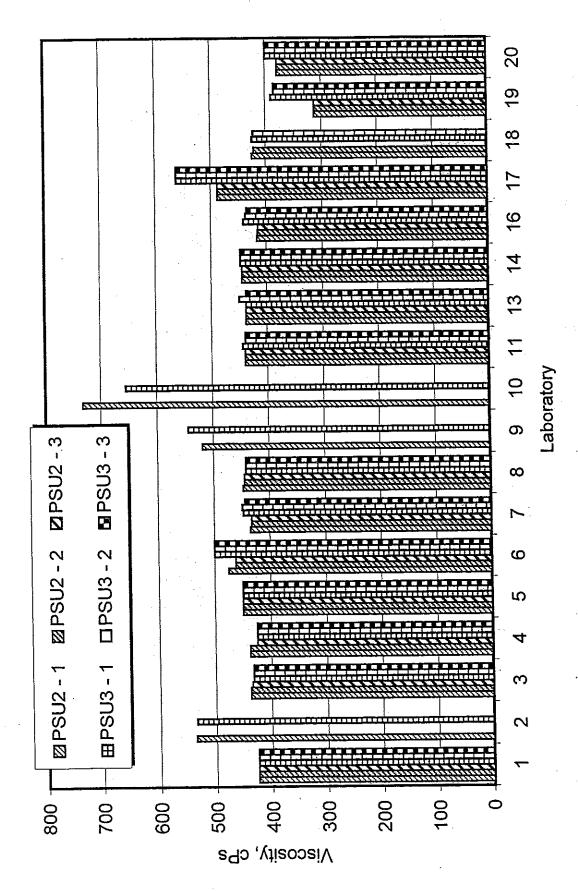


Figure D3. Rotational viscosity data for unaged PSU2 and PSU3 at 135°C.

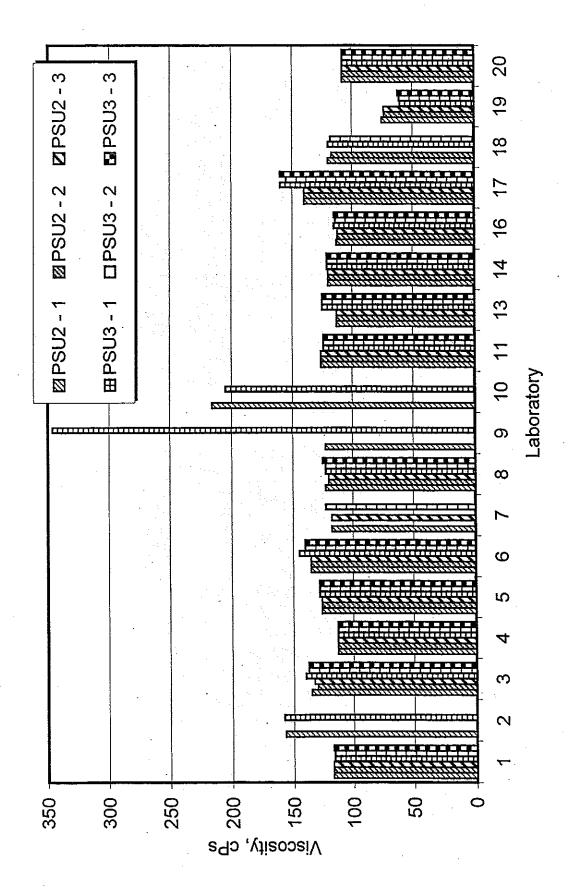


Figure D4. Rotational viscosity data for unaged PSU2 and PSU3 at 165°C.

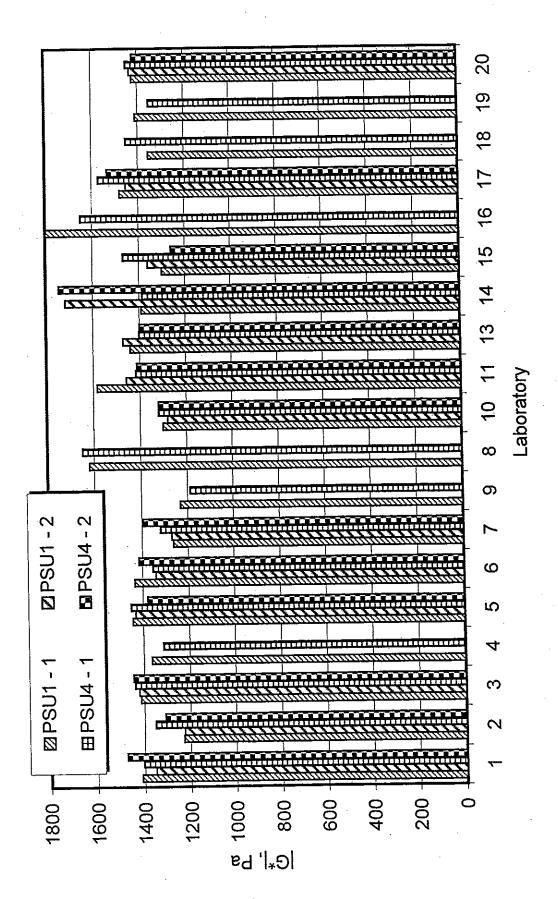


Figure D5. G* data for unaged PSU1 and PSU4 at 70°C.

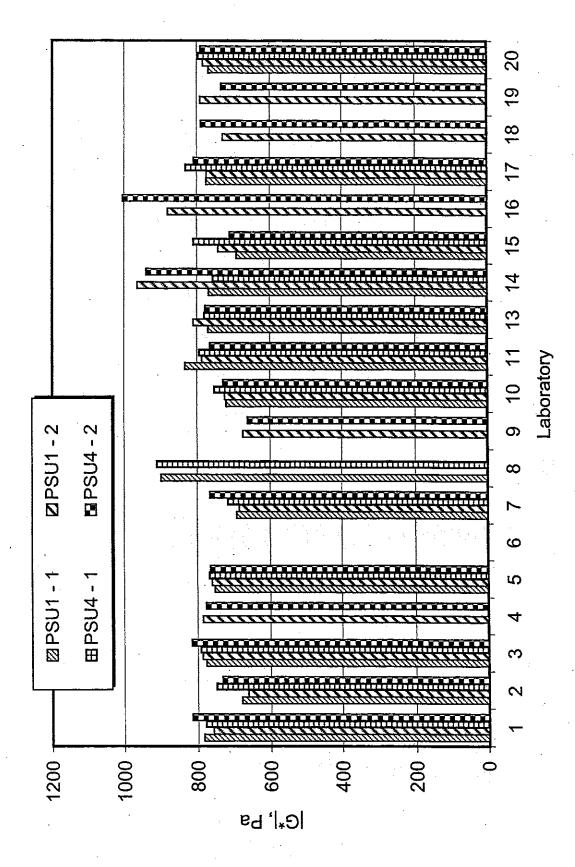


Figure D6. G* data for unaged PSU1 and PSU4 at 76°C.

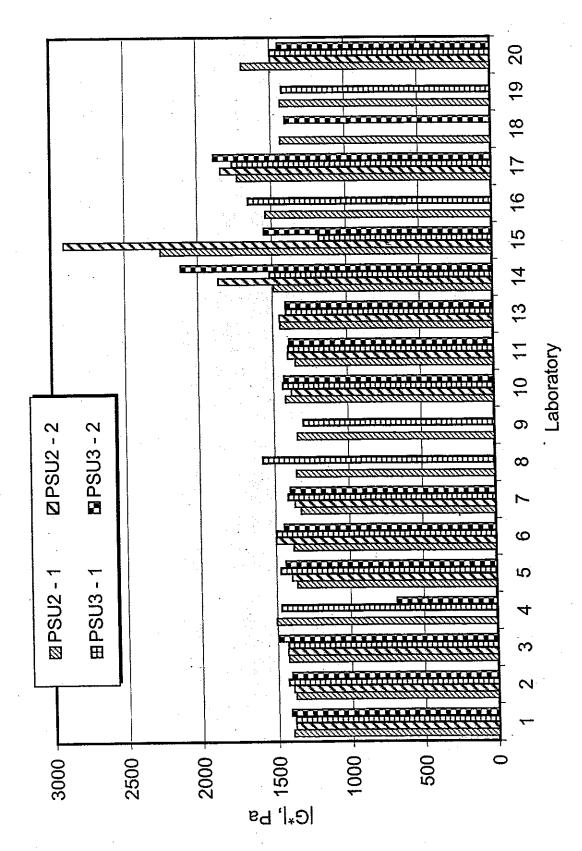
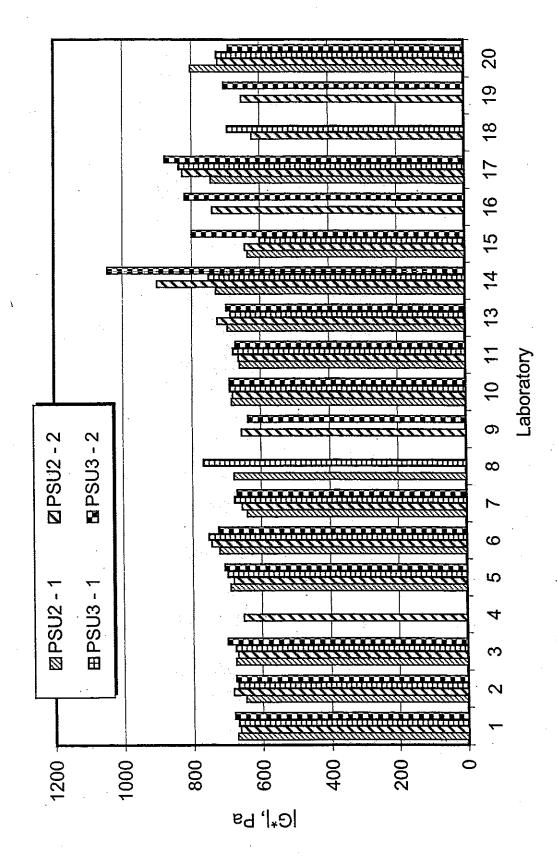



Figure D7. G* data for unaged PSU2 and PSU3 at 64°C.

igure D8. G* data for unaged PSU2 and PSU3 at 70°C.

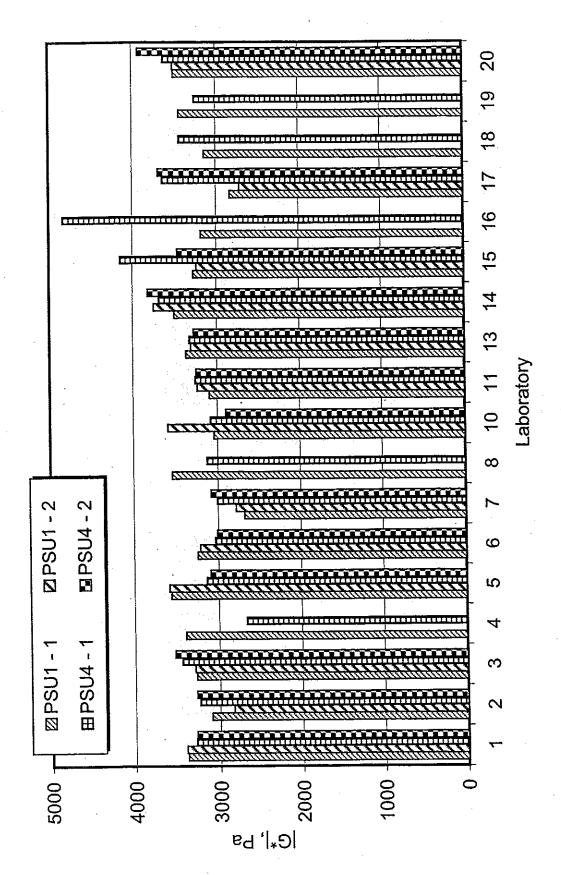


Figure D9. G* data for RTFOT PSU1 and PSU4 at 70°C.

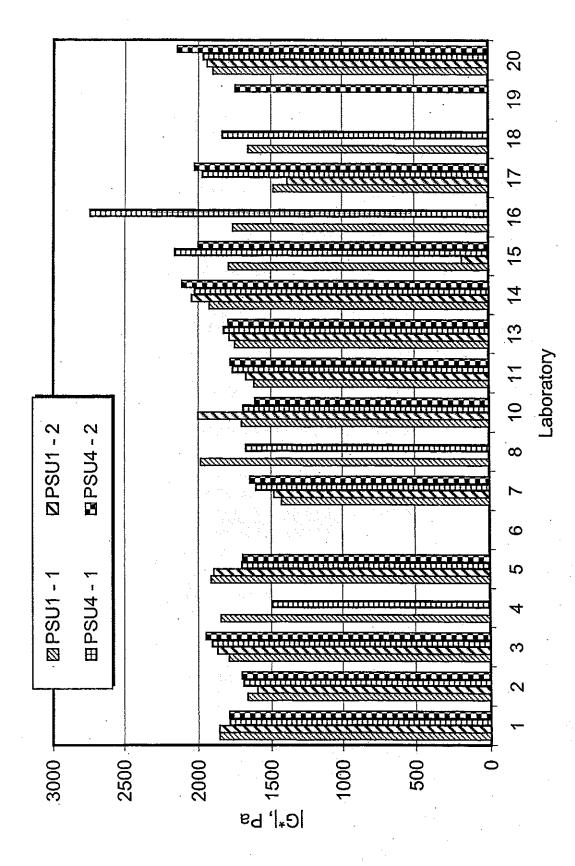


Figure D10. G* data for RTFOT PSU1 and PSU4 at 76°C.

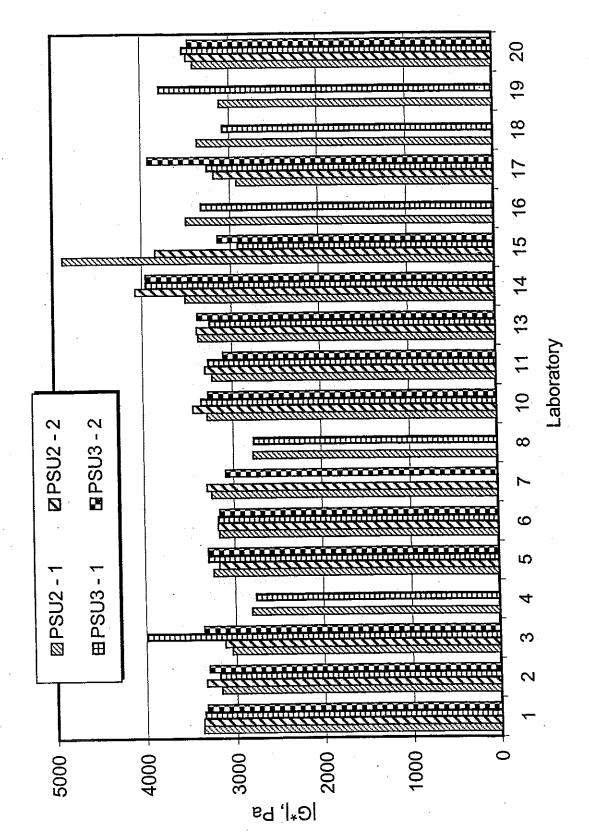


Figure D11. G* data for RTFOT PSU2 and PSU3 at 64°C.

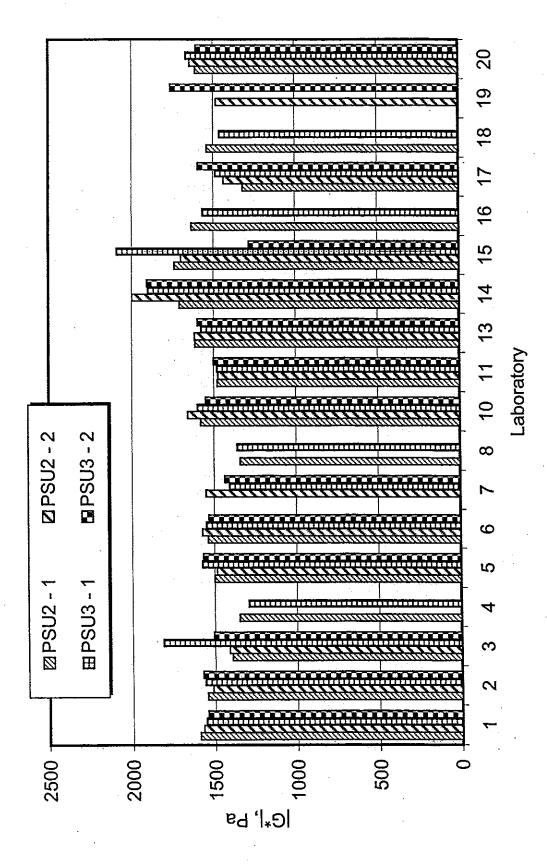


Figure D12. G* data for RTFOT PSU2 and PSU3 at 70°C.

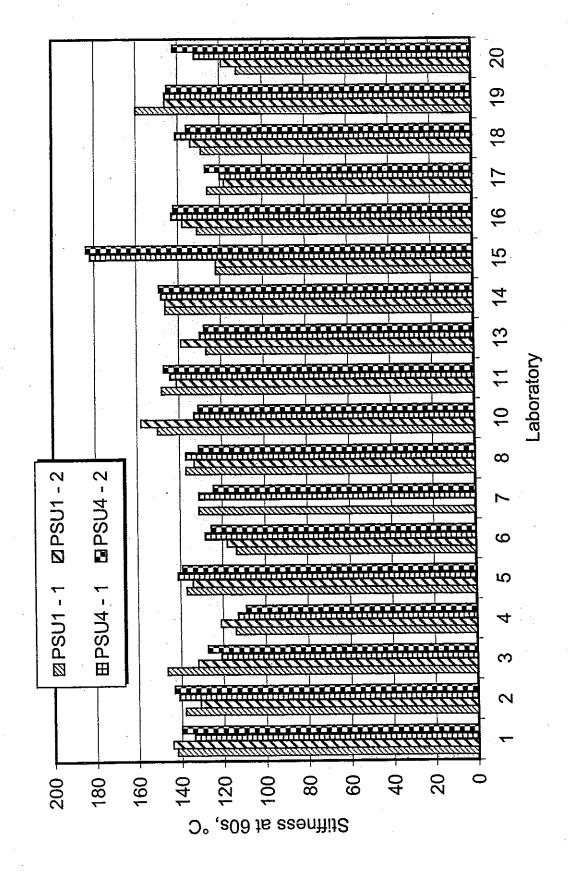
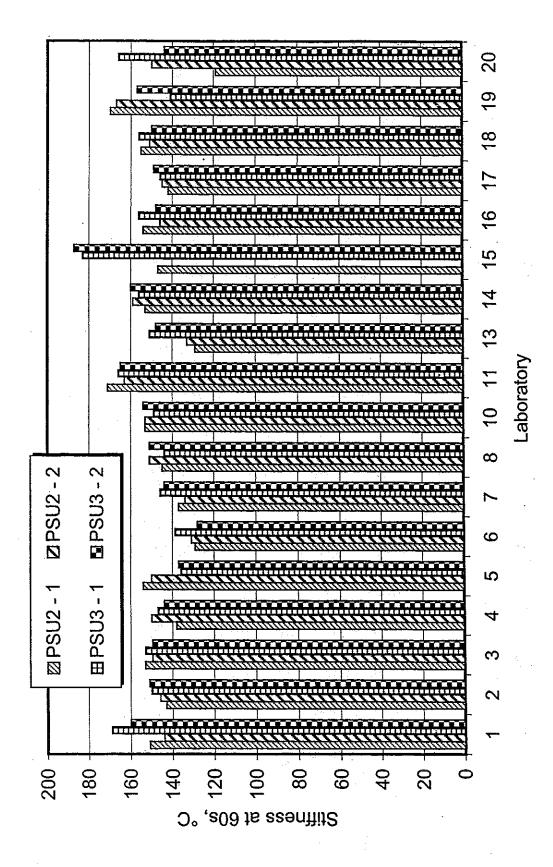



Figure D13. Stiffness data for PAV PSU1 and PSU4 at -12°C.

igure D14. Stiffness data for PAV PSU2 and PSU3 at -12°C.

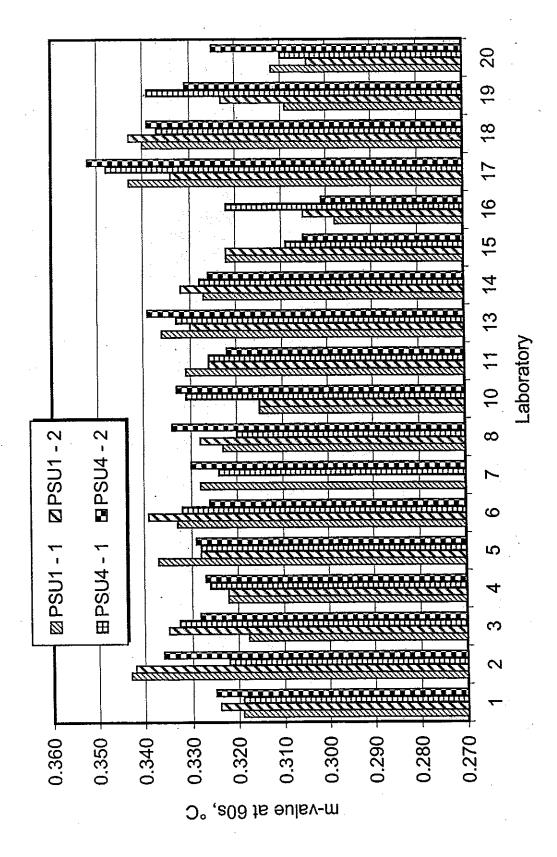


Figure D15. m-value data for PAV PSU1 and PSU4 at -12°C.

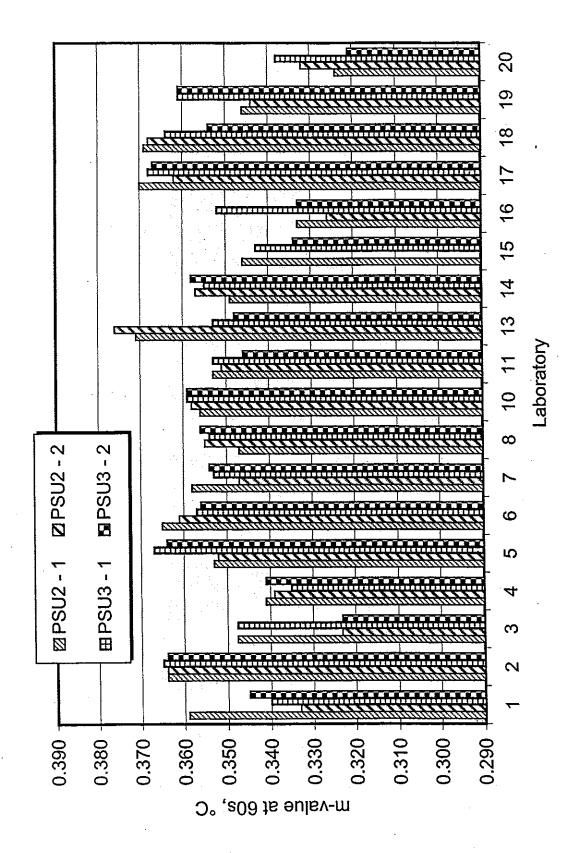


Figure D16. m-value data for PAV PSU2 and PSU3 at -12°C.

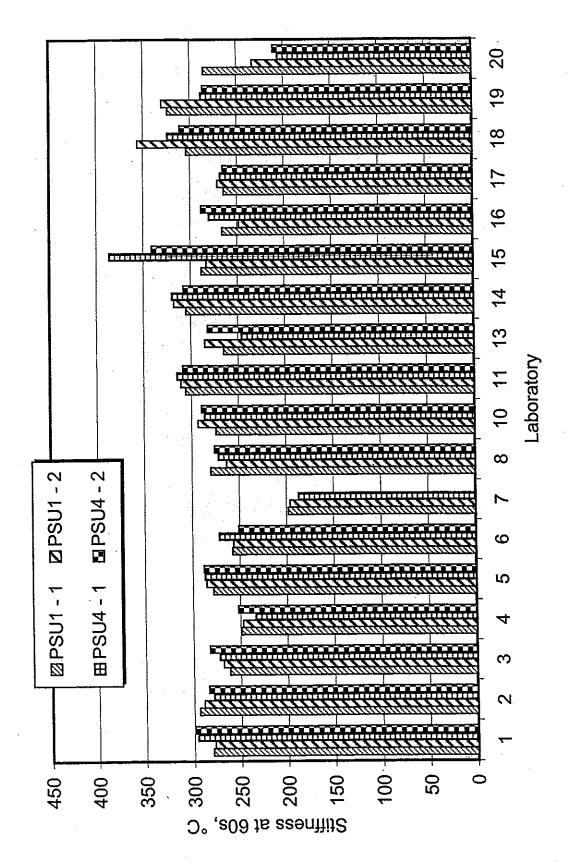


Figure D17. Stiffness data for PAV PSU1 and PSU4 at -18°C.

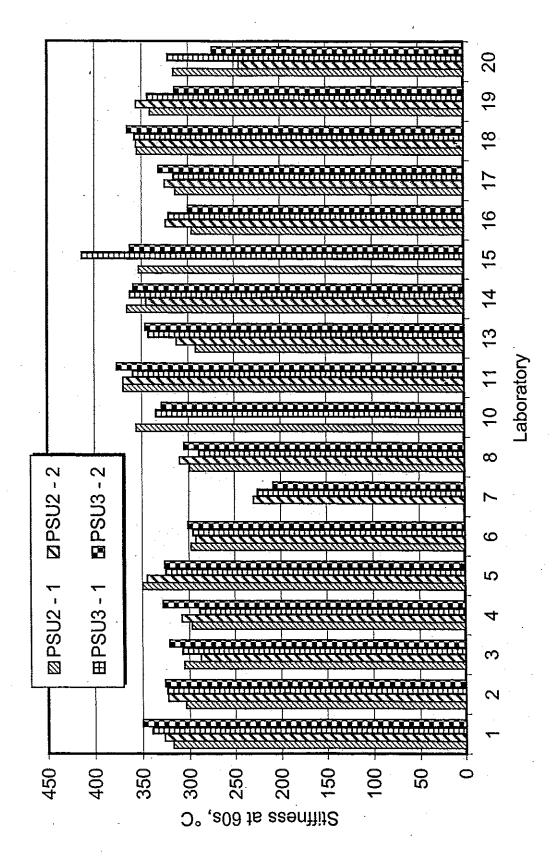


Figure D18. Stiffness data for PAV PSU2 and PSU3 at -18°C.

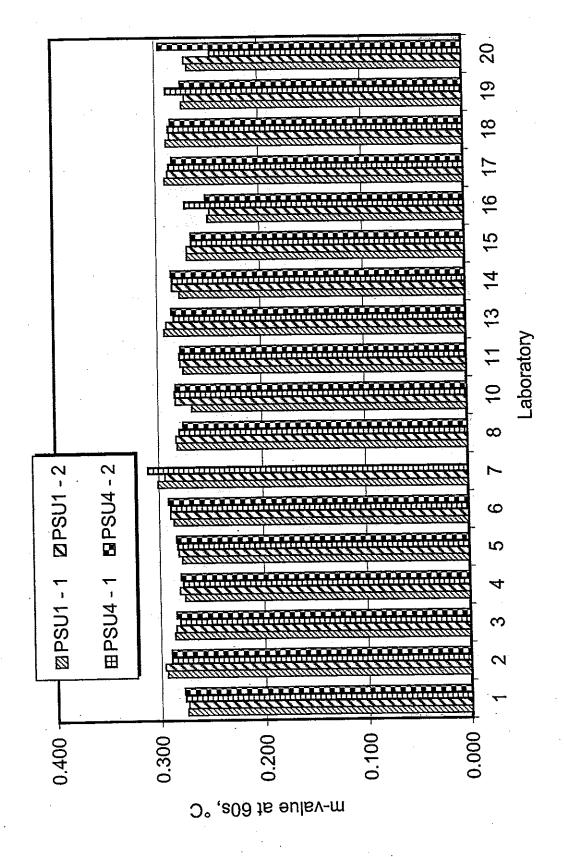


Figure D19. m-value data for PAV PSU1 and PSU4 at -12°C.

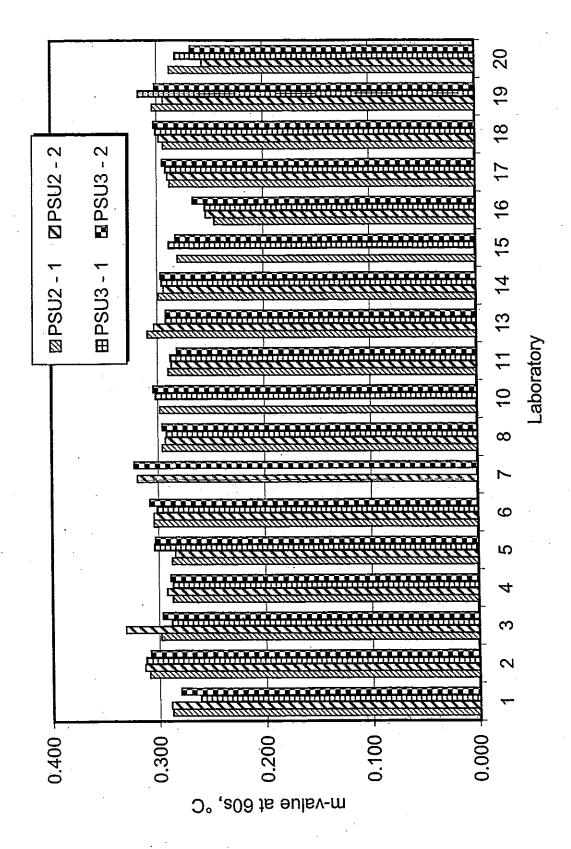


Figure D20. m-value data for PAV PSU2 and PSU3 at -18°C.

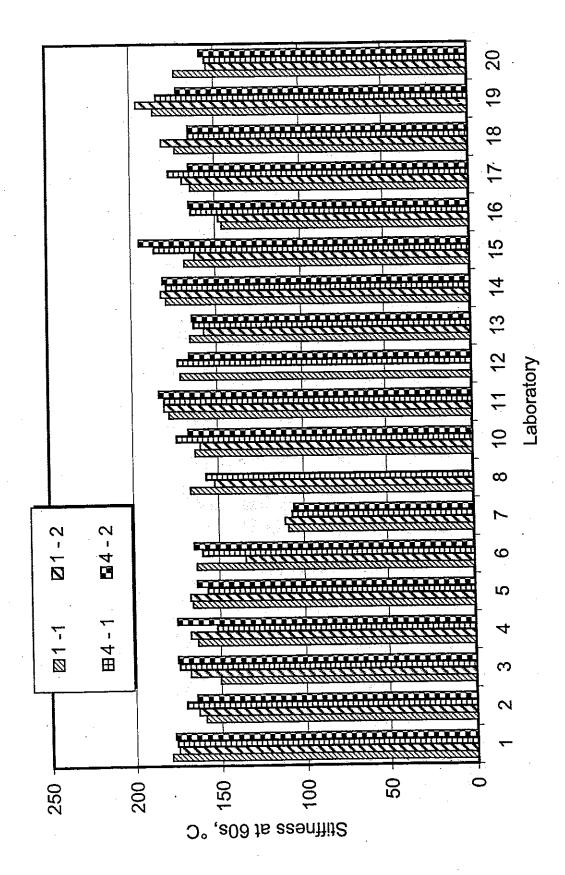
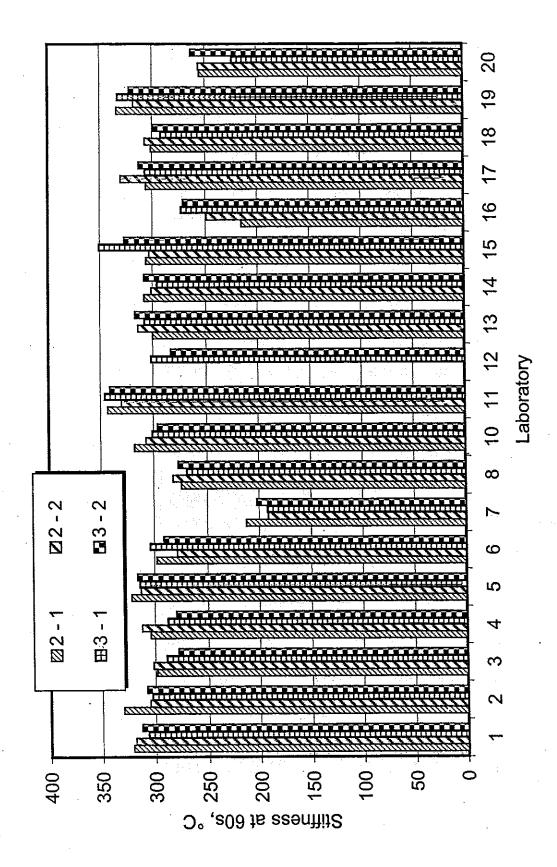



Figure D21. Stiffness data for pre-PAV 1 and 4 at -18°C.

igure D22. Stiffness data for pre-PAV 2 and 3 at -18 °C.

Figure D23. m-value data for pre-PAV 1 and 4 at -18°C.

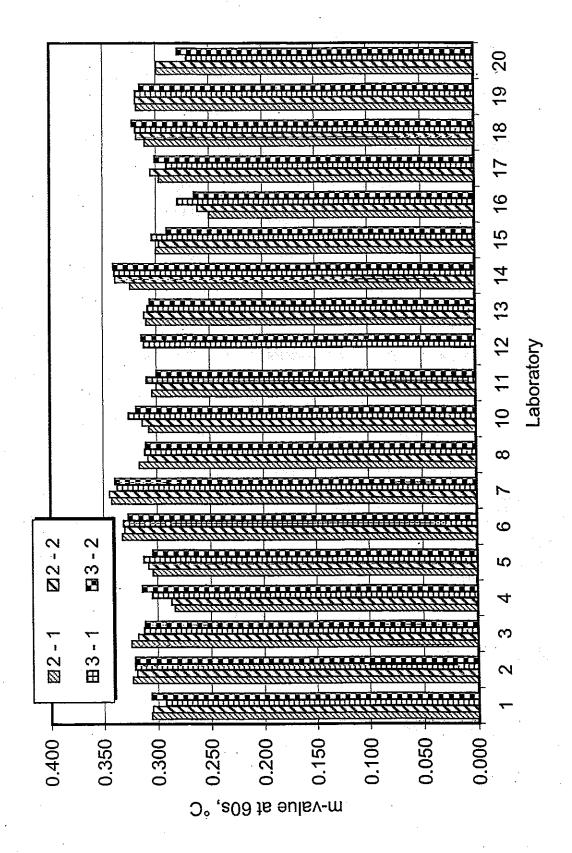


Figure D24. m-value data for pre-PAV 2 and 3 at -18°C.

Figure D25. Strain sweeps G* data for unaged PSU1.

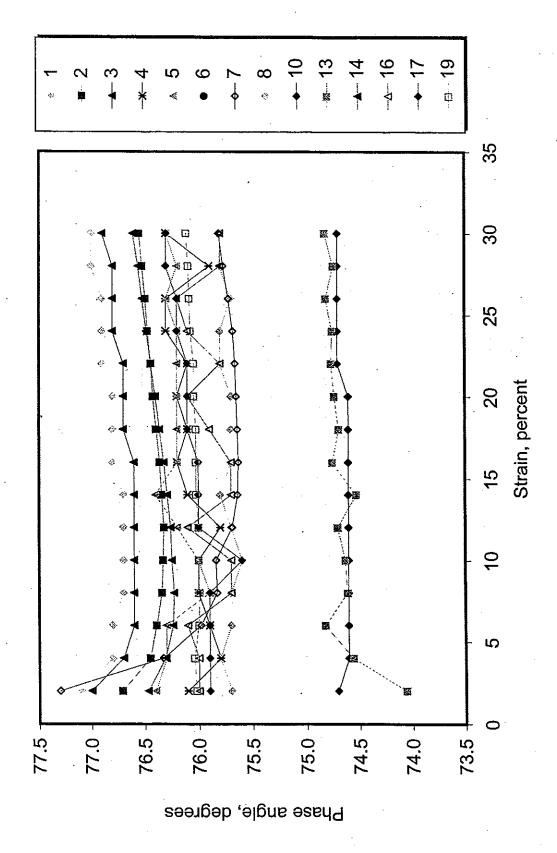


Figure D26. Strain sweeps phase angle data for unaged PSU1.

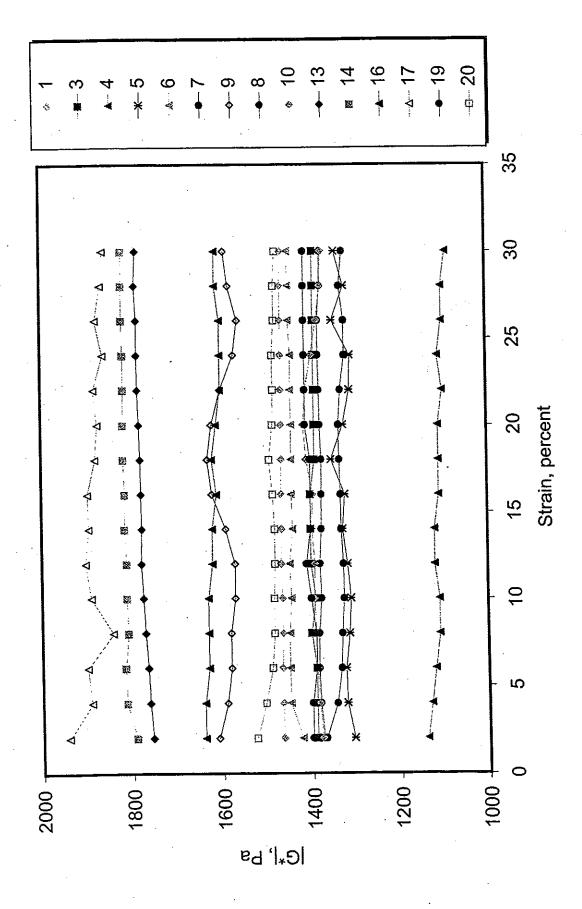


Figure D27. Strain sweeps G* data for unaged PSU2.

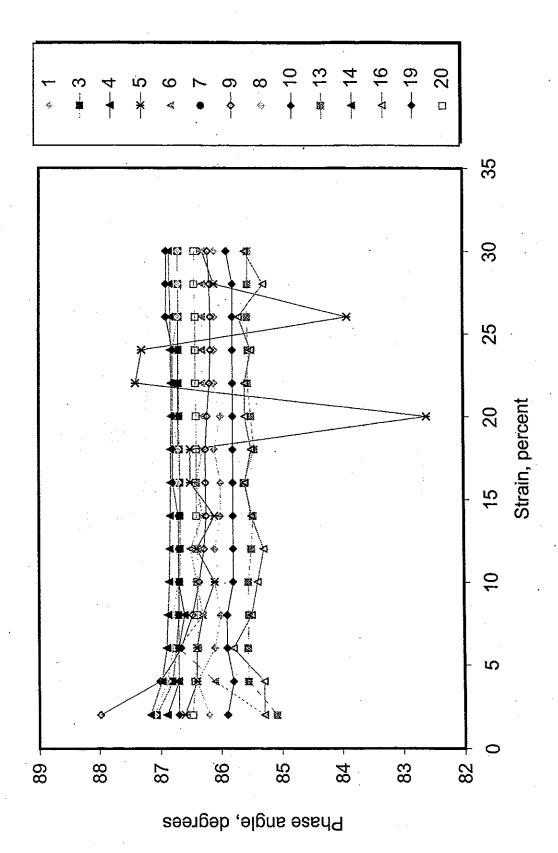


Figure D28. Strain sweeps phase angle data for unaged PSU2.

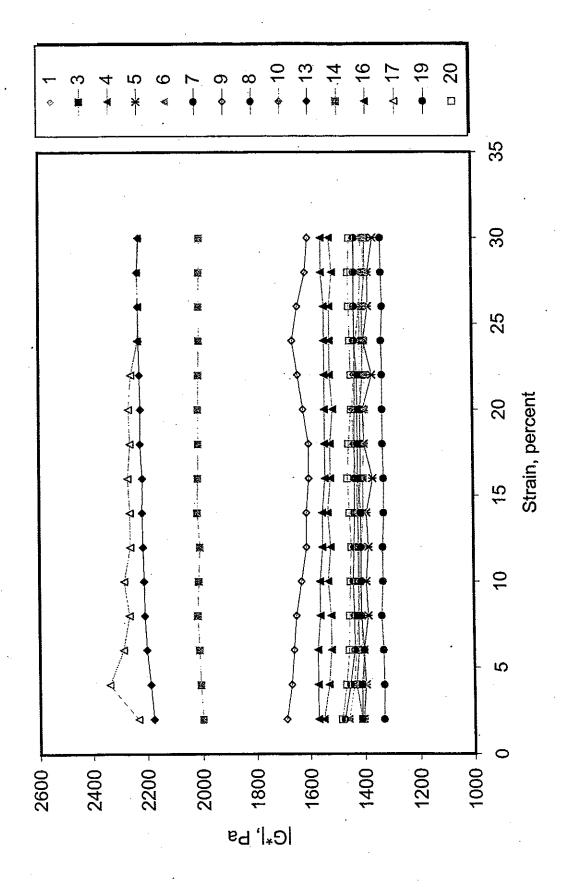


Figure D29. Strain sweeps G* data for unaged PSU3.

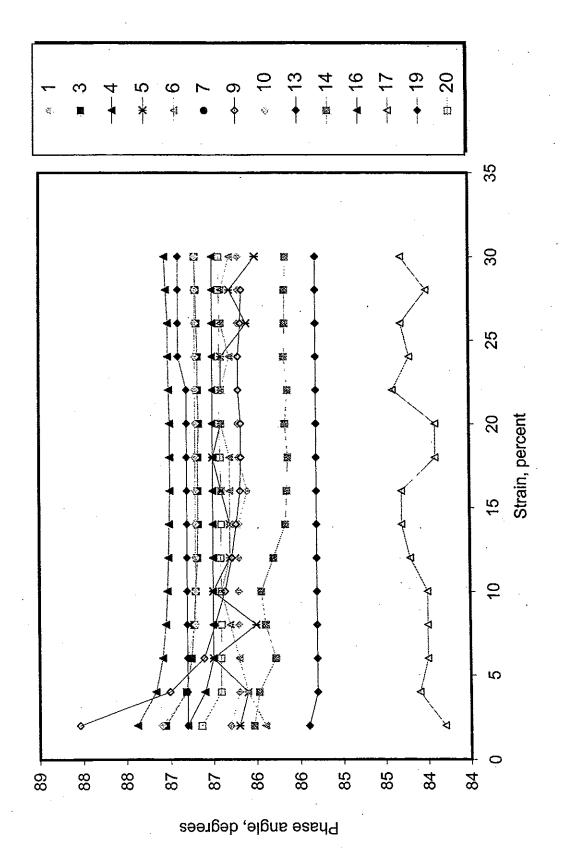


Figure D30. Strain sweeps phase angle data for unaged PSU3.

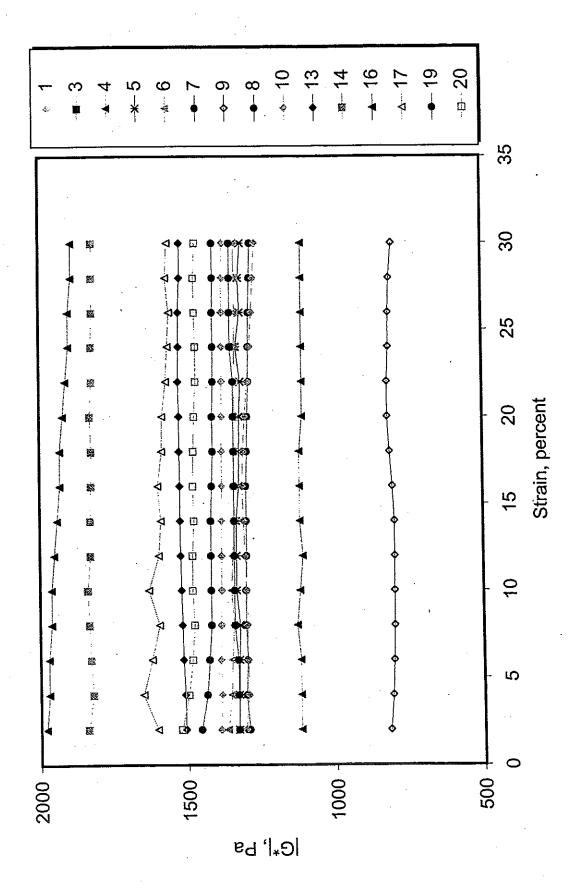


Figure D31. Strain sweeps G* data for unaged PSU4.

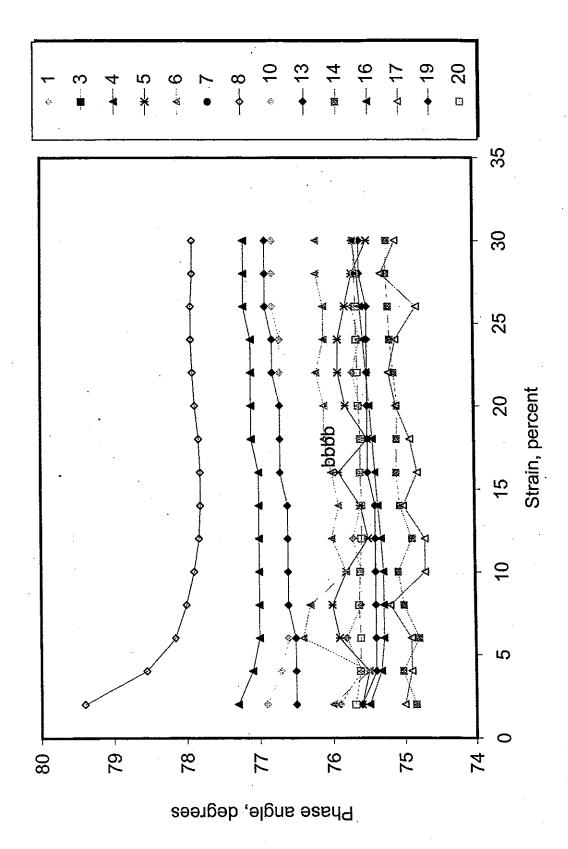


Figure D32. Strain sweeps phase angle data for unaged PSU4.

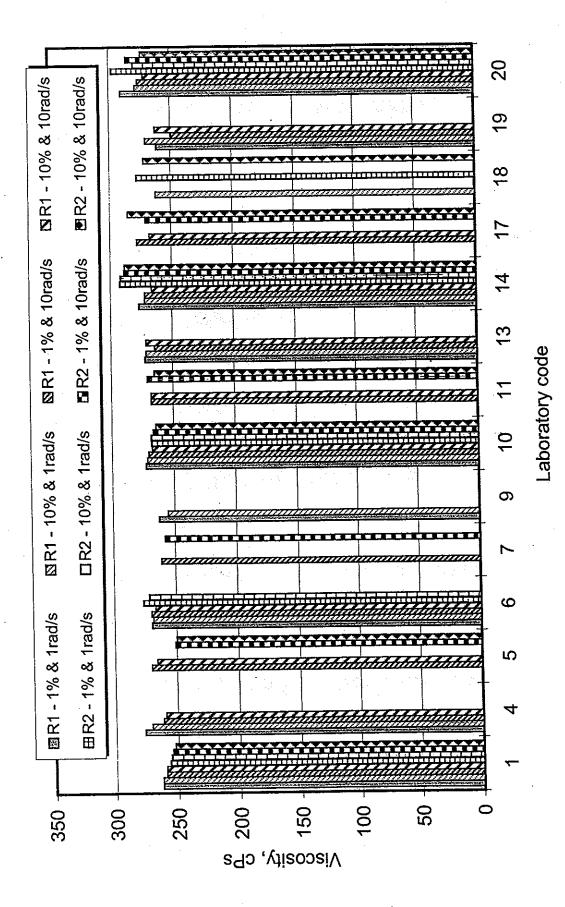


Figure D33. Complex viscosity data for the reference fluid at 64°C.

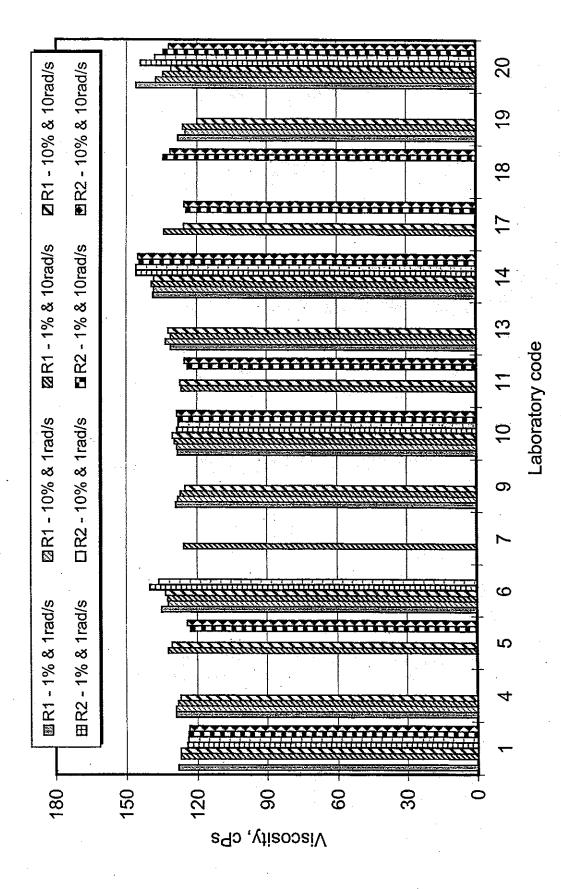
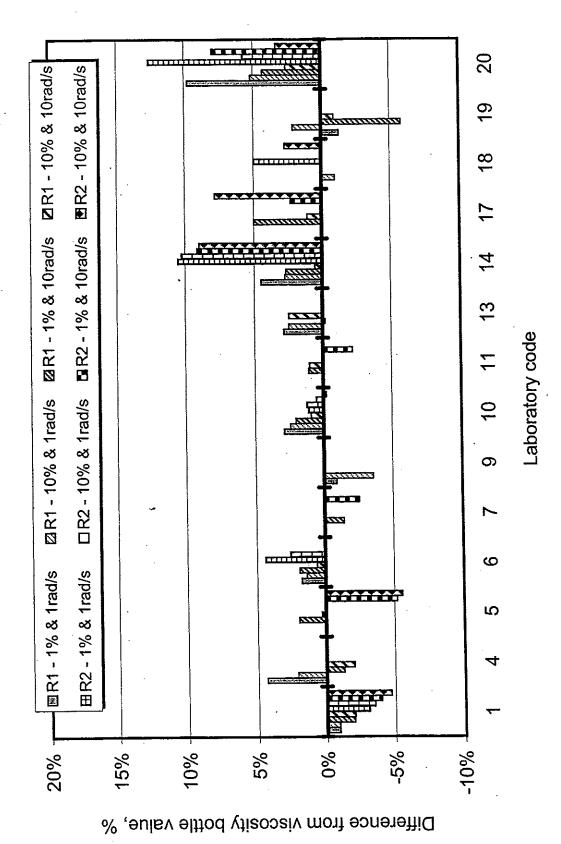
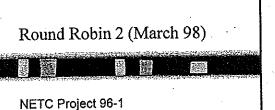
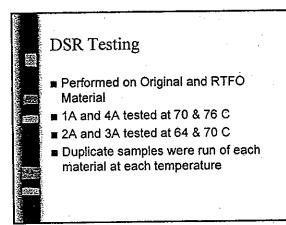
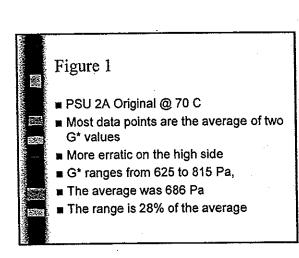
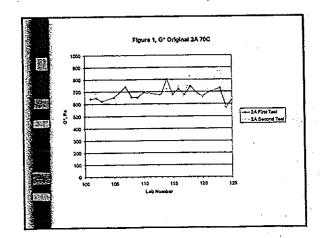


Figure D34. Complex viscosity data for the reference fluid at 76°C.

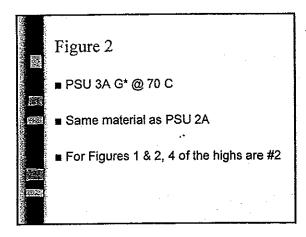



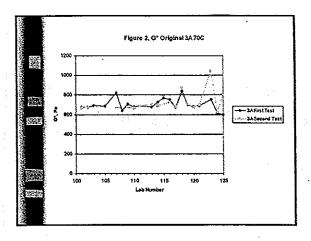

Figure D35. Complex viscosity versus capillary viscosity for the reference fluid at 64°C.

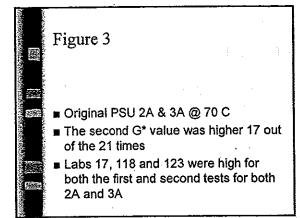

APPENDIX E SLIDES USED IN DR. JACK STEPHENS' PRESENTATION

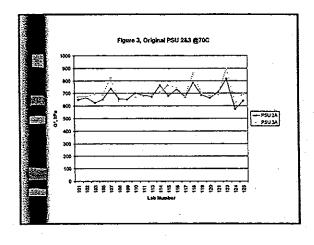


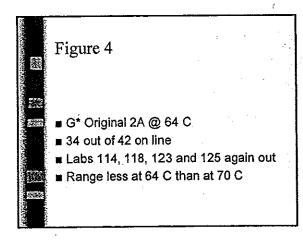
Superpave Implementation

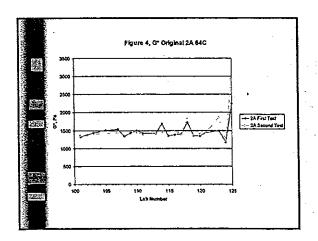

4 Binder Samples Were Sent Samples 1A & 4A were the same material Samples 2A & 3A were the same material Pre-aged samples 1 & 4 were the same Pre-aged samples 2 & 3 were the same

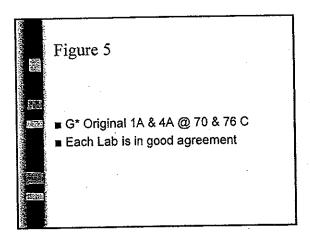


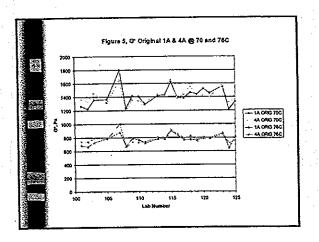


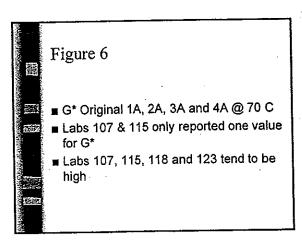


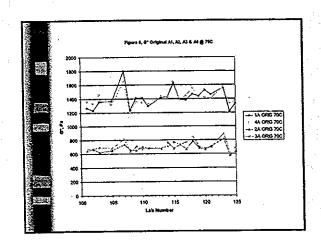


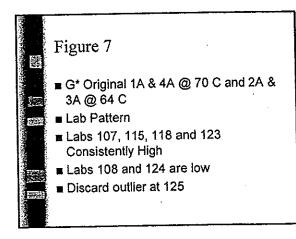


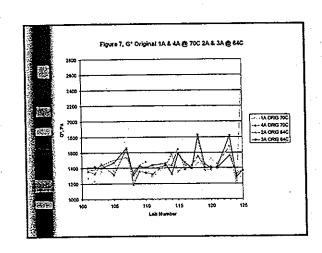


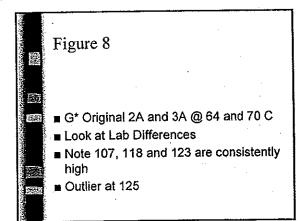


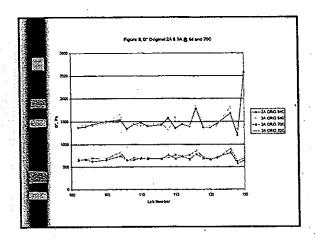


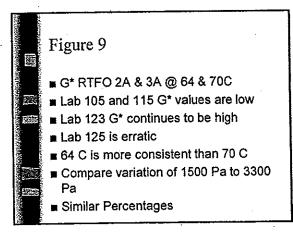


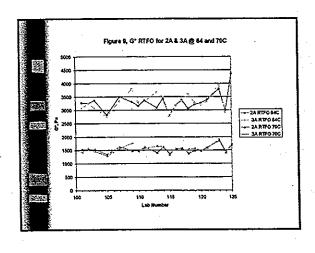


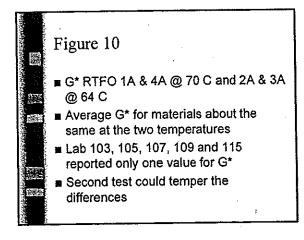


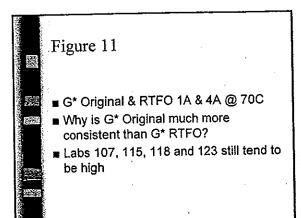


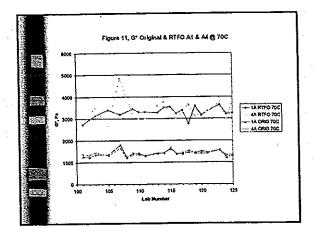


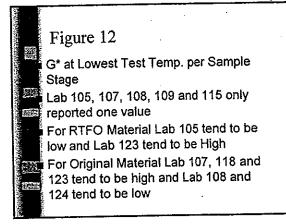


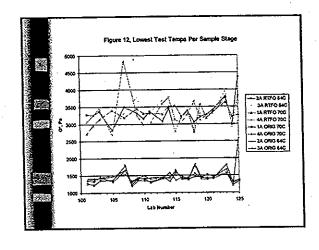


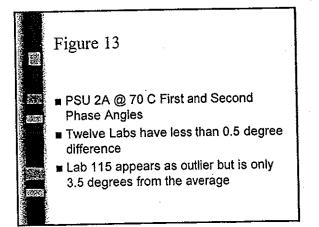


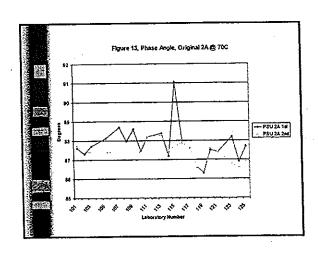


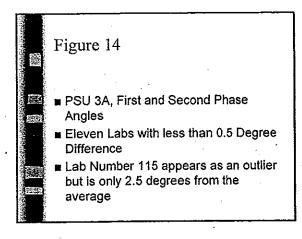


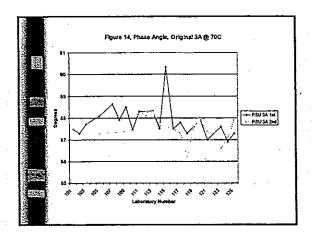


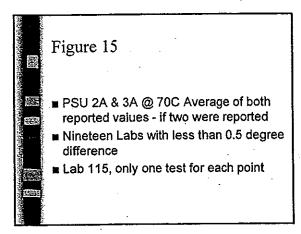


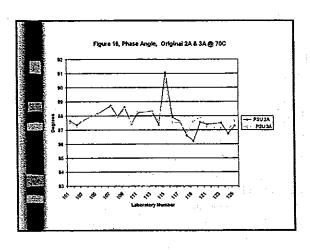


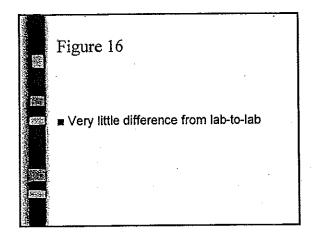


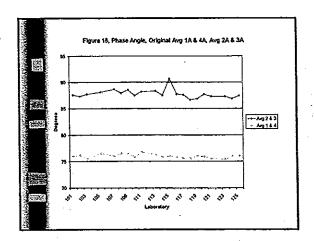


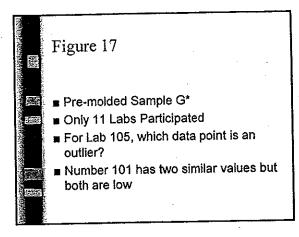


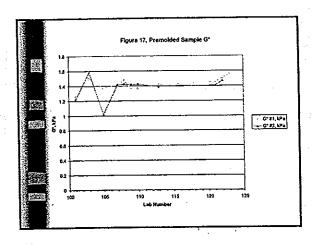


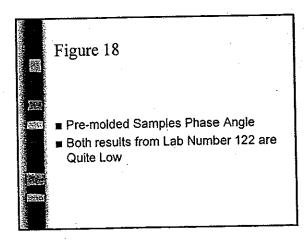


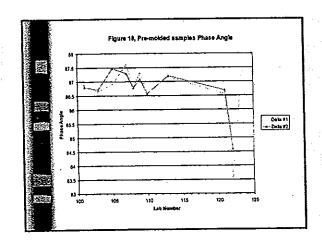


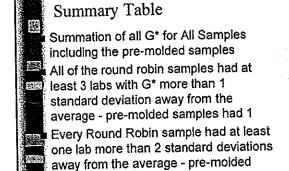


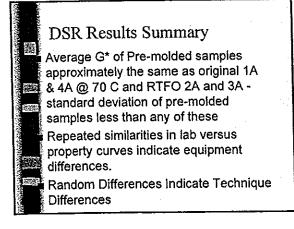


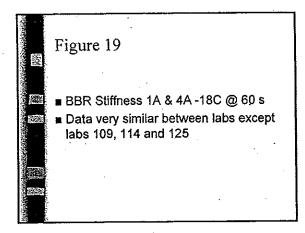


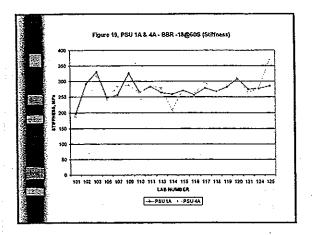


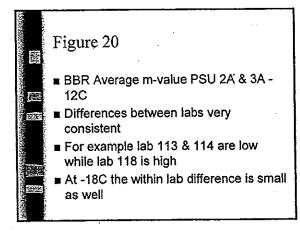


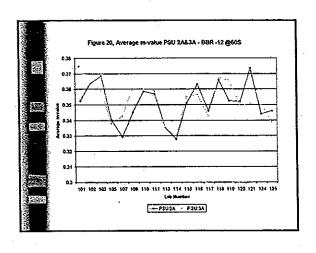


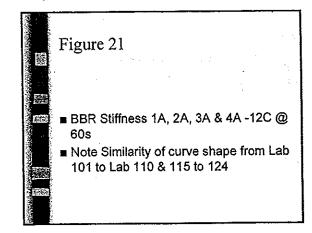


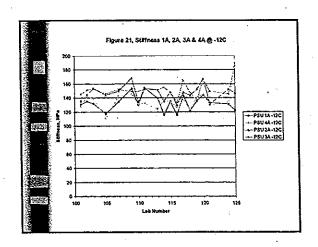


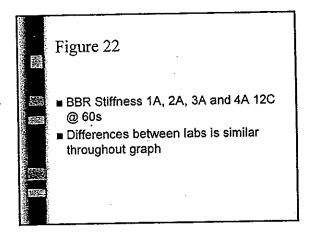


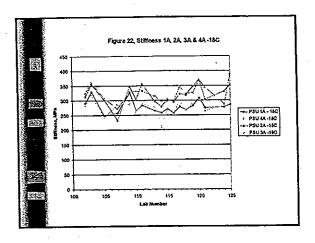


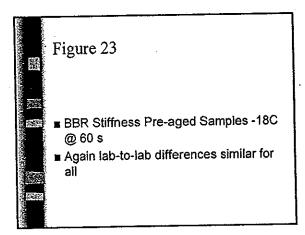

none.

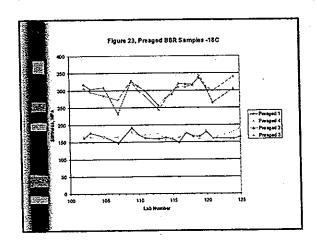


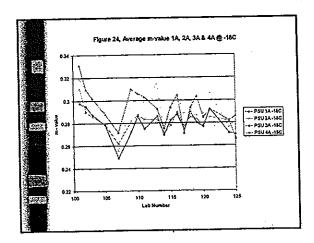












APPENDIX F STATISTICAL ANALYSIS DETAILS

PRELIMINARY STATISTICAL ANALYSIS OF VISCOSITY DATA FOR MATERIALS PSU1 AND PSU4

This experiment provides the data by which the noise in the measured viscosity of the materials PSU1 and PSU4 may be assigned to the laboratory and the measurement errors. Accordingly an appropriate model for the measured values is;

$$Y(i,j) = Lab(i) + Error(i,j)$$

Lab(i) is a random variable with mean of 0 and standard deviation of SIG(LAB) Error(i,j) is a random variable with mean of 0 and standard deviation of SIG(ERROR)

All components are assumed to be independent random variables. The purpose of a components of variance analysis is to estimate each of the above standard deviations and to provide the basis for the estimation of other important quantities such as the coefficients of variation, the usual D1S, D2S for the between and within Laboratories variation. In this preliminary analysis only the estimated standard deviations and associated coefficients of variation will be given. Summaries which include the other quantities of interest will be given in a later section.

When the data in this experiment were first analyzed it was clear that two laboratories had excessive within laboratory variation when tested at 135C and one of these also had excessive within laboratory variation at 165C. With these omitted the estimated values for the standard deviations, CV% and mean are given below.

Temperature

	135C			165C		
	STD	CV%	MEAN	STD	CV%	MEAN
LAB	71.7	7.1%	1013.6	38.0	13.3%	284.5
ERROR	26.3	2.6%		9.6	3.4%	

The computer output is shown in the next page.

THIS IS FOR the viscosity for PSU1 AND PSU4 UNAGED SAMPLES FROM 10 are NOT USED at either temp. SAMPLES FROM 17 are not used at temp 135 DUE TO EXCESSIVE WITHIN LAB VARIATION

------ TEMP=135 -----

Nested Random Effects Analysis of Variance for Variable VISC

Variance Source	Degrees of Freedom	Sum of Squares	F Value	Pr > F	Error Term
TOTAL LAB ERROR	31 15 16	175730 164642 11088	15.839	0.0000	ERROR
Variance Source	Mean Square		iance onent	Percent of Total	
TOTAL LAB ERROR	5668.694677 10976 692.971875	5834.5 5141.5 692.9		100.0000 88.1230 11.8770	•
	Mean Standard erro	or of mean		3.61250000 8.52037082	. :

----- TEMP=165 -----

Nested Random Effects Analysis of Variance for Variable VISC

Variance Source	Degrees of Freedom	Sum of Squares	F Value	Pr > F	Error Term
TOTAL LAB ERROR	33 16 17	49223 47653 1570.110000	32.247	0.0000	ERROR
Variance Source	Mean Square		iance onent	Percen of Tota	
TOTAL LAB ERROR	1491.612692 2978.319301 92.359412	1535.3 1442.9 92.3		100.000 93.984 6.015	4
	Mean Standard e	rror of mean		.49411765	

PRELIMINARY STATISTICAL ANALYSIS OF VISCOSITY DATA FOR MATERIALS PSU2 AND PSU3

This experiment provides the data by which the noise in the measured viscosity of the materials PSU2 and PSU3 may be assigned to the laboratory and the measurement errors. Accordingly an appropriate model for the measured values is;

$$Y(i,j) = Lab(i) + Error(i,j)$$

Lab(i) is a random variable with mean of 0 and standard deviation of SIG(LAB) Error(i,j) is a random variable with mean of 0 and standard deviation of SIG(ERROR)

All components are assumed to be independent random variables. The purpose of a components of variance analysis is to estimate each of the above standard deviations and to provide the basis for the estimation of other important quantities such as the coefficients of variation, the usual D1S, D2S for the between and within Laboratories variation. In this preliminary analysis only the estimated standard deviations and associated coefficients of variation will be given. Summaries which include the other quantities of interest will be given in a later section.

When the data in this experiment were first analyzed it was clear that three laboratories had excessive within laboratory variation when tested at 135C and three (two repeats, one different) had excessive within laboratory variation at 165C. With these omitted the estimated values for the standard deviations, CV% and means are given below.

Temperature

	135C		÷	165C		
•	STD	CV%	MEAN	STD	CV%	MEAN
LAB.	38.7	8.6%	450.2	13.6	10.8%	126.2
ERROR	9.7	2.1%		5.0	3.9%	

The computer output is shown in the next page.

THIS IS FOR THE VISCOSITY FOR PSU2 AND PSU3 UNAGED SAMPLES FROM 10, 17, AND 19 ARE NOT USED AT TEMP 135 DUE TO EXCESSIVE WITHIN LAB VARIATION

Nested Random Effects Analysis of Variance for Variable VISC

	Degrees	- 1	•		
Variance	of	Sum of			Error
Source	Freedom	Squares	F Value	Pr > F	Term
TOTAL	29	44738		·	
LAB	14	43334	33.078	0.0000	ERROR
ERROR	15	1403.625000	•		
	•	***		Percent	
Variance			riance		
Source	Mean Square	Com	ponent	of Total	
TOTAL	1542.684195	1594.	438095	100.000)
LAB	3095.301190	1500.	863095	94.1312	2
ERROR	93.575000	93.	575000	5.8688	3
	Mean		45	0.21666667	
		ror of mean		0.15759353	
	Scandard Gr	. LOL OL MOUN	-		

THIS IS FOR THE VISCOSITY FOR PSU2 AND PSU3 UNAGED SAMPLES FROM 9, 10 and 19 ARE NOT USED AT TEMP 165 DUE TO EXCESSIVE WITHIN LAB VARIATION

Nested Random Effects Analysis of Variance for Variable VISC

Variance Source	Degrees of Freedom	Sum of Squares	F Value	Pr > F	Error Term
TOTAL LAB ERROR	29 14 · 15	5921.341667 5551.216667 370.125000	16.070	0.0000	ERROR
Variance Source	Mean Square		riance conent	Percen of Tota	
TOTAL LAB ERROR	204.184195 396.515476 24.675000	185.9	95238 920238 975000	100.000 88.283 11.716	2
	Mean Standard e	rror of mean		11666667 63554433	

PRELIMINARY STATISTICAL ANALYSIS OF G* EXPERIMENT WITH UNAGED PSU1 & PSU4

1. This experiment provides the data by which the total noise in the measured values of G* may be assigned to the Laboratory and the measurement error. Accordingly, an appropriate model for the measured values is;

$$Y(i,j,k) = Lab(i) + Error(i,j)$$
 where

Lab(i) is a random variable with mean of 0 and standard deviation of SIG(LAB), Error(i,j) is a random variable with mean of 0 and standard deviation of SIG(ERROR).

All components are assumed to be independent random variables. The purpose of a components of variance analysis is to estimate each of the above standard deviations and to provide the basis for the estimation of other important quantities such as the coefficients of variation, the usual D1S, D2S for the between and within Laboratories variation. In this preliminary analysis only the estimated standard deviations and associated coefficients of variation will be given.

When the data in this experiment were first analyzed it was clear that two laboratories had excessive within laboratory variation. Accordingly, the data for these laboratories were omitted for both temperatures. With these omitted the estimated values for the standard deviations, means, and coefficients of variation(%) are given below. A total of 17 laboratories had acceptable data for temperature of 70 and 16 laboratories had acceptable data for temperature of 76.

Temperature

		70		76			
	STD	CV%	MEAN		STD	CV%	MEAN
LAB	82.2	5.9%	1394.8	·	43.2	5.6%	765.1
ERROR	51.1	3.7%			28.4	3.7%	

THIS IS FOR THE G STAR FOR UNAGED PSU 1&4
WE HAVE THE COMPONENTS DUE TO THE LABS AND THE ERROR
LABS 14 AND 16 ARE REMOVED FROM THE DATA SET
DUE TO EXCESSIVE WITHIN LAB VARIATION

------TEMP=70 ------

Nested Random Effects Analysis of Variance for Variable GSTAR

	Degrees of	Sum of			Error
Variance Source	Freedom	Squares	F Value	Pr > F	
TOTAL LAB ERROR	57 16 41	515639 408787 106851		eta (m. 1865) 1900 1900 - Harris Marie	
Variance Source	Mean Square		riance conent	Percent of Total	
TOTAL LAB ERROR	9046.291591 25549 2606.128049	9360.9 6754.8 2606.3	316203	100.0000 72.1596 27.8404	
	Mean Standard err	or of mean		.75862069 .69385178	

TEMP=76

Nested Random Effects Analysis of Variance for Variable GSTAR

Variance Source	Degrees of Freedom	Sum of Squares	F Value	Pr > F	Error Term
TOTAL LAB ERROR	53 15 . 38	136643 106019 30623			
Variance Source	Mean Square		riance ponent	Percent of Total	
TOTAL LAB ERROR	2578.163005 7067.965117 805.872697	1864.8	686984 314287 372697	100.0000 69.8253 30.1747	;
	Mean Standard erro	or of mean		.09629630	

PRELIMINARY STATISTICAL ANALYSIS OF G* EXPERIMENT WITH UNAGED PSU2 & PSU3

2. This experiment provides the data by which the total noise in the measured values of G* may be assigned to the Laboratory and the measurement error. Accordingly, an appropriate model for the measured values is;

$$Y(i,j) = Lab(i) + Error(i,j)$$
 where

Lab(i) is a random variable with mean of 0 and standard deviation of SIG(LAB), Error(i,j) is a random variable with mean of 0 and standard deviation of SIG(ERROR).

All components are assumed to be independent random variables. The purpose of a components of variance analysis is to estimate each of the above standard deviations and to provide the basis for the estimation of other important quantities such as the coefficients of variation, the usual D1S, D2S for the between and within Laboratories variation. In this preliminary analysis only the estimated standard deviations and associated coefficients of variation will be given.

When the data in this experiment were first analyzed it was clear that three laboratories had excessive within laboratory variation. Accordingly, the data for these laboratories were omitted for both temperatures. With these omitted the estimated values for the standard deviations, means, and coefficients of variation (%) are given BELOW. A total of 16 laboratories had acceptable data for both temperatures.

Temperature

· · · · · · · · · · · · · · · · · · ·		64		70		
	STD	CV% MEAN	STD	CV%	MEAN	
LAB	111.8	7.7% 1457.6	44.3	6.3%	702.1	
ERROR	55.4	3.8%	29.1	4.2%		

THIS IS FOR THE G STAR FOR UNAGED PSU 2&3
WE HAVE THE COMPONENTS DUE TO THE LABS AND THE ERROR
LABS 4, 14 AND 15 ARE REMOVED FOR BOTH TEMPERATURES
DUE TO EXCESSIVE WITHIN LAB VARIATION

 TEMP=64	

Nested Random Effects Analysis of Variance for Variable GSTAR

Variance Source	Degrees of Freedom	Sum of Squares	F Value	Pr > F	Error Term
TOTAL LAB ERROR	53 15 38	791946 675315 116631			
Variance Source	Mean Square		iance onent	Percent of Total	
TOTAL LAB ERROR	14942 45021 3069.243421	3069.2	15562 12493 43421	100.0000 80.2776 19.7224	
	Mean Standard error	of mean		7.64814815 9.94258749	

_____ TEMP=70 -----

Nested Random Effects Analysis of Variance for Variable GSTAR

Variance	Degrees of	Sum of			Error
Source	Freedom	Squares	F Value	Pr > F	Term
TOTAL LAB ERROR	. 53 15 38	143984 111714 32270			
Variance Source	Mean Square		iance onent	Percent of Total	
TOTAL LAB ERROR	2716.684906 7447.596000 849.220000	2814.1 1964.9 849.2	•	100.0000 69.8235 30.1765	
	Mean	•	702	.10000000	

Standard error of mean

12.15736949

PRELIMINARY STATISTICAL ANALYSIS OF DELTA EXPERIMENT PA-U-1&42 (UNAGED PSU1 & 4)

3. This experiment provides the data by which the total noise in the measured values of Delta may be assigned to the Laboratory and the measurement error. Accordingly, an appropriate model for the measured values is;

$$Y(i,j) = Mu + Lab(i) + Error(i,j)$$
 where

Lab(i) is a random variable with mean of 0 and standard deviation of SIG(LAB), Error(i,j) is a random variable with mean of 0 and standard deviation of SIG(ERROR).

All components are assumed to be independent random variables. The purpose of a components of variance analysis is to estimate each of the above standard deviations and to provide the basis for the estimation of other important quantities such as the coefficients of variation, the usual D1S, D2S for the between and within Laboratories variation. In this preliminary analysis only the estimated standard deviations and associated coefficients of variation will be given.

When the data in this experiment were first analyzed it was clear that one laboratory had excessive within laboratory variation at both temperatures and an additional laboratory had excessive within laboratory variation at a temperature of 76C. Accordingly, their data for the appropriate temperatures were omitted. With these omitted the estimated values for the standard deviations, means, and coefficients of variation (%) are given below. A total of 18 laboratories had acceptable data at 70C and 17 had acceptable data at 76C.

Temperature

		70C		76C		
	STD	CV%	MEAN	STD	CV%	MEAN
LAB	.3357	.44%	75.856	.4779	.61%	78.00
ERROR	.7979	1.1%		.3430	.44%	

THIS IS UNAGED PSU1 AND PSU4, DELTA AS THE VARIABLE. WE HAVE THE COMPONENTS DUE TO THE LABS AND THE ERROR LAB 17 REMOVED AT BOTH TEMP. LAB 16 REMOVED AT 76C DUE TO EXCESSIVE WITHIN LAB VARIATION

_____TEMP=70 -----

Nested Random Effects Analysis of Variance for Variable DELTA

Variance Source	Degrees of Freedom	Sum of Squares	F Value	Pr > F	Error Term
TOTAL LAB ERROR	63 18 45	46.917500 18.265000 28.652500		ra i alemanti e alla delle si La la la la sensia della si calcana. La sensia della si calcana.	
Variance Source	Mean Square	4	riance ponent	Percent of Total	
TOTAL LAB ERROR	0.744722 1.014722 0.636722	0.	749418 112696 636722	100.0000 15.0378 84.9622	
i Wasan	Mean Standard err	or of mean	and the second	75.85625000 0.12779647	

______TEMP=76 -----

the control of the second will be a second of the second

Nested Random Effects Analysis of Variance for Variable DELTA

	ariance ource	Degrees . of Freedom	Sum of Squares	F Value	Pr > F	Error Term
LA	OTAL AB RROR	57 16 41	19.119310 14.294310 4.825000			
	ariance ource	Mean Square	· ·	riance conent	Percent of Total	•
L	OTAL AB RROR	0.335426 0.893394 0.117683	0.2	346065 228382 117683	100.0000 65.9940 34.0060	
		Mean			78.00344828	

Standard error of mean

0.12814719

PRELIMINARY STATISTICAL ANALYSIS OF DELTA EXPERIMENT PA-U-2&32 (UNAGED PSU2 & 3)

4. This experiment provides the data by which the total noise in the measured values of Delta may be assigned to the Laboratory and the measurement error. Accordingly, an appropriate model for the measured values is;

$$Y(i,j) = Mu + Lab(i) + Error(i,j)$$
 where

Lab(i) is a random variable with mean of 0 and standard deviation of SIG(LAB), Error(i,j) is a random variable with mean of 0 and standard deviation of SIG(ERROR).

All components are assumed to be independent random variables. The purpose of a components of variance analysis is to estimate each of the above standard deviations and to provide the basis for the estimation of other important quantities such as the coefficients of variation, the usual D1S, D2S for the between and within Laboratories variation. In this preliminary analysis only the estimated standard deviations and associated coefficients of variation will be given.

When the data in this experiment were first analyzed it was clear that one laboratory had excessive within laboratory variation at a temperature of 64C. A different laboratory had excessive within laboratory variation at a temperature of 70C. Accordingly, their data for the appropriate temperatures were omitted. With these omitted the estimated values for the standard deviations, means, and coefficients of variation (%) are given below. For each of the temperatures a total of 17 laboratories had acceptable data for these analyses.

Temperature

	•	64		•	70		
	STD	CV%	MEAN '	STD	CV%	MEAN	
LAB	.4098	.47%	86.413	.7348	.84%	87.75	
ERROR	.2809	.33%	•	.2741	.31%		

THIS IS UNAGED PSU2 AND PSU3, DELTA AS THE VARIABLE. WE HAVE THE COMPONENTS DUE TO THE LABS AND THE ERROR LABS 14(AT 70), 15(AT 64) ARE REMOVED FROM THE DATA SET DUE TO EXCESSIVE WITHIN LAB VARIATION

------TEMP=64 -----

Nested Random Effects Analysis of Variance for Variable DELTA

Variance Source	Degrees of Freedom	Sum of Squares	F Value	Pr > F	Error Term
TOTAL LAB ERROR	59 17 42	14.129333 10.814333 3.315000			
Variance Source	Mean Square		riance ponent	Percent of Total	
TOTAL LAB ERROR	0.239480 0.636137 0.078929	0.	246882 167953 078929	100.0000 68.0298 31.9702	
	Mean Standard er	ror of mean	8	0.10673638	

----- TEMP=70 -----

Nested	Random	Effects	Analysis	of	Variance	for	Variable	DELTA
					-		•	
				,				

Variance Source	Degrees of Freedom	Sum of Squares	F Value	Pr >.F	Error Term
TOTAL LAB	59 17	34.889833 31.734833			•
ERROR	42	3.155000			
Variance		Va	riance	Percent	Ξ.
Source	Mean Square	Comp	oonent	of Total	l
TOTAL	0.591353	0.6	615151	100,000	0
LAB	1.866755	0.9	540032	87.788	5
ERROR	0.075119	0.0	075119	12.211	5
	Mean		87	.75166667	
	Standard er	ror of mean	0	.18345002	

PRELIMINARY STATISTICAL ANALYSIS OF G*/SIN(DELTA) EXPERIMENT (UNAGED PSU1 & 4)

5. This experiment provides the data by which the total noise in the measured values of G*/Sin(Delta) may be assigned to the Laboratory and the measurement error. Accordingly, an appropriate model for the measured values is;

$$Y(i,j) = Mu + Lab(i) + Error(i,j)$$
 where

Lab(i) is a random variable with mean of 0 and standard deviation of SIG(LAB), Error(i,j) is a random variable with mean of 0 and standard deviation of SIG(ERROR).

All components are assumed to be independent random variables. The purpose of a components of variance analysis is to estimate each of the above standard deviations and to provide the basis for the estimation of other important quantities such as the coefficients of variation, the usual D1S, D2S for the between and within Laboratories variation. In this preliminary analysis only the estimated standard deviations and associated coefficients of variation will be given.

When the data in this experiment were first analyzed it was clear that two laboratories had excessive within laboratory variation at both temperatures. Accordingly, their data were omitted. With these omitted the estimated values for the standard deviations, means, and coefficients of variation (%) are given below. A total of 17 laboratories had acceptable data at 70C and 16 had acceptable data at 76C.

Temperature

	•	70C			76C		
	STD	CV%	MEAN	·.	STD	CV%	MEAN
LAB	86.81	6.0%	1438.6		44.09	5.6%	782.13
ERROR	54.48	3.8%			29.44	3.8%	

THIS IS UNAGED PSU1 AND PSU4. GDBSD IS G*/SIN(DELTA) WE HAVE THE COMPONENTS DUE TO THE LABS AND THE ERROR LABS 14 AND 16 REMOVED AT BOTH TEMP. DUE TO EXCESSIVE WITHIN LAB VARIATION

 TEMP=70	

Nested Random Effects Analysis of Variance for Variable GDBSD

Variance Source	Degrees of Freedom	Sum of Squares	F Value	Pr > F	Error
TOTAL LAB ERROR	57 16 41	578706 457003 121704			
Variance Source	Mean Square		iance onent	Percent of Total	
TOTAL LAB ERROR	10153 28563 2968.383074	7535.3 2968.3		100.0000 71.7398 28.2602	
	Mean Standard error	of mean	'	.55399774 .93599072	

Nested Random Effects Analysis of Variance for Variable GDBSD

Variance Source	Degrees of Freedom	Sum of Squares	F Value	Pr > F	Error Term
TOTAL LAB ERROR	53 15 38	143850 110909 32941			
Variance Source	Mean Square		riance conent	Percent of Total	
TOTAL LAB ERROR	2714.147134 7393.948290 866.857203	2810.5 1943.7 866.8		100.0000 69.1574 30.8426	·
	Mean Standard erro	r of mean		2.13495209 2.11203471	

PRELIMINARY STATISTICAL ANALYSIS OF G* EXPERIMENT FOR RTFOT PSU 1&4

This experiment provides the data by which the total noise in the measured values of G* may be assigned to the Laboratory, the thin film oven aging, and the measurement error. Accordingly, an appropriate model for the measured values is;

$$Y(i,j,k) = Lab(i) + RTFO(i,j) + Error(i,j,k)$$
 where

Lab(i) is a random variable with mean of 0 and standard deviation of SIG(LAB), RTOF(i,j) is a random variable with mean of 0 and standard deviation of SIG(RTFO), Error(i,j,k) is a random variable with mean of 0 and standard deviation of SIG(ERROR).

All components are assumed to be independent random variables. The purpose of a components of variance analysis is to estimate each of the above standard deviations and to provide the basis for the estimation of other important quantities such as the coefficients of variation, the usual D1S, D2S for the between and within Laboratories variation. In this preliminary analysis only the estimated standard deviations and associated coefficients of variation will be given.

When the data in this experiment were first analyzed it was clear that two laboratories had excessive within laboratory variation. Accordingly, the data for one laboratory were omitted for both temperatures and the data for the other laboratory were eliminated for the temperature of 76. With these omitted the estimated values for the standard deviations are given below.

			Temperature			
		70		76		
	STD	CV% MEAN	STD	CV%	MEAN	
LAB		2.9% - 3298.5	68.9	3.9%	1783.6	
RTFO	248.0	7.5%	150.1	8.4%		
ERROR	145.6	4.4%	65.2	3.7%		

THIS IS FOR THE RTFOT G STAR FOR RTFOT PSU1&4
ALL DATA POINTS FOR 16 WERE OMITTED AND FOR 15 THE DATA POINTS AT 76
DUE TO EXCESSIVE NOISE WITHIN THE LAB
WE HAVE THE COMPONENTS DUE TO THE LABS THE RTFOF AND THE ERR

Nested Random Effects Analysis of Variance for Variable GSTAR

	Degrees				
Variance Source	of Freedom	Sum of Squares	F Value	Pr > F	Error Term
TOTAL LAB RTFOF ERROR	59 16 17 26	5342599 2585459 2206008 551133	to de les telas 14 te		
Variance Source	Mean Square		riance ponent	Percent of Total	
TOTAL LAB RTFOF ERROR	90553 161591 129765 21197	9161.	91881 533452 61522 21197	100.0000 9.9711 66.9583 23.0706	
	Mean Standard erro	r of mean		8.51666667 3.26678511	

----- TEMP=76 -----

Nested Random Effects Analysis of Variance for Variable GSTAR

Variance Source	Degrees of Freedom	Sum of Squares	F Value	Pr > F	Error Term
TOTAL	50	1543934		•	•
LAB	14	827594			
RTFOF	14	622842			•
ERROR	22	93498			
Variance		Var	riance	Percent	
Source	Mean Square	Comp	onent	of Total	
TOTAL	30879		31524	100.0000	
LAB	59114	4740.4	10149	15.0374	
RTFOF	44489		22534	71.4811	
ERROR	4249.886364	4249.8	886364	13.4814	
	Mean		1783	. 64705882	
	Standard erro	r of mean	35	.36695327	

PRELIMINARY STATISTICAL ANALYSIS OF DELTA EXPERIMENT (RTFO AGED PSU1 & 4)

6. This experiment provides the data by which the total noise in the measured values of Delta may be assigned to the Laboratory, the RTFO aging, and the measurement error. Accordingly, an appropriate model for the measured values is;

$$Y(i,j,k) = Mu + Lab(i) + RTFO(i,j) Error(i,j,k)$$
 where

Lab(i) is a random variable with mean of 0 and standard deviation of SIG(LAB), RTFO(i,j) is a random variable with mean of 0 and standard deviation of SIG(RTFO), Error(i,j,k) is a random variable with mean of 0 and standard deviation of SIG(ERROR).

All components are assumed to be independent random variables. The purpose of a components of variance analysis is to estimate each of the above standard deviations and to provide the basis for the estimation of other important quantities such as the coefficients of variation, the usual D1S, D2S for the between and within Laboratories variation. In this preliminary analysis only the estimated standard deviations and associated coefficients of variation will be given.

When the data in this experiment were first analyzed it was clear that one laboratory had excessive within laboratory variation at both temperatures. Accordingly, their data were omitted. With these omitted the estimated values for the standard deviations, means, and coefficients of variation(%) are given below. At 70C 15 laboratories had acceptable data and at 76C 16 laboratories had acceptable data.

Temperature

		70C			-	76C	
•	STD	CV%	MEAN	•	STD	CV%	MEAN
LAB	.3293	.46%	70.98		.3413	.47%	73.24
RTFO	.4225	.60%			.4561	.62%	. •
ERROR	.3954	.56%			.3997	.55%	

INDIV AGED PSU1 & PSU4 VARIABLE DELTA
WE HAVE THE COMPONENTS DUE TO THE LABS, RTFO, AND THE ERROR
LAB 16 REMOVED AT BOTH TEMP.
DUE TO EXCESSIVE WITHIN LAB VARIATION

----- TEMP=70 -----

Nested Random Effects Analysis of Variance for Variable DELTA

Variance Source	Degrees of Freedom	Sum of Squares	F Value	1.	Pr > F	Error Term
TOTAL	59	25.703333				1 1.
LAB	16	13.625833				
RTFO	17	8.012500			The state of the state of	and the first
ERROR	26	4.065000		1.	the supplied that	
	and the state of					
Variance		Va	riance		Percent	•
Source	Mean Square	Com	ponent		of Total	
TOTAL	0.435650	. 0.	443296		100.0000	
LAB	0.851615		108463		24.4674	
RTFO	0.471324		178487		40.2636	
ERROR	0.156346		156346		35.2690	
	Mean		13	70.98	333333	
	Standard er	ror of mean	•	0.12	209634	

-----TEMP=76 -----

Nested Random Effects Analysis of Variance for Variable DELTA

Variance Source	Degrees of Freedom	. Sum of	F Value	Pr > F	Error Term
TOTAL	54	25.649818			· ·
LAB	15	13.802318			
RTFO	15	8.012500			
ERROR	24	3.835000		•	
Variance	.*	Var:	iance	Percent	<u>.</u>
Source	Mean Square	· Compo	onent	of Total	<u>.</u>
TOTAL	0.474997	0.48	34240	100.0000)
LAB	0.920155	0.13	16462	24.050	5
RTFO	0.534167	0.20	07986	42.951)
ERROR	0.159792	0.1	59792	32.998	<u> </u>
	Mean		73.	23818182	
	Standard er:	ror of mean	0.	13371470	

PRELIMINARY STATISTICAL ANALYSIS OF G*/SIN(DELTA) EXPERIMENT (INDIV RTFO AGED PSU1 & 4)

This experiment provides the data by which the total noise in the measured values of G*/Sin(Delta) may be assigned to the Laboratory, the RTFO aging, and the measurement error. Accordingly, an appropriate model for the measured values is;

$$Y(i,j,k) = Mu + Lab(i) + RTFO(i,j) Error(i,j,k)$$
 where

Lab(i) is a random variable with mean of 0 and standard deviation of SIG(LAB), RTFO(i,j) is a random variable with mean of 0 and standard deviation of SIG(RTFO), Error(i,j,k) is a random variable with mean of 0 and standard deviation of SIG(ERROR).

All components are assumed to be independent random variables. The purpose of a components of variance analysis is to estimate each of the above standard deviations and to provide the basis for the estimation of other important quantities such as the coefficients of variation, the usual D1S, D2S for the between and within Laboratories variation. In this preliminary analysis only the estimated standard deviations and associated coefficients of variation will be given.

When the data in this experiment were first analyzed it was clear that one laboratory had excessive within laboratory variation at both temperatures. Another laboratory had excessive within laboratory variation at 76C. Accordingly, their data were omitted. With these omitted the estimated values for the standard deviations, means, and coefficients of variation (%) are given below. For each temperature, a total of 15 laboratories had acceptable data.

Temperature

		70C			76C	
	STD	CV% ME	EAN	STD	CV%	MEAN
LAB	106.1	3.0% 34	90.2	73.5	3.9%	1863.1
RTFO	270.8	7.8%		160.3	8.6%	
ERROR	159.9	4.6%		70.3	3.8%	

INDIV AGED PSU1 & PSU4 VARIABLE GDBSD IS G*/SIN(DELTA)
WE HAVE THE COMPONENTS DUE TO THE LABS, RTFO, AND THE ERROR
LAB 16 REMOVED AT BOTH TEMP. 15 out at 76C
DUE TO EXCESSIVE WITHIN LAB VARIATION

Nested Random Effects Analysis of Variance for Variable GDBSD

Variance Source	Degrees of Freedom	Sum of Squares F	Value : Pr > F	Error Term
TOTAL LAB RTFO ERROR	59 16 17 26	6406249 3106347 2635147 664754		
Variance Source	Mean Square	Varian Compone		
TOTAL LAB RTFO ERROR	108580 194147 155009 25567	1101 112 733 255	62 10.22 50 66.57	17 31
	Mean Standard error	of mean	3490.22731348 58.38565826	

----- TEMP=76 -----

Nested Random Effects Analysis of Variance for Variable GDBSD

Variance Source	Degrees of Freedom	Sum of Squares F	Value	Pr > F	Error Term
TOTAL LAB RTFO ERROR	50 14 14 22	1766178 945307 711764 109107			
Variance Source	Mean Square	Varianc Componen		Percent of Total	

TOTAL 35324 36060 100.0000 LAB 67522 5406.787909 14.9941 RTFO 50840 25693 71.2526 ERROR 4959.396801 4959.396801 13.7534

Mean Standard error of mean 1863.12102859 37.79625831

PRELIMINARY STATISTICAL ANALYSIS OF BBR DATA FOR MATERIALS PSU1 AND PSU4 WHEN AGED BY THE RTFOT AND THE PAV AND TESTED AT -12C

This experiment provides the data by which the noise in the measured stiffness of the bending beam at 60 seconds (S60) may be assigned to the Laboratory, the Aging and the measurement errors. Accordingly an appropriate model for the measured values is;

$$Y(i,j,k) = Lab(i) + PAV(i,j) + Error(i,j,k)$$

Lab(i) is a random variable with mean of 0 and standard deviation of SIG(LAB) PAV(i,j) is a random variable with mean of 0 and standard deviation of SIG(PAV) Error(i,j,k) is a random variable with mean of 0 and standard deviation of SIG(ERROR)

All components are assumed to be independent random variables. The purpose of a components of variance analysis is to estimate each of the above standard deviations and to provide the basis for the estimation of other important quantities such as the coefficients of variation, the usual D1S, D2S for the between and within Laboratories variation. In this preliminary analysis only the estimated standard deviations and associated coefficients of variation will be given.

When the data in this experiment were first analyzed it was clear that one laboratory had excessive within laboratory variation. Accordingly, the data for one laboratory were omitted. With these omitted the estimated values for the standard deviations, CV% and mean are given below.

	Temperature -12C					
٠.	STD	CV%	MEAN			
LAB	8.3	6.2%	134.4			
PAV	6.2	4.6%	•			
ERROR	4.6	3.4%				

THIS IS FOR THE BENDING BEAM WITH PAV AGED PSU1 & PSU4
ALL DATA POINTS FOR 15 WERE OMITTED
DUE TO EXCESSIVE NOISE WITHIN THE LAB
THIS IS FOR THE BBR AT TEMP -12C AND STIFFNESS AT 60 SECONDS

Coefficients of Expected Mean Squares

Source	LAB	PAV	ERROR
LAB PAV ERROR	3.940298507 0.000000000 0.000000000	1.980099502 1.960784314 0.000000000	1.000000000 1.000000000 1.000000000

Nested Random Effects Analysis of Variance for Variable S60

				2.1 At 12.1	
Variance Source	Degrees of Freedom	Sum of Squares	F Value	Pr > F	Error Term
TOTAL LAB PAV ERROR	66 16 17 33	8252.447761 5915.531095 1650.916667 686.000000			
Variance Source	Mean Square		ariance mponent	Percen of Tota	
TOTAL LAB PAV ERROR	125.037087 369.720693 97.112745 20.787879	68. 38.	.707341 .993781 .925682 .787879	100.000 53.605 30.243 16.151	52 86
	Mean Standard e	rror of mean	. 1	.34.43283582 2.35297243	

PRELIMINARY STATISTICAL ANALYSIS OF BBR DATA FOR MATERIALS PSU1 AND PSU4 WHEN AGED BY THE RTFOT AND THE PAV AND TESTED AT –12C (m60)

This experiment provides the data by which the noise in the measured m(60) of the bending beam at 60 seconds (m60) may be assigned to the Laboratory, the Aging and the measurement errors. Accordingly an appropriate model for the measured values is;

$$Y(i,j,k) = MU + Lab(i) + PAV(i,j) + Error(i,j,k)$$

Lab(i) is a random variable with mean of 0 and standard deviation of SIG(LAB) PAV(i,j) is a random variable with mean of 0 and standard deviation of SIG(PAV) Error(i,j,k) is a random variable with mean of 0 and standard deviation of SIG(ERROR)

All components are assumed to be independent random variables. The purpose of a components of variance analysis is to estimate each of the above standard deviations and to provide the basis for the estimation of other important quantities such as the coefficients of variation, the usual D1S, D2S for the between and within Laboratories variation. In this preliminary analysis only the estimated standard deviations and associated coefficients of variation will be given.

When the data in this experiment were first analyzed it was clear that no laboratory had excessive within laboratory variation. Accordingly no data were omitted. The estimated values for the standard deviations, CV% and mean for m(60) are given below.

Temperature -12C

STD CV% MEAN

LAB .008118 2.5% .3268

PAV .005158 1.6%

ERROR .005718 1.7%

THIS IS FOR THE BENDING BEAM WITH IND PAV AGED PSU1 & PSU4 THIS IS FOR THE BBR AT TEMP -12C AND m(60) NO OUTLIERS NEEDED TO BE OMITTED

Coefficients of Expected Mean Squares

Source	LAB	PAV	ERROR
LAB PAV ERROR	3.943661972 0.00000000 0.000000000	1.981220657 1.962962963 0.00000000	1.00000000 1.000000000 1.000000000
			and the state of t

Nested Random Effects Analysis of Variance for Variable M60

• •	:	A DESCRIPTION OF THE SECOND	and the second		
Variance Source	Degrees of Freedom	Sum of Squares	F Value	Pr > F	Error Term
TOTAL LAB PAV ERROR	70 17 18 35	0.008555 0.005876 0.001532 0.001147	· · · · · · · · · · · · · · · · · · ·		
Variance Source	Mean Square		riance ponent	Percent of Total	
TOTAL LAB PAV ERROR	0.000122 0.000346 0.000085106 0.000032786	0.0000		100.0000 52.5921 21.2587 26.1492	
	Mean Standard err	or of mean	-	.32680282 .00220974	

PRELIMINARY STATISTICAL ANALYSIS OF BBR DATA FOR MATERIALS PSU2 AND PSU3 WHEN AGED BY THE RTFOT AND THE PAV AND TESTED AT -12C

This experiment provides the data by which the noise in the measured stiffness of the bending beam at 60 seconds (S60) may be assigned to the Laboratory, the Aging and the measurement errors. Accordingly an appropriate model for the measured values is;

$$Y(i,j,k) = MU + Lab(i) + PAV(i,j) + Error(i,j,k)$$

Lab(i) is a random variable with mean of 0 and standard deviation of SIG(LAB) PAV(i,j) is a random variable with mean of 0 and standard deviation of SIG(PAV) Error(i,j,k) is a random variable with mean of 0 and standard deviation of SIG(ERROR)

All components are assumed to be independent random variables. The purpose of a components of variance analysis is to estimate each of the above standard deviations and to provide the basis for the estimation of other important quantities such as the coefficients of variation, the usual D1S, D2S for the between and within Laboratories variation. In this preliminary analysis only the estimated standard deviations and associated coefficients of variation will be given.

When the data in this experiment were first analyzed it was clear that one laboratory had excessive within laboratory variation. Accordingly, the data for one laboratory were omitted. With these omitted the estimated values for the standard deviations, CV% and mean are given below.

	Temperature -12C			
	STD	CV%	MEAN	
LAB	6.3	4.2%	149.0	
PAV	5.9	4.0%		
ERROR	6.2	4.2%		

THIS IS FOR THE BENDING BEAM WITH PAV AGED PSU2 & PSU3
ALL DATA POINTS FOR 15 WERE OMITTED
DUE TO EXCESSIVE NOISE WITHIN THE LAB
THIS IS FOR THE BBR AT TEMP -12C AND STIFFNESS AT 60 SECONDS

Coefficients of Expected Mean Squares

Source	LAB	PAV	ERROR
LAB PAV ERROR	4 0	2 2 0	1 1

Nested Random Effects Analysis of Variance for Variable S60

	•		(A) (1)	fill the second	
Variance Source	Degrees of Freedom	Sum of Squares	F Value	Pr > F	Error Term
		7425.941176			* ,
TOTAL	67		0.465	0 0260	DW17
LAB	16	4271.441176	2.465	0.0369	PAV
PAV	17	1841.500000	2.805	0.0051	ERROR
ERROR	34	1313.000000			
Variance		Var	riance	Percer	it
Source	Mean Square	_	onent	of Tota	ıl
	110 024042	110 1	130974	100.000	١0
TOTAL	110.834943				
LAB	266.965074		60386	35.057	
PAV	108.323529	34.8	352941	30.80	76
ERROR	38.617647	38.6	517647	34.13	
	Mean		148.	97058824	
		rror of mean		98140278	•

PRELIMINARY STATISTICAL ANALYSIS OF BBR DATA FOR MATERIALS PSU2 AND PSU3 WHEN AGED BY THE RTFOT AND THE PAV AND TESTED AT -12C (m60)

This experiment provides the data by which the noise in the measured stiffness of the bending beam at 60 seconds (m60) may be assigned to the Laboratory, the Aging and the measurement errors. Accordingly an appropriate model for the measured values is;

$$Y(i,j,k) = MU + Lab(i) + PAV(i,j) + Error(i,j,k)$$

Lab(i) is a random variable with mean of 0 and standard deviation of SIG(LAB) PAV(i,j) is a random variable with mean of 0 and standard deviation of SIG(PAV) Error(i,j,k) is a random variable with mean of 0 and standard deviation of SIG(ERROR)

All components are assumed to be independent random variables. The purpose of a components of variance analysis is to estimate each of the above standard deviations and to provide the basis for the estimation of other important quantities such as the coefficients of variation, the usual D1S, D2S for the between and within Laboratories variation. In this preliminary analysis only the estimated standard deviations and associated coefficients of variation will be given.

When the data in this experiment were first analyzed it was clear that no laboratory had excessive within laboratory variation. Accordingly no data were omitted. The estimated values for the standard deviations, CV% and mean for m(60) are given below.

Temperature -12C

STD CV% MEAN

LAB .0104 3.0% .3514

PAV .00367 1.0%

ERROR .00697 2.0%

THIS IS FOR THE BENDING BEAM WITH IND PAV AGED PSU2 & PSU3 THIS IS FOR THE BBR AT TEMP -12C AND m(60) NO OUTLIERS NEEDED TO BE OMITTED

Coefficients of Expected Mean Squares

Source	LAB	PAV	ERROR
			1974
LAB	3.943661972	1.981220657	1.000000000
PAV	0.00000000	1.962962963	1.000000000
ERROR	0.00000000	0.000000000	1.000000000

Nested Random Effects Analysis of Variance for Variable M60

				The state of the s	
Variance	Degrees of	Sum of	\$.	E	rror
Source	Freedom	Squares	F Value	Pr > F	Term
TOTAL LAB	70 17	0.011635 0.008580			
PAV	18	0.001353		•	
ERROR	35	0.001701	*		
Variance Source	Mean Square		riance conent	Percent of Total	
TOTAL	0.000166	0.6	000171	100.0000	
LAB	0.000505	0.0	000109	63.6527	
PAV	0.000075194	0.000	013541	7.9184	
ERROR	0.000048614	0.000	048614	28.4288	
	Mean Standard err	or of mean		0.35139437 0.00267039	
	SCULLULU CII	OT OT INCOM		0.0050.000	

PRELIMINARY STATISTICAL ANALYSIS OF BBR DATA FOR MATERIALS PSU1 AND PSU4 WHEN AGED BY THE RTFOT AND THE PAV AND TESTED AT –18C

This experiment provides the data by which the noise in the measured stiffness of the bending beam at 60 seconds (S60) may be assigned to the Laboratory, the Aging and the measurement errors. Accordingly an appropriate model for the measured values is;

$$Y(i,j,k) = MU + Lab(i) + PAV(i,j) + Error(i,j,k)$$

Lab(i) is a random variable with mean of 0 and standard deviation of SIG(LAB) PAV(i,j) is a random variable with mean of 0 and standard deviation of SIG(PAV) Error(i,j,k) is a random variable with mean of 0 and standard deviation of SIG(ERROR)

All components are assumed to be independent random variables. The purpose of a components of variance analysis is to estimate each of the above standard deviations and to provide the basis for the estimation of other important quantities such as the coefficients of variation, the usual D1S, D2S for the between and within Laboratories variation. In this preliminary analysis only the estimated standard deviations and associated coefficients of variation will be given.

When the data in this experiment were first analyzed it was clear that two laboratories had excessive within laboratory variation. Accordingly, the data for two laboratories were omitted. With these omitted the estimated values for the standard deviations, CV% and mean are given below.

	Temperature -18C			
	STD	CV%	MEAN	
LAB	28.2	10.0%	279.3	
PAV	7.1	2.5%		
ERROR	10.7	3.8%		

THIS IS FOR THE BENDING BEAM WITH PAV AGED PSU1 & PSU4 ALL DATA POINTS FOR PECA AND VTRC WERE OMITTED DUE TO EXCESSIVE NOISE WITHIN THE LABS
THIS IS FOR THE BBR AT TEMP -18C AND STIFFNESS AT 60 SECONDS

Coefficients of Expected Mean Squares

Source	LAB	PAV	ERROR
LAB	3.936507937	1.978835979	1.000000000
PAV	0.000000000	1.958333333	1.000000000
ERROR	0.000000000	0.000000000	1.000000000

Nested Random Effects Analysis of Variance for Variable S60

Variance Source	Degrees of Freedom	Sum of Squares	F Value	Pr > F	Error Term
TOTAL LAB PAV ERROR		57025 50033 3411.916667 3580.500000			
Variance Source	Mean Square	•	riance ponent	Percent of Total	
TOTAL LAB PAV ERROR	919.762417 3335.523545 213.244792 115.500000	792.8 49.9	311796 399562 312234 500000	100.0000 82.7392 5.2084 12.0524	, .
	Mean Standard er	ror of mean		.30158730	

PRELIMINARY STATISTICAL ANALYSIS OF BBR DATA FOR MATERIALS PSU1 AND PSU4 WHEN AGED BY THE RTFOT AND THE PAV AND TESTED AT –18C (m60)

This experiment provides the data by which the noise in the measured m(60) of the bending beam at 60 seconds (m60) may be assigned to the Laboratory, the Aging and the measurement errors. Accordingly an appropriate model for the measured values is;

$$Y(i,j,k) = MU + Lab(i) + PAV(i,j) + Error(i,j,k)$$

Lab(i) is a random variable with mean of 0 and standard deviation of SIG(LAB) PAV(i,j) is a random variable with mean of 0 and standard deviation of SIG(PAV) Error(i,j,k) is a random variable with mean of 0 and standard deviation of SIG(ERROR)

All components are assumed to be independent random variables. The purpose of a components of variance analysis is to estimate each of the above standard deviations and to provide the basis for the estimation of other important quantities such as the coefficients of variation, the usual D1S, D2S for the between and within Laboratories variation. In this preliminary analysis only the estimated standard deviations and associated coefficients of variation will be given.

When the data in this experiment were first analyzed it was clear that one laboratory had excessive within laboratory variation. Accordingly the data from that laboratory were omitted. The estimated values for the standard deviations, CV% and mean for m(60) are given below.

Temperature -18C

	STD	CV%	MEAN
LAB	.009418	3.3%	.2813
PAV	.003225	1.1%	
ERROR	.004099	1.5%	

THIS IS FOR THE BENDING BEAM WITH IND PAV AGED PSU1 & PSU4 THIS IS FOR THE BBR AT TEMP -18C AND M(60) LAB VTRC OMITTED DUE TO EXCESSIVE WITHIN LAB NOISE

Coefficients of Expected Mean Squares

Source	LAB	PAV	ERROR
LAB	3.940298507	1.980099502	1.00000000
PAV	0.000000000	1.960784314	1.00000000
ERROR	0.000000000	0.000000000	1.00000000

Nested Random Effects Analysis of Variance for Variable M60

		and the second second			
	Degrees			-	
Variance	of.	Sum of			Error
Source	Freedom	Squares	F Value	Pr > F	Term
TOTAL	66	0.007389			
LAB	16	0.006197			•
PAV	17	0.000635	* .		
ERROR	33	0.000556			
Variance		Va:	riance	Perc	ent
Source	Mean Square	Com	ponent	of To	tal
TOTAL	0.000112	0.0	000116	100.0	000
LAB	0.000387	0.000	088758	76.4	588
PAV	0.000037382	0.000	010465	9.0	144
ERROR	0.000016864	0.000	016864	14.5	268
	Mean		C	.28134328	
	Standard err	or of mean	(.00240862	

PRELIMINARY STATISTICAL ANALYSIS OF BBR DATA FOR MATERIALS PSU2 AND PSU3 WHEN AGED BY THE RTFOT AND THE PAV AND TESTED AT –18C

This experiment provides the data by which the noise in the measured stiffness of the bending beam at 60 seconds (S60) may be assigned to the Laboratory, the Aging and the measurement errors. Accordingly an appropriate model for the measured values is;

$$Y(i,j,k) = MU + Lab(i) + PAV(i,j) + Error(i,j,k)$$

Lab(i) is a random variable with mean of 0 and standard deviation of SIG(LAB) PAV(i,j) is a random variable with mean of 0 and standard deviation of SIG(PAV) Error(i,j,k) is a random variable with mean of 0 and standard deviation of SIG(ERROR)

All components are assumed to be independent random variables. The purpose of a components of variance analysis is to estimate each of the above standard deviations and to provide the basis for the estimation of other important quantities such as the coefficients of variation, the usual D1S, D2S for the between and within Laboratories variation. In this preliminary analysis only the estimated standard deviations and associated coefficients of variation will be given.

When the data in this experiment were first analyzed it was clear that one laboratory had excessive within laboratory variation. Accordingly, the data for two laboratories were omitted. With these omitted the estimated values for the standard deviations, CV% and mean are given below.

	Temperature -18C			
٠	STD	CV%	MEAN	
LAB	31.3	9.7%	322.6	
PAV	8.6	2.7%		
ERROR	11.1	3.4%		

THIS IS FOR THE BENDING BEAM WITH PAV AGED PSU2 & PSU3
ALL DATA POINTS FOR 15 AND 20 WERE OMITTED
DUE TO EXCESSIVE NOISE WITHIN THE LABS
THIS IS FOR THE BBR AT TEMP -18C AND STIFFNESS AT 60 SECONDS

Coefficients of Expected Mean Squares

Source	LAB	PAV	ERROR
LAB	3.873118280	1.957706093	1.000000000
PAV	0.00000000	1.916666667	1.000000000
ERROR	0.00000000	0.000000000	1.000000000

Nested Random Effects Analysis of Variance for Variable S60

1.00000		A Spring Street		
Variance	Degrees of	Sum of	entropy Web 1990 A 18 September 1991 1	Error
Source	Freedom	Squares F Va	alue Pr > F	Term
TOTAL LAB PAV ERROR	61 15 16 30	68871 60939 4238.416667 3694.000000		
Variance	•	Variance	Percent	
Source	Mean Square	Component	of Total	
TOTAL LAB	1129.036753 4062.588351	1176.839841 979.740747	100.0000 83.2518	
PAV	264.901042 123.133333	73.965761 123.133333	6.2851 10.4630	
ERROR	Mean	rror of mean	322.56451613 8.12486053	

PRELIMINARY STATISTICAL ANALYSIS OF BBR DATA FOR MATERIALS PSU2 AND PSU3 WHEN AGED BY THE RTFOT AND THE PAV AND TESTED AT -18C (m60)

This experiment provides the data by which the noise in the measured m(60) of the bending beam at 60 seconds (m60) may be assigned to the Laboratory, the Aging and the measurement errors. Accordingly an appropriate model for the measured values is;

$$Y(i,j,k) = MU + Lab(i) + PAV(i,j) + Error(i,j,k)$$

Lab(i) is a random variable with mean of 0 and standard deviation of SIG(LAB) PAV(i,j) is a random variable with mean of 0 and standard deviation of SIG(PAV) Error(i,j,k) is a random variable with mean of 0 and standard deviation of SIG(ERROR)

All components are assumed to be independent random variables. The purpose of a components of variance analysis is to estimate each of the above standard deviations and to provide the basis for the estimation of other important quantities such as the coefficients of variation, the usual D1S, D2S for the between and within Laboratories variation. In this preliminary analysis only the estimated standard deviations and associated coefficients of variation will be given.

When the data in this experiment were first analyzed it was clear that one laboratory had excessive within laboratory variation. Accordingly the data from that laboratory were omitted. The estimated values for the standard deviations, CV% and mean for m(60) are given below.

Temperature -18C

	STD	CV%	MEAN
LAB	.01483	5.1%	.2931
PAV	.003912	1.3%	
ERROR	.006557	2.2%	

THIS IS FOR THE BENDING BEAM WITH IND PAV AGED PAU2 & PSU3 THIS IS FOR THE BBR AT TEMP -18C AND M(60) LAB 3 OMITTED DUE TO EXCESSIVE WITHIN LAB NOISE

Coefficients of Expected Mean Squares

Source	LAB	PAV	ERROR
LAB	3.821153846	1.940384615	1.000000000
PAV	0.000000000	1.882352941	1.000000000
ERROR	0.000000000	0.000000000	1.000000000

Nested Random Effects Analysis of Variance for Variable M60

٠.		\$	f	\$ 1 ° 1	1.1-
	Degrees				_
Variance	of	Sum of			Error
Source	Freedom	Squares	F Value	Pr > F	Term
TOTAL	64	0.017142			
LAB	16	0.014585			
PAV	17	0.001222	,	. "	
ERROR	31	0.001335	·	•	
Variance	•	Var	iance	Percent	
Source	Mean Square	Comp	onent	of Total	
TOTAL	0.000268	0.0	00278	100.0000	
LAB	0.000912	0.0	00220	78.9901	
PAV	0.000071902	0.0000	15320	5.5129	
ERROR	0.000043065	0.0000	143065	15.4969	
÷	Mean		. (.29310769	•
	Standard err	or of mean	(0.00376344	

PRELIMINARY STATISTICAL ANALYSIS OF BBR DATA FOR MATERIALS PSU1 AND PSU4 WHEN PREAGED AND TESTED AT –18C (S60)

This experiment provides the data by which the noise in the measured s(60) of the bending beam at 60 seconds (s60) may be assigned to the Laboratory and the measurement errors. Accordingly an appropriate model for the measured values is;

$$Y(i,j) = MU + Lab(i) + Error(i,j)$$

Lab(i) is a random variable with mean of 0 and standard deviation of SIG(LAB) Error(i,j) is a random variable with mean of 0 and standard deviation of SIG(ERROR)

All components are assumed to be independent random variables. The purpose of a components of variance analysis is to estimate each of the above standard deviations and to provide the basis for the estimation of other important quantities such as the coefficients of variation, the usual D1S, D2S for the between and within Laboratories variation. In this preliminary analysis only the estimated standard deviations and associated coefficients of variation will be given.

When the data in this experiment were first analyzed it was clear that one laboratory had excessive within laboratory variation. Accordingly the data from that laboratory were omitted. The estimated values for the standard deviations, CV% and mean for m(60) are given below.

Temperature -18C

STD CV% MEAN

16.15 9.8% 164.26

7.348 4.5%

LAB

ERROR

THIS IS FOR THE BENDING BEAM WITH PRE AGED PSU1 & PSU4 THIS IS FOR THE BBR AT TEMP -18C AND S(60) LAB 15 OMITTED DUE TO EXCESSIVE WITHIN LAB NOISE

Coefficients of Expected Mean Squares

Source	LAB	ERROR
LAB ERROR	3.887394958 0.000000000	

Nested Random Effects Analysis of Variance for Variable S60

Variance Source	Degrees of Freedom	Sum of Squares	F Value	Pr > F	Error Term
TOTAL LAB ERROR	69 17 52	20955 18148 2807.416667	•		
Variance Source	Mean Square		riance ponent	Percen of Tota	
TOTAL LAB ERROR	303.701035 1067.526751 53.988782	260.	712989 724207 988782	100.000 82.845 17.154	1
	Mean Standard e	rror of mean		.25714286 .91797656	

PRELIMINARY STATISTICAL ANALYSIS OF m(60s) DATA FOR PREAGED MATERIALS PSU1 AND PSU4

This experiment provides the data by which the noise in the measured m(60s) at temperature of -18c of the preaged materials PSU1 and PSU4 may be assigned to the laboratory and the measurement errors. Accordingly an appropriate model for the measured values is;

$$Y(i,j) = MU + Lab(i) + Error(i,j)$$

Lab(i) is a random variable with mean of 0 and standard deviation of SIG(LAB) Error(i,i) is a random variable with mean of 0 and standard deviation of SIG(ERROR)

All components are assumed to be independent random variables. The purpose of a components of variance analysis is to estimate each of the above standard deviations and to provide the basis for the estimation of other important quantities such as the coefficients of variation, the usual D1S, D2S for the between and within Laboratories variation. In this preliminary analysis only the estimated standard deviations and associated coefficients of variation will be given.

None of the laboratories were judged to be outliers. The estimated values for the standard deviations, CV% and means are given below.

	STD	CV%	MEAN
LAB	.01307	3.7%	.352
ERROR	.005822	1.7%	

THIS IS FOR PREAGED PSU1 AND PSU4 PREAGED S(60S)
TEMPERATURE OF -18C
NO OUTLIERS REMOVED
PREAGED MATERIALS WERE SENT TO LABS

Coefficients of Expected Mean Squares

Source	LAB	ERROR
LAB	3.893393393	1.000000000
ERROR	0.00000000	1.000000000

Nested Random Effects Analysis of Variance for Variable M60

Variance Source	Degrees of Freedom	Sum of Squares	F Value	Pr > F	Error Term
TOTAL LAB ERROR	73 18 55	0.014454 0.012588 0.001866	·.		i
Variance Source	Mean Square		iance oonent	Percent of Total	٠.
TOTAL LAB ERROR	0.000198 0.000699 0.000033924		000205 000171 033924	100.0000 83.4380 16.5620	
	Mean Standard err	cor of mean	•	0.35231081 0.00308373	

PRELIMINARY STATISTICAL ANALYSIS OF BBR DATA FOR MATERIALS PSU2 AND PSU3 WHEN PREAGED AND TESTED AT -18C (S60)

This experiment provides the data by which the noise in the measured s(60) of the bending beam at 60 seconds (s60) may be assigned to the Laboratory and the measurement errors. Accordingly an appropriate model for the measured values is;

$$Y(i,j) = MU + Lab(i) + Error(i,j)$$

Lab(i) is a random variable with mean of 0 and standard deviation of SIG(LAB) Error(i,j) is a random variable with mean of 0 and standard deviation of SIG(ERROR)

All components are assumed to be independent random variables. The purpose of a components of variance analysis is to estimate each of the above standard deviations and to provide the basis for the estimation of other important quantities such as the coefficients of variation, the usual D1S, D2S for the between and within Laboratories variation. In this preliminary analysis only the estimated standard deviations and associated coefficients of variation will be given.

When the data in this experiment were first analyzed it was clear that two laboratories had excessive within laboratory variation. Accordingly the data from those laboratories were omitted. The estimated values for the standard deviations, CV% and mean for m(60) are given below.

Temperature -18C

STD CV% MEAN
LAB 32.26 10.9% 296.54
ERROR 9.889 3.3%

THIS IS FOR THE BENDING BEAM WITH PRE AGED PSU2 & PSU3
THIS IS FOR THE BBR AT TEMP -18C AND S(60)
LABS 15 AND 16 OMITTED DUE TO EXCESSIVE WITHIN LAB NOISE

Coefficients of Expected Mean Squares

Source	LAB	ERROR
LAB	3.878787879	1.000000000
ERROR	0.000000000	1.000000000

Nested Random Effects Analysis of Variance for Variable S60

	Degrees			and the second of the second	
Variance	of	Sum of			Error
Source	Freedom	Squares	F Valu	ie Pr > F	Term
	C E	70928		4 1	1 .
TOTAL	65				
LAB	16	66137			
ERROR	49	4791.750000			
				•	
Variance		· Va	riance	Percent	
Source	Mean Square	Com	ponent	of Total	
TOTAL	1091.205594	1138.	256978	100.0000	
			466162	91.4087	
LAB	4133.538352				
ERROR	97.790816	97.	790816	8.5913	
	Mean			296.54545455	
		rror of mean	÷.,	7.97400788	

PRELIMINARY STATISTICAL ANALYSIS OF m(60s) DATA FOR PREAGED MATERIALS PSU2 AND PSU3

This experiment provides the data by which the noise in the measured m(60s) at temperature of -18c of the preaged materials PSU2 and PSU3 may be assigned to the laboratory and the measurement errors. Accordingly an appropriate model for the measured values is;

$$Y(i,j) = MU + Lab(i) + Error(i,j)$$

Lab(i) is a random variable with mean of 0 and standard deviation of SIG(LAB) Error(i,j) is a random variable with mean of 0 and standard deviation of SIG(ERROR)

All components are assumed to be independent random variables. The purpose of a components of variance analysis is to estimate each of the above standard deviations and to provide the basis for the estimation of other important quantities such as the coefficients of variation, the usual D1S, D2S for the between and within Laboratories variation. In this preliminary analysis only the estimated standard deviations and associated coefficients of variation will be given.

None of the laboratories were judged to be outliers. The estimated values for the standard deviations, CV% and means are given below.

	STD	CV%	MEAN
LAB	.0173	5.6%	.310
ERROR	.00713	2,3%	

The analyses from which the above were obtained are given in the attached files BEAM12.LST and OUT12.LST.

THIS IS FOR BBR m(60s) FOR PSU2 AND PSU3 PREAGED TEMPERATURE OF -18C
NO OUTLIERS REMOVED
PREAGED MATERIALS WERE SENT TO LABS

Coefficients of Expected Mean Squares

Source	LAB	ERROR
LAB ERROR	3.891891892 0.00000000	1.000000000001.000000000000000000000000

Nested Random Effects Analysis of Variance for Variable m60

	_		* ·		200
Variance Source	Degrees of Freedom	Sum of Squares	F Value	Pr > F	Error Term
TOTAL LAB ERROR	73 18 55	0.024783 0.021982 0.002801			
Variance Source	Mean Square		riance conent	Percent of Total	
TOTAL LAB ERROR	0.000339 0.001221 0.000050927		000352 000301 050927	100.0000 85.5170 14.4830	
	Mean Standard err	or of mean		0.30962162 0.00408937	

PRELIMINARY STATISTICAL ANALYSIS OF THE REFERENCE FLUID DATA AT 64C

Number of observations in data set = 112

NOTE: Due to missing values, only 69 observations can be used in this analysis.

RESULTS FOR TEMP = 64, AVERAGE OF 264.5 USED

General Linear Models Procedure

Dependent Variab	le: DIFF		Mean		
Source	DF	Sum of Squares	Square	F Value	Pr > F
Model	26	6590.5028	253.4809	12.67	0.0001
Error	42	840.1413	20.0034		
Corrected Total	.68	7430.6441			
	R-Square	, C.V.	Root MSE		DIFF Mean
	0.886936	99.68130	4.4725		4.4868
				·	
Source	DF	Type I SS	Mean Square	F Value	Pr > F
LAB REP(LAB) FREQ STRAIN FREQ*STRAIN	13 10 1 1	4745.8415 1343.4050 405.5552 76.4586 19.2424	365.0647 134.3405 405.5552 76.4586 19.2424	18.25 6.72 20.27 3.82 0.96	0.0001 0.0001 0.0573
Source	DF	Type III SS	Mean Square	F Value	Pr > F
LAB REP(LAB) FREQ STRAIN FREQ*STRAIN	13 10 1 1	4747.5826 1315.2283 392.1439 84.9672 19.2424	365.1987 131.5228 392.1439 84.9672 19.2424	18.26 6.58 19.60 4.25 0.96	0.0001 0.0001 0.0455

PRELIMINARY STATISTICAL ANALYSIS OF THE REFERENCE FLUID DATA AT $76\mathrm{C}$

Number of observations in data set = 112

NOTE: Due to missing values, only 69 observations can be used in this analysis.

RESULTS FOR TEMP = 76C. AVERAGE OF 130.87 USED FOR REF

General Linear Models Procedure

Dependent Variab	le: DIFF		•		
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	25	2465.4011	98.6160	18.39	· ·
Error	43	230.5418	5.3614	•	
Corrected Total	68	2695.9429	• :		-
•	R-Square	C.V.	Root MSE		DIFF Mean
	0.914486	9999.99	2.3155		0.0068
	•				
•					
Source	DF	Type I SS	Mean Square	F Value	Pr > F
LAB	13	2139.4437	164.5726	30.70	0.0001
REP(LAB)	9	240.1467	26.6830	4.98	0.0001
FREQ	1	53.5739	53.5739	9.99	
STRAIN	1	30.2951	30.2951	5.65	0.0220
FREQ*STRAIN	1	1.9417	1.9417	0.36	0.5505
Source	DF	Type III SS	Mean Square	F Value	Pr > F
LAB	. 13	1960.2640	150.7895	28.12	0.0001
REP(LAB)	9	228.5273	25.3919	4.74	0.0002
FREQ	1	51.1113	51.1113	9.53	0.0035
STRAIN	1	32.1688	32.1688	6.00	0.0185
FREQ*STRAIN	1	1.9417	1.9417	0.36	0.5505

			•	
	• .			
			•	
•		·		•
		•		
	$a_{ij} = A_{ij}^{(i)}$			
				•
			•	
				•

Appendix III

Pre-molded DSR Samples Information

Pre-molded DSR Sample Instructions

July 29, 1998

2 Pre-molded samples will arrive by express mail. Please store samples at room temperature in their molds, until the samples are placed in the DSR.

All testing will be performed at 64 C

Testing will be performed between 1:00 PM and 3:00 PM on July 29, 1998.

Late Morning

Set DSR software for original binder (12% Strain and 10 rad/sec). Set the equilibrium time to 900 sec (15 minutes). Preheat the DSR to 64 C with upper spindle loose so as not to create pressure on the machine as it warms to the test temperature. Start preheating DSR at such a time so that the DSR is ready to test at 1:00 PM.

1:00 PM

On data sheet please note room temperature in space provided.

1:10 PM

Set zero gap at 64 C

1:15 PM

With sample still in mold mount sample #1 at room temperature in DSR.

Note time sample mounted in DSR on data sheet

Compress sample to 1.05 mm

Trim sample immediately with <u>heated</u> trimming tool

Compress sample to 1.00 mm

Note time on data sheet

Start test using 900 second equilibrium time

After test, printout results

Clean up machine and preheat as before to 64 C

1:50 PM

Reset zero gap at 64 C

Note room temperature on data sheet

2:00 PM

With sample still in mold transfer second sample to DSR

Note time mounted on data sheet

Compress sample to 1.05 mm

Trim immediately with **heated** trimming tool

Compress sample to 1.00 mm

Note time on data sheet

Start test using 900 second equilibrium

After test, print out results After testing please fax or mail the data sheets as well as the printouts from your tests back to the CAP Lab (fax 860-486-2399)

Jim Mahoney University of Connecticut CAP Lab - Transportation Institute 179 Middle Turnpike, U 202 Storrs, CT 06269-5202

Pre-Molded Sample Data Sheet

Laboratory Name
Date & Time Sample Arrived at Lab
Sample #1
Room Temperature
Time Mounted in Machine
Time Sample Compressed to 1.00 mm
Sample #2
Room Temperature
Time Mounted in Machine
Time Sample Compressed to 1.00 mm
How did you heat your trimming tool?
DSR Manufactured by?
Any irregularities while testing?
Please mail or fax (860) 486 - 2399 this sheet along with copies of your DSR test printouts.
Jim Mahoney University of Connecticut CAP Lab - Transportation Institute 179 Middle Turnpike, U 202

NETC Pre-molded DSR Sample Participants

New Hampshire DOT

Vermont AOT

Mass Highway Department

Rhode Island DOT

New York State DOT

Connecticut DOT

Delaware DOT

Hudson Asphalt

Sun Company

NECEPT

CAP Lab

Appendix IV

Round Robin 99 Report

New England Transportation Consortium Project 96-1 Superpave Implementation

Report on PG Graded Binder Round Robin 99

Prepared by:

James Mahoney and Jack Stephens

From

The Connecticut Advanced Pavement Laboratory

June 7, 1999

NETC Round Robin 99

The Connecticut Advanced Pavement Laboratory as part of a New England Transportation Consortium research project conducted a Round Robin of Asphalt Binder Samples. The samples were distributed to the six New England State Departments of Transportation, the New York State Department of Transportation and to the asphalt binder suppliers active in the New England area.

The Round Robin consisted of four binder samples in 1-quart paint cans. Detailed handling instructions were submitted with the samples. The instructions were intended to reduce the variability of sample handling. The participants were also asked to document, on the enclosed data sheets, the time each step was completed. A floppy disk was also included with the samples on which the participants would enter the test and time data and return to the CAP Lab. The instructions and sample data sheets are included in Appendix A.

The four asphalt samples used during this Round Robin were identical to each other. This was done to evaluate the reproducibility of the equipment and the operator.

Dynamic Shear Rheometer (DSR)

DSR testing on the samples was performed for this Round Robin on both original and RTFO material. This testing was performed using the 25 millimeter parallel plate configuration for the DSR. Testing was not performed on the 8 millimeter plates due to the uncertain future of this configuration. The binder used for the Round Robin was a borderline PG 64-28. The testing was concentrated on this grade since it is the predominate grade used throughout New England.

The Round Robin participants were asked to mount two DSR specimens from the same sample. The first specimen was to be tested at both 58° C and 64° C. The second sample was to be tested at 64° C only. There were several purposes for this sequence of testing. The first reason for this sequence of testing was to investigate the effects of the bulge disappearing during the testing process. The bulge is created by squeezing the specimen by 50 microns after the sample is trimmed. It has been observed that during the testing process that the bulge was tending to creep down the plates. The extended time that the sample tested at 58° C and 64° C was held at the warmer temperature was assumed to be enough to cause the bulge to creep. The second purpose for this testing was to determine if there were differences caused by determining the zero gap space between the 25 mm plates at different temperatures.

The raw data from the Round Robin is shown in Appendix B. For data analysis, values that deviated from the average more than three standard deviations were dropped from the analysis. AMRL utilizes three standard deviations for

eliminating outliers. The data after removing the outliers can be seen in Appendix C. None of the 142 reported G* or phase angle values for the original binder were dropped from the analysis. DSR values of G* for the RTFO material have a larger spread of values. Only 3 of the 143 reported RTFO G* values exceeded the three standard deviation allowance. For the RTFO DSR phase angle data, the three phase angle values corresponding to the dropped G* values also exceeded three standard deviations. This increase in G* values can be seen in figure 1.

The increase in the spread of the data for the DSR values of G* for the RTFO material would be best accounted for by the increase in the handling of the material. The material tested as DSR-RTFO material had undergone several extra handling steps as well as an aging process. This allowed for the increase in the variability of the test data. Another measure of the spread in test data is the percentage of the average represented by one standard deviation (%1S). The %1S G* value for the original binder using all of the data reported can be seen in Table 1. The values for the %1S G* values after the outliers have been removed can also be seen in Table 1. Both sets of %1S G* values for the RTFO material can be seen in Table 2. The RTFO material has a %1S G* value about 1.6% higher than the original material, after the outliers have been removed from the computations. The RTFO material has a %1S G* value about 4.95% higher than the original material when all of the test results are used.

Table 1 - DSR Original Material %1S G* Values

Temperature Tested	%1S including Outliers	%1S excluding Outliers
58° C	4.90%	No Outliers Found
64°C after 58°C testing	5.71%	No Outliers Found
64 ⁰ C	5.83%	No Outliers Found

Table 2 – DSR RTFO Material %1S G* Values

Temperature Tested	%1S including Outliers	%1S excluding Outliers	
58° C	10.03%	7.17%	
64°C after 58°C testing	10.36%	8.03%	
64° C	10.85%	8.48%	

The %1S values for G* obtained for this Round Robin are smaller than those gathered from the latest published data from AMRL's proficiency samples. The majority of the effort for the data analysis was placed upon the complex modulus G* due to its very large impact upon the test results. While the phase angle is important, the amount of variation in test results caused by the phase angle is limited. Table 3 shows the %1S DSR phase angle data for the original binder samples.

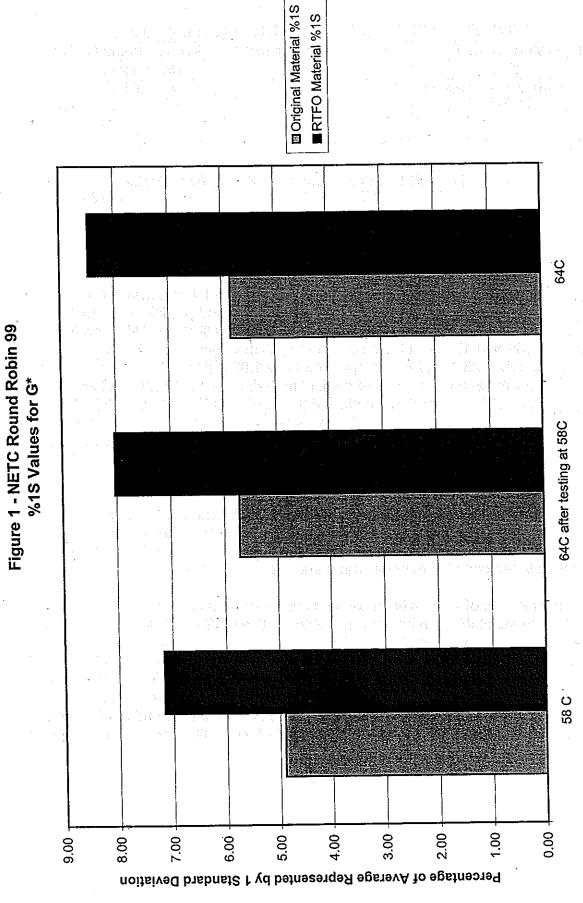
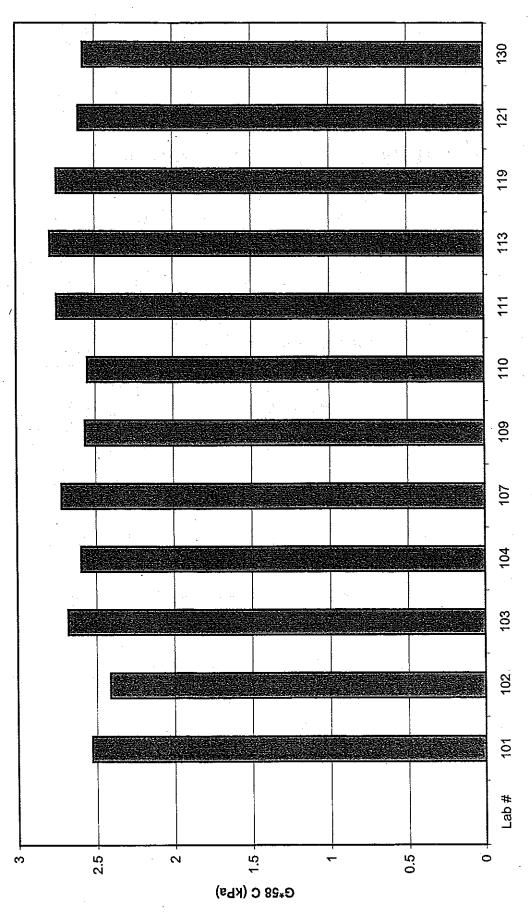


Table 3 – DSR Original Binder %1S Phase Angle Values

Temperature Tested	%1S including Outliers	%1S excluding Outliers	
58 ⁰ C	0.25%	No Outliers Found	
64 ⁰ C after 58 ⁰ C testing	0.54%	No Outliers Found	
64 ⁰ C	0.75%	No Outliers Found	

Table 4 shows the %1S DSR phase angle data for the RTFO material.

Table 4 – DSR RTFO Material %1S Phase Angle Values

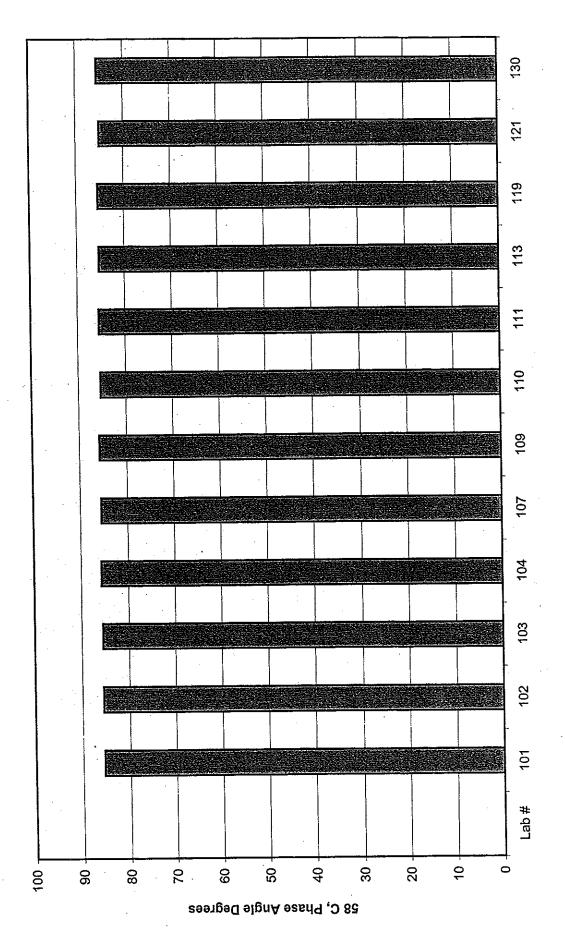

Temperature Tested	%1S including Outliers	%1S excluding Outliers	
58° C	0.82%	0.47%	
64° C after 58° C testing	0.74%	0.47%	
64°C	0.72%	0.46%	

The %1S phase angle data collected for this Round Robin is considerably lower than that collected by AMRL during their latest published proficiency sample results. The multilaboratory precision as measured by %1S for AMRL proficiency samples 169 and 170, for phase angle of the DSR original material was approximately 1.25% and for G* approximately 1.05%.(Ref. #2) The average G* at 64° C for the second sample of original material was 0.012 kPa higher than the average G* for the material tested at 64° C after 58° C. 8 of the labs had higher averages for the specimen tested at 64° C only. The average values for G* at 64° C of the RTFO material were virtually the same for both specimens. The extra holding time in the silicone molds did not appear to have any effect on the G* values of the RTFO material.

Figures 2-9 show the G* values and phase angles for the original and RTFO material. The phase angle figures demonstrate how close the phase angle results are to each other. Thus, the majority of the variability in the test results appears in the complex dynamic modulus – G*.

The coefficients of variability for the DSR and BBR testing performed by each lab for this Round Robin can be seen in Table 5. The DSR coefficients were computed by determining the coefficient of variability for each test temperature and then averaging the three coefficients. The BBR coefficients were computed by comparing all of the m-value data for each lab with itself. The coefficient for the Stiffness was determined in a manner similar to the m-value. The coefficient of variability of G* increased for the RTFO material for 8 labs and decreased for only 3 labs. The magnitude of the coefficient of variability increases far outweigh the decreases which were observed.

Figure 2 - NETC Round Robin 99 Average G* for Original Binder at 58 C



130 121 Average G* for Original Binder Tested at 64C 7 ■Tested at 58C and 64C
■Tested at 64C 110 109 107 104 102 101 Lab# 1. 1.2 0.8 0.4 0.2 0 G*64 C (KPa)

Appendix IV

Figure 3 - NETC Round Robin 99

Figure 4 - NETC Round Robin 99 Average Phase Angle for Original Binder Tested at 58C

Average Phase Angles for Original Binder Tested at 64C Figure 5 - NETC Round Robin 99

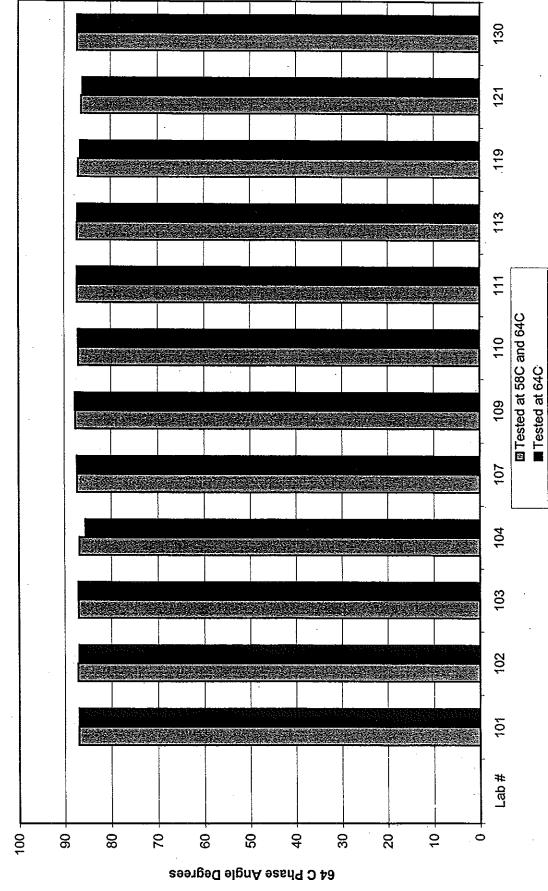
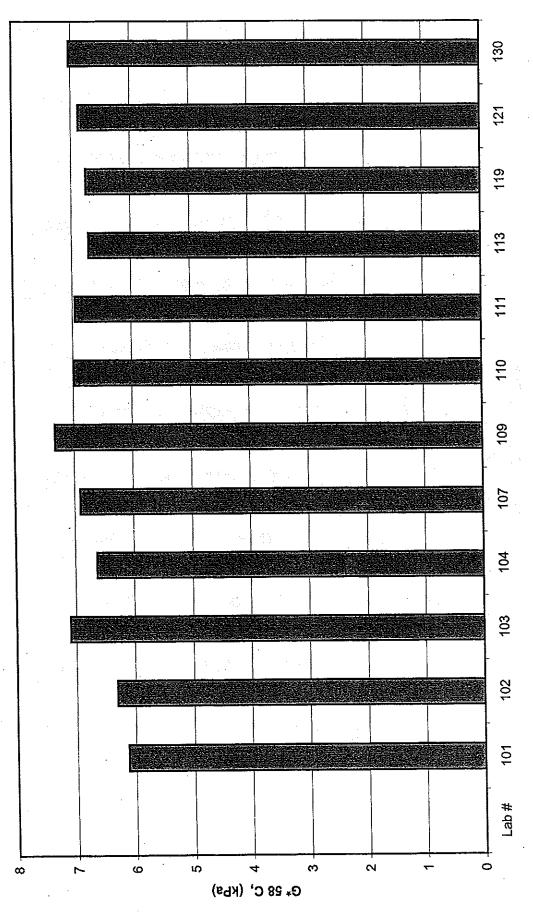



Figure 6 - NETC Round Robin 99 Average RTFO G* Values for 58C

130 121 Average G* Values for RTFO Material at 64C 111 ■64C After testing at 58C 110 ■64C only 107 104 103 102 101 Lab# 3.5 2.5 5. 0.5 ŝ \sim 0 G* 64 C, (KPa) Appendix IV 10

Figure 7 - NETC Round Robin 99

Figure 8 - NETC Round Robin 99 Average Phase Angle Values for RTFO Material at 58C

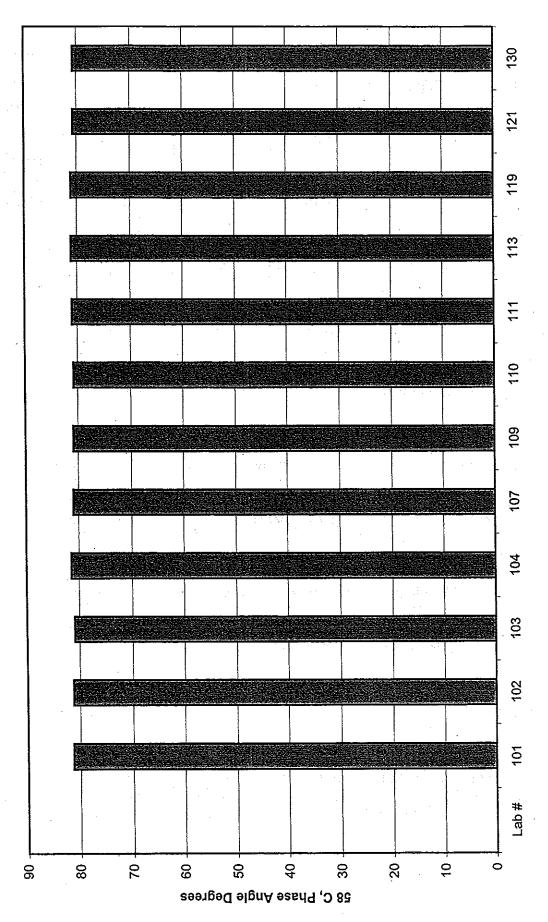
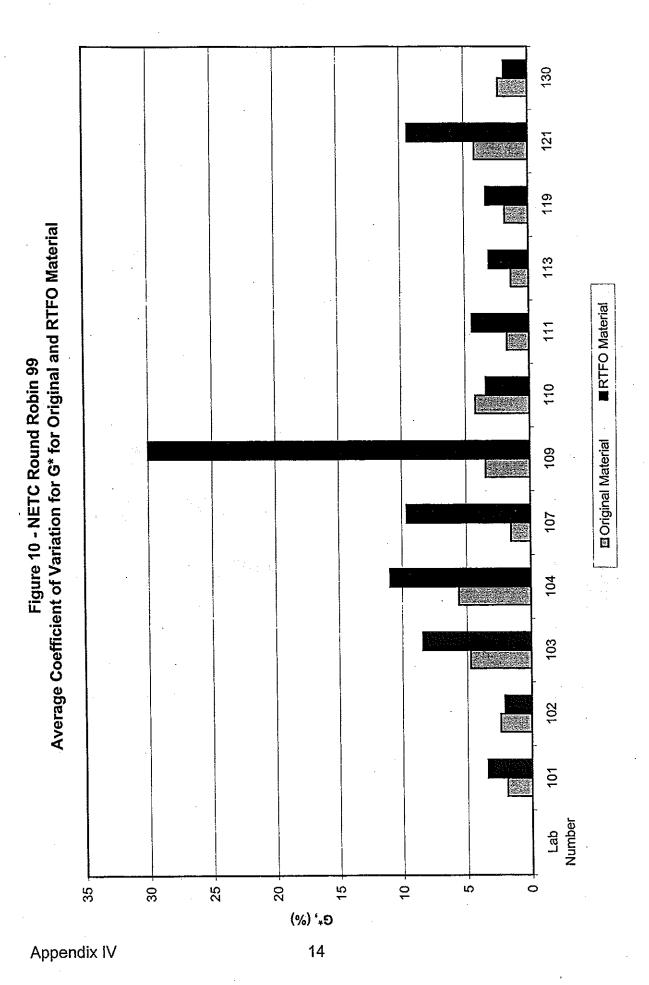


Table 5 – Average Coefficients of Variability for DSR and BBR Testing

		Original		RTFO		
Lab	Original	Material,	RTFO	Material	BBR	BBR
Number	Material	Phase	Material	Phase	m-value, %	Stiffness, %
	G*, %	Angle, %	G*, %	Angle, %		
101	1.90	0.07	3.39	0.07	1.21	2.58
102	2.42	0.15	2.10	0.26	0.92	1.10
103	4.73	0.09	8.44	0.28	5.51	3.45
104	5.61	1.10	10.99	0.99	17.60	9.95
107	1.50	0.08	9.61	0.66	1.33	2.74
109	3.42	0.12	30.00	2.11	1.33	2.74
110	4.22	0.03	3.38	0.09	3.42	6.17
111	1.71	0.05	4.44	0.23	2.00	2.04
113	1.35	0.07	3.05	0.15	1.43	3.26
119	1.82	0.54	3.27	0.16	1.25	3.04
121	4.16	0.25	9.36	0.38	1.31	3.55
130	2.29	0.04	1.85	0.14		

Figures 10-13 show the coefficients of variability for the various stages of testing.

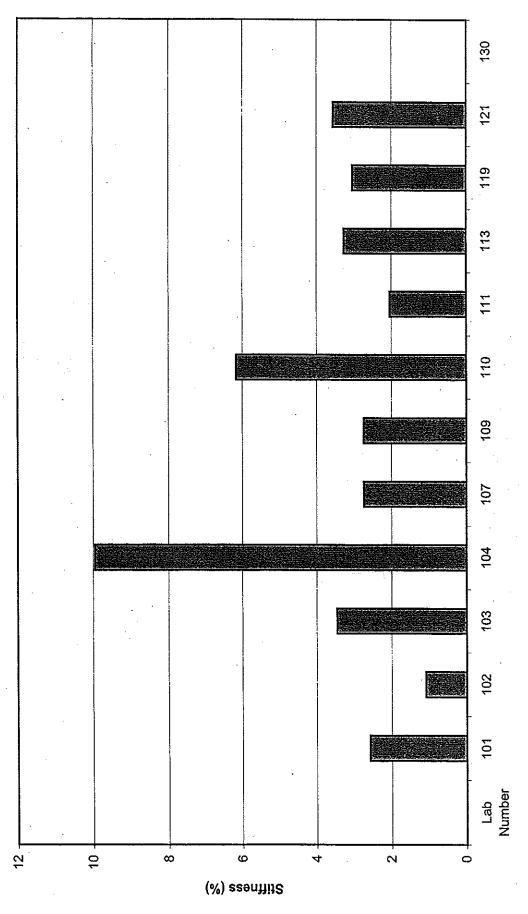
Bending Beam Rheometer (BBR)


The testing performed using the BBR was performed at one temperature –18° C. The testing was performed at this temperature because it correlates with PG Grades of –28° C. The material tested was subjected to aging in the RTFO and the Pressure Aging Vessel (PAV). Vacuum degassing was not used for this round robin. The BBRs had not been upgraded with the new supports at the time this Round Robin was performed.

The Round Robin participants were asked to use only the data from the first two beams tested. Data from any extra beams tested was not to be included as long as data was collected from the first two beams. The participants also were to use the aluminum beam molds with the appropriate plastic strips.

BBR data from lab 109 was excluded in all of the data analysis. Upon investigation it was determined that their BBR was not functioning properly.

Table 6 shows the results from the %1S BBR data. Figures 14 and 15 show the m-value averages and the stiffness averages for each lab. A three standard deviation cutoff was used for eliminating outliers. All of the outliers for the BBR data occurred from the same lab. Two of the eliminated data points were m-values and the third point eliminated was a stiffness value.


The %1S value obtained for the m-value for this Round Robin after dropping 2 outliers was one-third lower than the published values from AMRL for their latest

130 121 Average Coefficient of Variation for Phase Angle Original and RTFO Material 119 13 ■RTFO Material 111 Figure 11 - NETC Round Robin 99 110 109 Original Material 107 104 103 102 101 Lab Number 0.5 2.5 1.5 8 Phase Angle (%) Appendix IV 15

Coefficient of Variation for BBR m-value Figure 12 - NETC Round Robin 99 Lab Number 20 1 12. ω N m value (%)

Figure 13 - NETC Round Robin 99 Coefficient of Variation for BBR Stiffness

Average Phase Angle Values for RTFO Material at 64C Figure 9 - NETC Round Robin 99

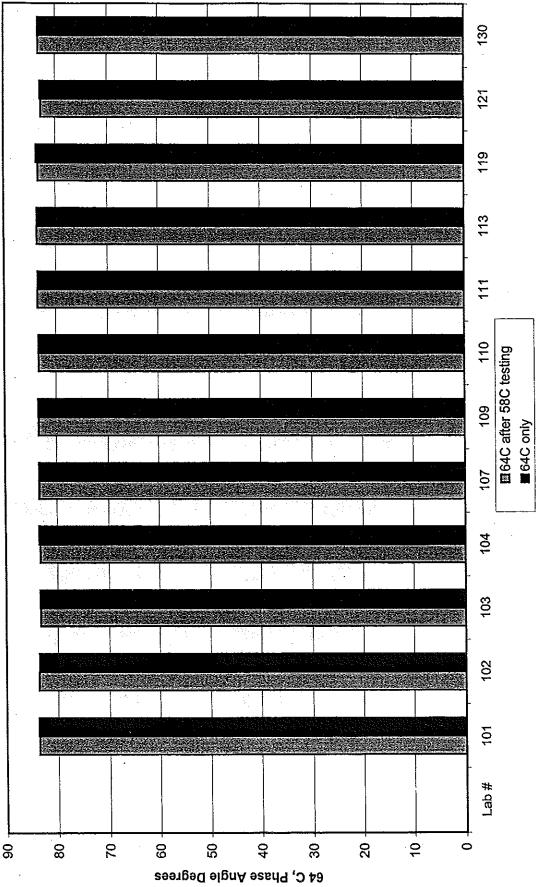


Figure 14 - NETC Round Robin 99 Average m-value for BBR Testing at -18C

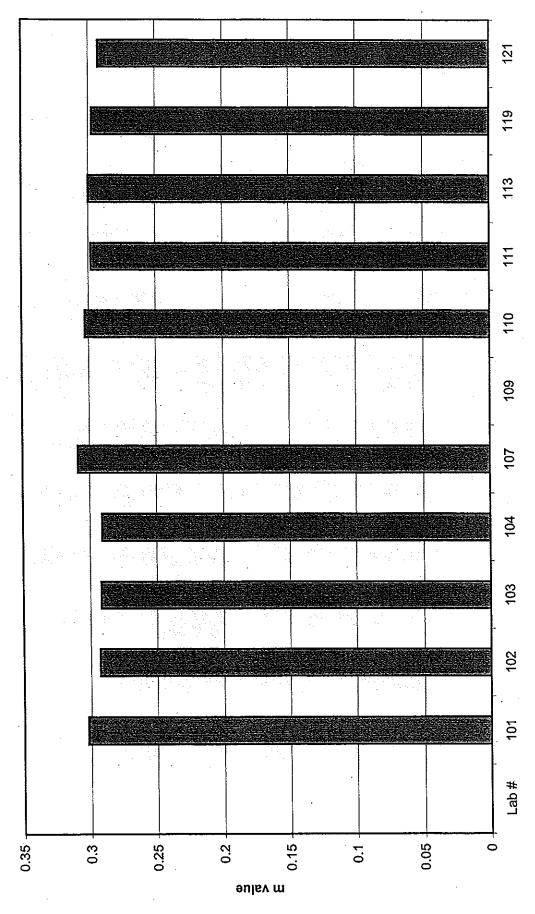
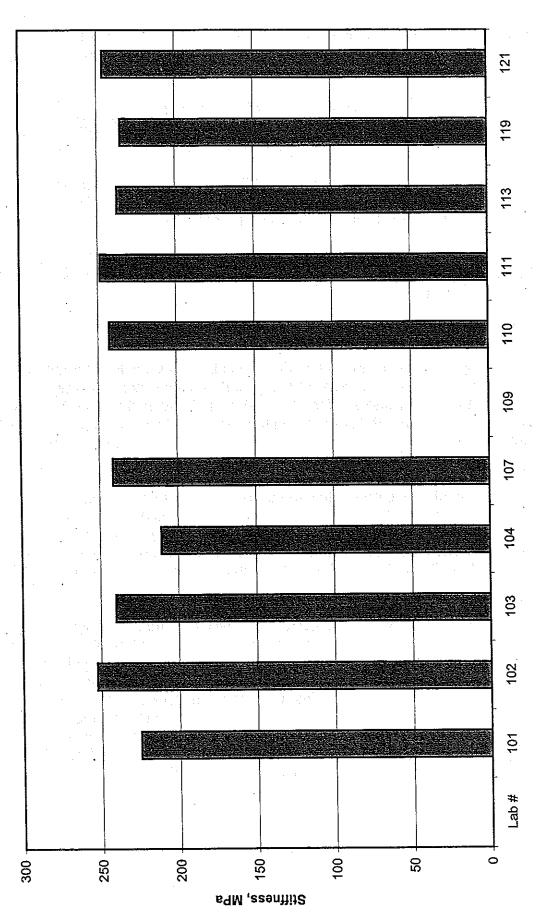



Figure 15 - NETC Round Robin 99 Average Stiffness for BBR Testing at -18C

proficiency samples. Table 6 shows the %1S for the m-value for this Round Robin. The average published value of the %1S for AMRL samples number 169 and 170 is 4.15%.

Table 6 - BBR %1S for m-value

Temperature Tested	%1S including Outliers	%1S excluding Outliers
-18 ⁰ C	6.38%	2.80%

The %1S value obtained for the BBR stiffness is in Table 7. Again these values are lower than the published AMRL proficiency sample values for AMRL samples 169 and 170. The published %1S value for samples 169 and 170 is 10.85%.

Table 7 – BBR %1S for Stiffness

Temperature Tested	%1S including Outliers	%1S excluding Outliers
-18 ⁰ C	6.10%	5.65%

Conclusions

There appeared to be virtually no difference in DSR G* values for material tested over two temperatures versus a freshly mounted specimen. This would tend to indicate that the meltdown of the bulge does not adversely affect the results. Also, with no apparent differences in test results between the specimen tested at both 58C and 64C and the specimen tested only at 64C, the difference in setting the gap, 58C versus 64C does not appear to matter.

The results obtained during this round robin are more consistent than those obtained from the AMRL proficiency samples. This is due in part to the very specific instructions which were provided to the participants. Following such detailed handling instructions would not be practical, but some improvement in sample handling uniformity from lab to lab may decrease the variation between labs.

The variation observed in the BBR results will more than likely improve with the introduction of the vacuum degassing oven. The procedure used for this will standardize the sample handling. As the current AASHTO specification is currently written, there is a lot of room for interpretation as to how to determine the proper amount of heating time to remove entrapped air in the Pressure Aging Vessel (PAV) residue. The procedure for vacuum degassing the PAV residue is very specific as to heating times and length of time the material should be exposed to the vacuum. This should reduce variability caused by different techniques currently in use to remove entrapped air.

References

- 1. AASHTO, June 1998 AASHTO Provisional Standards, 1998.
- 2. AASHTO Materials Reference Laboratory, Performance-Graded Binder Samples, www.nist.gov/aashto/amrl/services/sect3b.html, June 1, 1999.
- 3. Anderson, David and Marasteanu, Mihai, Manual of Practice, NECEPT, 1999.

Appendix A

Round Robin 99 Instructions and Sample Data Sheets

NETC Round Robin 1999

There are four 1-quart cans containing asphalt samples. They are labeled 99A, 99B, 99C and 99D. These sample should be subjected to the full battery of PG binder tests with the exception of the flash point. Below are the detailed instructions regarding the handling procedures for these samples. Please adhere to these instructions as closely as possible and **note deviations** from the instructions. We are trying to determine the effect of handling by different labs on the asphalt samples, so adhering to the instructions as closely as possible is critical. Please note: there are better handling procedures available, but for consistency please follow the instructions as given.

For each sample the following tests will be performed:

- 1 Rotational Viscosity (Original Binder 135 C)
- 1 DSR Original (58 C and 64 C)
- 1 DSR Original (64 C only)
- 1 Rotational Viscosity (RTFO Residue 165 C)
- 1 DSR RTFO (58 C and 64 C)
- 1 DSR RTFO (64 C only)
- 1 BBR Test (-18 C) 2 Beams per test on PAV material

The data should be entered into the spreadsheets provided. Please also record the time data in the provided time data sheets. The time data may allow us to discover why some data is more scattered than other data.

Before beginning any testing, please verify the temperature calibrations for both the DSR and BBR. If during the testing of the 4 samples you have to change the temperature calibrations, please note when you did it on the spreadsheet provided.

Instructions for testing:

Please test only one sample at a time.

All equipment should be brought to temperature far enough in advance so as not to effect the timing of the testing.

<u>Original Binder Material</u>

- Loosen lid on quart can but do not remove.
- Place can with loose lid in 135 C oven.
- Allow can to heat for 1 hour 45 minutes
- Stir sample
- Pour a minimum of 3 DSR original samples, 1 Rotational Viscosity Sample and 8 RTFO bottles (35 g +/- 0.5 g).

- Cover DSR samples to prevent dust or other contaminates from getting into the samples.
- Begin testing DSR samples as soon as possible.
 - Before loading each DSR sample please warm the DSR to the loading temperature and zero the gap with warm plates not room temperature plates.
 - Use the standard DSR testing parameters for original binder such as 12% strain, 10 rad/sec oscillation frequency, 1 mm thick sample and creating the bulge by squeezing the sample 0.050 mm.
 - Use the equilibrium time you normally use for your equipment
 - The trimming tool should be heated prior to trimming sample.
- Load and trim one sample at 58 C and test it at both 58 C and 64 C.
- Load and trim second sample at 64 C and test it at 64 C only.
- Please complete DSR original testing within 2 hours of pouring the samples.
- Place the Rotational Viscosity sample into the conditioning chamber as soon as possible after pouring and begin testing sample at 135 C.
- Allow the RTFO bottles to stand for 30 minutes in desicator after pouring and then place bottles into RTFO oven and run for 85 minutes.

RTFO Material

- After running the RTFO for 85 minutes remove bottles and combine all of the RTFO residue into a single container. **Do not scrape bottles!!**
- While material in the container is still warm, place container into 163 C oven for 20 minutes.
- Remove container from oven and stir.
- Pour a minimum of 3 DSR RTFO samples, 1 Rotational Viscosity and as many PAV pans as possible.
- Begin the DSR RTFO testing as soon as possible.
 - Before loading each sample please zero the gap with plates warmed to the loading temperature.
 - Use standard DSR testing parameters for RTFO material such as 10% strain, 10 rad/sec oscillation frequency, 1 mm thick sample and creating the bulge by squeezing the sample 0.050 mm.
 - Use the equilibrium time you normally use for your equipment
 - Trimming tool should be heated prior to trimming sample.
- Load and trim one of the DSR samples at 58 C and test it at both 58 C and 64 C.
- Load and trim the second DSR sample at 64 C and test it at 64 C only.
- Please complete the DSR RTFO within 2 hours of pouring samples.
- Place the rotational viscosity sample in the sample conditioning chamber as soon after pouring as possible.
- Begin testing material at 165 C.
- Cover the PAV pans (1 gallon paint can lids work nicely) and allow the PAV pans to cool on the countertop for a minimum of 30 minutes.

PAV Material

- PAV should already be preheated and the PAV pan rack should be preheated in the PAV
- Place samples into PAV pan rack and place into the PAV.

Start PAV.

When PAV is finished allow it to depressurize in 9+/-1 minutes.

Place PAV pans into 163 C oven for 15 minutes.

- Combine contents of PAV pans into a single container.

Place covered container back into **163 C oven for 1 hour** – stirring every twenty minutes.

Remove from oven and stir once more.

- Pour a minimum of 2 asphalt beam specimens.

Allow asphalt beams to stand on countertop for 45-60 minutes.

Trim beams.

- Place beams into freezer no colder than -8 C (if possible, if not please note on spread sheet) or ice bath with 10 minutes time separation between beams.
- Allow beams to stay in freezer or ice bath for 7 minutes.

At this time, the BBR bath should be at -18 C.

- De-mold and place beams into BBR bath and allow each of them to soak for exactly 60 minutes.
 - Set standard test loads on the non-compliant beam. No load adjustment should be made once an asphalt beam is placed in the supports.
 - If your BBR has trouble maintaining the test loads for the duration of the testing – please forward a copy of the printout for each beam with your data.
 - Test beams. If more than three beams are poured only use data from the first two beams tested unless there is a malfunction of the equipment. Do not choose the data from the two beams with the closest values.

Repeat these instructions for each of the four samples. If you have any questions please contact Jim Mahoney at 860-486-5956.

NETC Asphalt Binder Round Robin 1999

Note: For deviations from testing instructions - you type as much as you need to type - It may exceed the cell size but the information will be stored on the disk.

Appendix B

The Raw Data from Round Robin 99

NETC Round Robin 99 - Raw Data G* Values for DSR - Original Testing

	_					ages Including		Average Coefficient
			nen mounted	New specimen	Single specim		New specimen	•
ab# [§	Sample # G	* 58 C, kPa	G* 64 C, kPa	G* 64 C, kPa	G* 58 C, kPa	G* 64 C, kPa	G* 64 C, kPa	for each lab, %
					6.504	4.476	4 464	100
01	99A	2.477		1.177		1.175	1.161	1.90
01	998	2.517	1.169	1:188				
01	99C	2.581	1.196	1.120	4 .			
01	99D	2.547	1.178	1.160	<u> </u>			
			4.05	4 400	2444	1 150	1.194	2.42
102	99A	2.371				1,152	. 1,154	2.42
102	99B	2.441	1:165	1,202				
102	99C	2,388			4			
02	99D	2.443	1.163	1.230	1			
(A) T	004	2.546	1 467	1.155	2.679	1.246	1.250	4.73
103	99A	2.516 2.709				112-10	1	
103	99B				⊰			
103	99C	2.714 2.778			-			
103	990	2.770	1.250	1.2.1	3			
104	99A	2.764	1.246	1,400	2,595	1.202	1.319	5.61
104	99B	2.526					-	
104	99C	2.590			-			
104	990	2.499			(-
	444	2.70			-			
107	99A	2.701	1.315	1.29	7 2.716	1.32	5 1.314	1.50
107	998	2.769						
107	99C	2.705			→		,	
107	99D	2.689				•		
		2.500		1				-
109	99A	2.470	1.116	1.14	7 2,565	1.18	4 1.179	9 3.42
109	99B	2.50						
109	99C	2.68						
109	99D	2.60						
					-			
110	99A	2.59	3 1.18	7 1.16	2 2.549	1.14	5 1.18	0 4.22
110	99B	2.38						 -
110	99C	2.68			_			
110	99D	2.53		-4	 /			
111	99A	2.69	0 1.25			1,26	3 1.28	9 1.71
111	998	2.69	1 1.24			· ·		
111	99C	2.76						
111	99D	2.81	4 1.27	9 1.29	2			
							-al	4.05
113	99A		1,25			3 1.25	50 1.23	38 1.35
113	99B	2.81						
113	99C	2.77			_			
113	99D	2.75	4 1.23		261			
	γ			.al .a.	sel 651	<u> </u>	EC 4.01	35 1.82
119	99A	2.74			2.74	0 1,2	56 1.28	~1 1.02
119	99B	2.70						
119	99C	2.77						
119	99D	2.73	36 1.22	25 1.20	991			•
	T		-		02 2.60	0 1.1	57 1.10	67 4.16
121	99A	2.69		1.10		V 1.1		**1
121	99B	2.5						
121	99C	2.4						
121	99D	2.7	16 1.15	56 1.2	201			
400	7 664		95 40	99 1.1	28 2.57	1.1	26 1.1	42 2.29
130	99A	2.4				11 1.1	1.7	,
130	99B	2.5						
130	99C	2.6						
130	99D	2.5	94 1.1	or1 1.3	- 'I			
	A	1 00	20 1.2	09 4.3	27			
		2.6			72			
	Average							
Standa	Average and Deviation	n 0.1	28 0.0	eal or	112			
		•		· · · · · · · · · · · · · · · · · · ·	.83	-		

NETC Round Robin 99 - Raw Data Phase Angle Values for DSR - Original Testing

				1	Lab Ave	rages Including	Outliers	
	ſ	Single specir	nen mounted	New specimen	Single specir	nen mounted	New specimen	Average Coefficient
	1	58 C. Phase	64 C. Phase	64 C. Phase	58 C. Phase	64 C, Phase	64 C, Phase	of Variability
ab# S	Sample #	Anale Degrees	Angle Degrees	Angle Degrees	Angle Degrees	Angle Degrees	Angle Degrees	for each lab, %
101	99A	85.54	86.93	86.97	85.51	86.92	86.88	0.07
101	99B	85.50	86.91	86.73			•	i.
101	99C	85.53	86.95	86.92				
101	99D	85.46	86.87	86.90				
101	000				•			
102	99A	85.40	87.00	87.00	85.63	87.10	86.88	0.15
	99B	85.70						
102		85.70						
102	99C				ţ	•		
102	99D	85.70	87.20	50.30	1			
·		06.76	86.96	86,93	85.60	86.94	87.00	0.09
103	99A	85.75					<u> </u>	
103	99B	85.55			4			
103	99C	85.58			4			
103	99D	85.50	86.90	86,94	· ·			•
		,		04.70	85.83	86.73	85.43	1.10
104	99A	<u> </u>	- 84.70			, 00.70	1 05.10	
104	99B	85.80						
104	99C	85.70			→			
104	99D	86.00	87.40	85.00	Ŋ.		•	•
			· · · · · · · · · · · · · · · · · · ·				07.0	0.08
107	99A	85.7				87.20	87.24	1 0.08
107	998	85.63	2 87.1					
107	99C	85.69		5 87.2)			•
107	99D	85.7		87.2	3			
		1			7 .			
109	-99A	85.9	9 87.6	2 87.7	85.8	7 87.5	5 87.6	6 0.12
109	99B	85.8						
	99C	85.7			 4			
109		85.9						
109	99D	1 65.5	11 07.7	01 07.0	21 .			
		7 05.4	ol	3 86.9	8 85.4	1 86.9	2 86.9	5 0.03
110	99A	85.4				11		
110	99B	85.4			_			
110	99C	85.3			⊸			
110	990	85.4			4]			
						57 87.1	4 87.1	5 0.05
111	99A	85.€				01.1	97.1	<u> </u>
111	99B	85.5						
111	99C	85.€	87:		_			
111	99D	85.4	9 87.	2 87.1	5			
113	99A		87.	12 87.0	6 85.4	2 87.0	9 87.0	0.07
113	99B	85.			8			
113	99C	85.4		08 87.6	8			
113	99D	85.4			14			
119	99A	85.	50 - 86.	70 87.	00 85.	53 86.	85 86.	40 0.54
119	99B	85.						
-	99C	85.			_ i			
119		85.						•
119	99D		70 01.		ليت			
		<u></u>	201	85.	90 85.	10 86.	13 85.	85 0.25
121	99A	85.						
121	99B	85.						
121	99C			40 85.				
121	99D	84.	90 85	80 85.	10			
				3-1'	001	E7 67	.11 87	.12 0.04
130	99A			.13 87		.57 87	. ; 1] 07.	
130	99B	85			13			
130		85	.53 87		.14			
				.12 87	.14			
1.311								•
130		ne 85	.56 86	.99 86	.80			
130	Avera							
	Avera		.22 0	0.47	.75			
	Avera lard Devia		.22 0	0.47 0	./5]	•		
Stand		tio 0			.86	•		

NETC Round Robin 99 - Raw Data G* Values for DSR - RTFO Testing

	г	Cinals assets	non marchad	Now enseme		rages Including		Average Coefficies
ab#	Sample #		nen mounted G* 64 C, kPa	New specimen G* 64 C, kPa	Single specir G* 58 C, kPa	G* 64 C, kPa	New specimen G* 64 C, kPa	of Variability for each lab, %
,au#	Joinbie #	- wv, Nra	O O O KFA	U V-V-NFA 1	C 50 0, KF4	O OT O, KEA	10 V7 U, KF4	10. COUT 100, 78
101	99A	6,435	2,897	2.714	6.126	2.737	2.713	3.39
101	998	6.081	2.672	2.671	5.,20			
101	99C	5.794	2.628	2.769				
101	99D	6.194		2.698				
			,					
102	99A	6.178	2.739	2.759	6.299	2.838	2.835	2.10
102	998	6.405	2.934	2.868				
102	99C	6.264	2.830	2,877			•	•
102	99D	6.350	2.849	2.837				
	· · · · · · · · · · · · · · · · · · ·							
103	99A	6,988	3.132	3.059	7.094	3.198	3.278	8.44
103	99B	7.082		3.143				
103	99C	7,930	3,559	3.624				
103	99D	6.374	2,886	3,287				
			•					
104	99A	7.046			6,632	2.956	2.883	. 10.99
104	998	6.000						
104	99C	7.360						
104	99D	6.120	2,650	3.097				
				, .	, 	,		r ====
107	99A	7.748			6.909	3.260	3.279	9.61
107	99B	6.695						
107	99C	6.967					•	
107	99D	6.224	2.916	2.899	ŀ			
400	1 000			,			0.000	^^^
109	99A	3.556			6.253	2.87	3 2.860	30.00
109	99B	6.824				•		
109	99C	7.902						
109	99D	6.731	2.937	2.892	l	•		
110	004	7 202	3 300	0.072	2.000	3.07	7 2.967	2.28
110	99A	7.393			6.989	3.07	2.96/	3.38
110	998	6.830			4			
110	99C	6.952			4			
110	990	6.781	2.590	2.877				
111	99A	6.704	3.160	3.081	6.961	3.18	1 3,193	4.44
111	99B	6.734			0.50	., 0.10	., .,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1
111	99C	7.002			1			
111	99D	7.403			4			
		7.70		3.700				
113	99A	1	3,17	7 3.083	6.72	2.99	4 2.983	3.05
113	99B	6.65		-				A
113	99C	6.88		- 	-			
113	99D	6.62		, , , , , , , , , , , , , , , , , , , 				
		··			-			
119	99A	6.62	4 2.98	9 2.920	6.75	2.96	5 3.033	3.27
119	99B	6.96						
119	99C	6.84						
119	99D	6.59	2 2,89	4 3.104				
121	99A	6.81				5 2.98	4 2.992	9.36
121	99B	6.32	7 2.64					
121	99C	6.75						
121	99D	7,60	6 3.46	6 3.373	3			
			/					
130	99A	6.96				1 3.04	3.07	1.85
130	99B	7.01						
130	99C	7.09		2 3.002	2			
130	99D	7.05	5 3.07	6 3,190	<u> </u>			
					 -			
		6.72	3.00	9 3.00	7 Includes Outli	er		
	Average	0.12	.0					
Stand	Average ard Deviatio				Includes Outi	er		

NETC Round Robin 99 - Raw Data Phase Angle Values for DSR - RTFO Testing

					Lab Ave	rages Including	Outliers	
	1	Single specin		New specimen	Single specia	nen-mounted	New specimen	Average Coefficient
		EQ C Dhaca	64 C Phase	64 C, Phase	58 C, Phase	64 C, Phase	64 C, Phase	of Variability
ab#	Sample #	Angle Degrees	Angle Degrees	Angle Degrees	Angle Degrees	Angle Degrees	Angle Degrees	for each lab, %
	,			<u>.</u>				0.07
101	99A	81.20	83.59	83.73	81.28	83.67	83.76	0.07
101	99B	81.29						
101	99C	81.36						
101	99D	81.27	83.66	83.82	!			
						00.70	83.60	0.26
102	99A	81.40	83.60		81.23	83.70	63.60	0.20
102	99B	81.00	83.50		1			
102	99C	81,40	84.00					
102	99D	81.10	83.70	83.30	1			
							1 00.07	0.28
103	99A	80.96	83.20			83.29	83.37	1 0,28
103	998	80.99	83.42		-			
103	99C	80.50	83.07		-			
103	99D.	81.11	83.4	83.46				
	·						00.55	0.00
104	99A	80.60	82.30	82.30	81.4	3 83.3	83.53	0.99
104	99B	81.80						
104	99C	81.40		83.90	<u>)</u> .			
104	99D	81.90)			
107	99A	80.3	2 82.8	9 82.9	80.9	8 83.3	9 83.4	0.66
107	998	81.2						
107	99C	80.6						
107	99D	81.6			_			
107	930	01.0	01	- :				
400	004	84.7	4 86.7	3 86.6	6 81.8	6 84.2	6 84.2	9 2.11
109	99A	81.1						
109	998				 4		33.5	
109	99C	80,2			- -			
109	99D	81.3	521 05.0	00.0	2			
			3 83.4	11 83.4	2 80.	78 83.3	3 83.3	6 0.09
110	99A	80.9						
110	99B	80.7						* * *
110	99C	80.6						
110	99D	80.7	72 83.	281 00.0	<u>w</u>			
				62 83.5	3 80.	97 83.	51 83.4	6 0.23
111	99A	81.				37	<u> </u>	
111	99B	81.						
111	99C	80.9			—			
111	990	80.6	68 83.	27 83.	241			
					701 04	09 83.	58 83.	58 0.15
113			83.			uaj 63.	<u></u>	
113		81.			- ∹			
113	99C	80.			_			
113	99D	81.		.66 83.	ea!	-		
						401 00	35 83.	68 0.16
119	99A					.10 83.	<u>ગ્યા </u>	0.10
119		80.		.20 83.				•
119		81.		.40 83.				
119		81.	10 83	.40 83	50			
							701	001 030
121	99A	81	.00 - 82			.70 82	.73 82	90 0.38
121				.70 83	.10			* *
121					.70			
121					.80			
	. 1 330			-				
130	99A	1 80).77	3.27 83	.53 80).67 83	3.33 83	.36 0.14
					.24			
130					.43			
					3.22			
130	ા વવા	/ 180		3.23				
130	0 1 000		• • •				,	
		1	100	3 45 l 93	5.53 lipcimes o	uwer		
130	Avera				5.53 Includes O			
130					3.53 Includes O 3.60 Includes O			

NETC Round Robin 99 - Raw Data BBR Values

								Average Coefficient of Variability	Average Coefficient of Variability
	1		eam 1-	D.	eam 2	de f	Average	for each lab, %	for each lab, %
Lab#	Sample #	m-value	Stiffness, MPa		Stiffness, MPa	m-value	Stiffness	m-value	Stiffness
COU II	i Campic ii	111-76:00	Ocinicos, na a 1	m value 1	03111030,1111 0 1	m reide	Gainicoo	17. 70.00	L Guinioco j
101	99A	0.301	232.0	0.301	229.0	0.302	224.9	1,21	2.58
101	998	0,301	223.0	0.301	227.0				I
101	99C	0.297	216.0	0.303	229.0		•		
101	99D	0.310	217.0	0.302	226.0				
102	99A	0.294	252.0	0,293	253.0	0,293	252.6	0.92	1.10
102	99B	0.293	256.0	0.288	248.0				
102	99C	0,293	251.0	0.292	252.0				•
102	99D	0.296	254.0	0.297	255.0				
	***************************************	···				'			
103	99A	0.301	239.0	0.303	255.0	0.292	240.1	5.51	3.45
103	99B	0,295	246.0	0.294	227.0				
103	99C	0.253	234.0	0,299	242.0				
103	99D	0.295	252.0	0.296	- 226.0	· ·			
									,
104	99A	0.308	199.0	0.288	. 210.0	0.324	207.9	17.60	9.95
104	99B	0.408	206.0	0.406	213.0				
104	99C	0.290	219.0						
104	99D	0.288	189.0	0.282	219,0				
									, , ,
107	99A	0.305	245.1	0.310	244.2	0.309	241.3	1.33	2.74
107	99B	0.302	238:1	0.311	238.1	l			
107	99C	0.305	258.6		243.1	Į			
107	99D	0.314	241.5		221.8	J			
				,	•				1
109								3.42	6.17
109	-							•	
109									·
109						•			
440	99A	0,311			249.2	0.303	242.9	2.00	2.04
110	99B	0.303			240.7		242.	2.00	1 2.04
110	99C	0.303			238.0				100
110	99D	0.300			239.4				
110	990	1 0.500	270.0	. 0.000	200.1	J			
111	99A	0.298	259.0	0.304	250.0	0.298	248.	1,43	3.26
111	99B	0.296			240.0				
111	99C	0.296			255.0				
111	99D	0.294			241.0	- <			
				<u> </u>	·				1
113	99A	0.299	243,2	0.295	250.1	0.300	237.	3 1.25	3.04
113	99B	0.305							
113	99C	0.298			228.7	7			
113	99D	0.304			229.2	_			
119	99A	0.30	1 244.9	0.290	220.7	0.297	235.	0 1.31	3.55
119	99B	0.29	230.2	0.294	248.4	1			
119	99C	0.30		0.299	221,1	1			
119	99D	0.30	231.6	0.299	244.5	5			
121	99A	0.29					246.	4 0.57	2.13
121	99B	0.29				_		•	
121	99C	. 0.29					-		*
121	99D	0.29	3 240.0	0.292	251.0	이			-
									•
			Overall Average		_		•		
		-value	0.30		Includes Outlie			•	
	Stiffn	ess, MPa	238.07	7 14,532	Includes Outlie	rs		•	
					-				
	Std. D	ev % of Avg			Includes Outlie				
	-		Stiffness	6.10	Includes Outlie	rs			
					•		• .		

Equipment not functioning property, excluded form overall average

Appendix C

Amended Data for Round Robin 99

NETC Round Robin 99 - Refined Phase Angle Values for DSR - Original Testing

				1	Lab Ave	rages Excluding	Outliers
		Single specir	men mounted	New specimen	Single speci	nen mounted	New specimen
		58 C, Phase	64 C. Phase	64 C, Phase	58 C, Phase	64 C, Phase	64 C, Phase
Lab#	Sample #	Angle Degrees	Angle Degrees	Angle Degrees	Angle Degrees	Angle Degrees	Angle Degrees
		· · · · · · · · · · · · · · · · · · ·					0000
101	99A	85.54	86.93	, 86.97	85.51	86.92	86.88
101	99B	85.50	86.91	86.73			
101	99C	85,53	86,95	86.92			
101	99D	85.46	86.87	86.90			
F 405	1 004	PC 40	97.00	87,00	85.63	87.10	86.88
102	99A	85.40 85.70	87.00 87.20	86,90	- 85.65	07.10	00.00
102	99B 99C	85.70					
102	99D	85.70		86.90			
102	330	65.70	67.20	60.90	ł		
103	99A	85.75	86.96	86.93	85.60	86.94	87.00
103	99B	85.55			00.00		
103	99C	85.58			ł		
103	99D	85.50					
104	99A	<u> </u>	84.70	84.70	85,83	86.73	85.43
104	998	85.80		*··		*****	
104	99C	85,70					
104	99D	86.00	*		4		
	· · · · · · · · · · · · · · · · · · ·				-		
107	99A	85.71	87.24	87.22	85.69	87.20	87.24
107	99B	85.62	87.13	87.15	-		
-107	99C	85.65	87.15	87,29	1	•	_
107	99D	85.78					
	<u> </u>	, 	<u> </u>				
109	99A	85.99	87.62	87.73	85.87	87.55	87.66
109	99B	85.81	87.52	87.68			
109	99C	85.75	87,35	87.60	1		
109	99D	85.91	87.70	87.63	3		
	·	•			<u> </u>		
110	99A	85.42	86.93	86.98	85.41	86.92	86.95
110	99B	85.40	86.9	86.93	3		
110	99C	85.39	86.8	86.96	5]		
110	99D	85.43	86.9	86.94			
111	99A	85,6				87.14	87.15
111	998	85.5	87.1		⊣		
111	99C	85,6					
111	99D	85.4	9 87.1	2 87.1	<u> </u>		
	,						
113	99A		87.1			87.09	87.07
113	99B	85.3			- 4	•	
113	99C	85.4					
113	99D	85.4	9 87.1	3 87.1	<u>*1</u>		
440	1 004	1 050	01 067	01 87.0	0 85.53	86.85	86.40
119	99A	85.6				1 00.00	1 00.40
119	998	85.6			 { .		
119		85.5					
119	99D	85.4	0 87.0	00.9	<u>স</u>		
121	99A	85.3	ΛĪ.	85.9	0 85.10	86.13	85.85
		85.3				30,10	
121		84.9	·				
121		84.9			_		
[121	1 930		71		J		
130	99A	85.5	3 87.1	3 87.0	8 85.57	87,11	87.12
130		85.5				****	
130		85.5					
130		85.6					
150	350			-21	<u></u>		
	Averag	e 85.5	56 86.9	99 86.8	iol		
Stane	lard Deviati				_		
Colark	UC1180	0.1 0.4			<u></u>		
Std C	Dev % of Av	ra. n :	25 0.4	54 0.8	36		
[] (1. [/3 41/71	3.1			_		

Excluded from average because it differed from the average by more than 3 Standard Deviations

NETC Round Robin 99 - Refined G* Values for DSR - Original Testing

					Lab Av	erages Excluding	Outliers
		Single specir	nen mounted	New specimen	Single spec	imen mounted	New specimen
Lab#	Sample #	G* 58 C, kPa	G* 64 C, kPa	G* 64 C, kPa	G* 58 C, kPa	G* 64 C, kPa	G* 64 C, kPa
101	99A	2,477	1,157	1.177	2.531	1.175	1.161
101	99B	2.517	1.169	1.188			
101	99C	2.581	1.196	1.120			
101	99D	2.547	1.178	1.160			
				,		,	,
102	99A	2.371	1.125		2.411	1.152	1.194
102	99B	2,441	1.165	1.202			
102	99C	2.388	1.156	1.222			
102	99D	2.443	1.163	1.230			
	,			•			
103	99A	2.516	1,157	1	2.679	1,246	1,250
103	99B_	2.709	1.262				
103	99C	2.714	1.273				
103	99D	2.778	1.290	1.276	I		•
			1	4 400	0.505	1 4000	1 240
104	99A	2.764			2,595	1.202	1.319
104	99B	2,526			1		
104	99C	2,590			ł		
104	99D	2.499	1.130	1.199	j		
		T	1 045	4.007	2.746	1,326	1 214
107	99A	2,701				1 1.320	1.314
107	998	2.769					
107	99C	2.705			4		
107	99D_	2.689	1.311	1.323	· ·		
				· · · · · · · · · · · · · · · · · · ·		1 1 101	1 4470
109	99A	2.470	<u> </u>			1.184	1.179
109	99B	2.501			(
109	99C	2.682			-		
109	99D	2,607	1,247	2 1.207	3		
							1
110	99A ·	2.593				1.145	1.180
110	998	2.380			-4	•	
110	99C	2.688			-4		100
110	99D	2.534	1.18	1.190	<u> </u>		
						1 000	
111	99A	2.690				1,263	1,289
111	998	2.69			- 7		
111	99C	2.76			⊣		
111	99D	2.81	4] 1.27	9 1.29	<u>2</u>]		
			1	01 400	0 700	1.250	1.238
113	99A		1.25			1.250	1.230
113	998	2.81			⊸.	•	
113	99C	2.77					
113	99D	2.75	4 1.23	3 1.22	의		
· · · · · · · · · · · · · · · · · · ·			el 2	al	5 0740	1,256	1.285
119	99A	2.74				1.200	1 1.200
119	99B	2.70			. 	-	
119	99C	2.77					
119	99D	2.73	6 1.22	1.26	의		
		1	al	1 4 4 4	2 200	1,157	1,167
121	99A	2.66		1.10		1,15/	1,107
121		2.58				•	
121		2.44					
121	99D	2.71		56 1.22	의		
,					0 574	4.400	4 440
130		2.48				1.126	1.142
130		2.5			_		•
130		2.69			_		
130	99D	2,59	34 1.13	37 1.14			•
				iai	ক্র		
	Averag						
Stand	dard Deviati	on 0.1	28 0.0	69 0.07	<u>(4)</u>		
				-al	- ·		
Std. I	Dev % of Av	rg. 4.	90 5.	71 5.	33		

Excluded from average because it differed from the average by more than 3 Standard Deviations

NETC Round Robin 99 - Refined Phase Angle Values for DSR - RTFO Testing

				r	I oh Aus	mane Including	Outliers
	ſ	Single specin	nen mounted	New specimen		rages Including nen mounted	New specimen
	ŀ	58 C, Phase	64 C, Phase	64 C, Phase	58 C, Phase	64 C, Phase	64 C, Phase
Lab#	Sample #	Angle Degrees	Angle Degrees	Angle Degrees	Angle Degrees	Angle Degrees	Angle Degrees
404		04.00	00.50	02.72	. 04 00	92.67	83.76
101	99A 99B	81.20 81.29	83.59 83.73	83.73 83.72	81.28	83.67	1. 65.76
101	99C	81.36	83.69	83.77	•		
101	99D	81.27	83.66	83.82			
	000	V		L			-
102	99A	81.40	83.60	83.70	81.23	83.70	83.60
102	998	81.00	83.50	83.60			
102	99C	81.40	84.00	83.80			
102	99D	81.10	83.70	83.30			
103	99A I	80.96	83,20	83.60	80.89	83.29	83.37
103	99A 99B	80.99	83.42		00.00		
103	99C	80.50	83.07				
103	99D	81.11	83.47				
104	99A	80.60	82.30		81.43	83.33	83,53
104	99B	81.80	83.00				* :
104	99C	81.40	83.60			•	
104	99D	81.90	84.40	83.30			
107	99A	80.32	82.89	82.90	80.98	83,39	83.43
107	99A 99B	81.26		 	00.50	00.5	31 00:11
107	99C	80.65					
107	99D	81.68				-	
					· .		\\\
109	99A	CFS242-84-74			80.90	83.4	4 83.50
109	998	81.16					
109	99C	80.22					
109	99D	81.32	83.86	83.92			
110	99A	80.93		1 83,42	80.78	83.3	3 83.36
110	998	80.77				1	<u></u>
110	99C	80.69			1		
110	99D	80.72	83.2	83.30			
111	99A	81.10			80.9	7] 83.5	1 83.4
111	99B	81.10			ł		• •
111	99C		83.4		ł	•	
	990	80,9					• •
	99D	80.6		7 83.24	.		•
113	99D 99A		83.2		81.0	9 83.5	8 83.5
			83.2	2 83.33		9 83.5	83.5
113	99A	80.6	83.4 83.4 83.6 83.5	2 83.33 8 83.67 5 83.61		9 83.5	8 83.5
113 113	99A 99B	80.6	83.4 83.4 83.6 83.6 83.5	2 83.33 8 83.67 5 83.61		9 83.5	83.5
113 113 113 113	99A 99B 99C 99D	80.6 81.1 80.9 81.1	83.4 83.4 83.6 83.6 83.5 4 83.6	2 83.33 8 83.67 5 83.61 6 83.69		:	
113 113 113 113 113	99A 99B 99C 99D	81.1 81.1 80.9 81.1	83.4 83.4 83.6 83.5 4 83.6	2 83.33 8 83.67 5 83.61 6 83.69	81.1	:	
113 113 113 113 113 119	99A 99B 99C 99D 99A 998	81.1 80.9 81.1 81.2 80.9	83.2 83.4 5 83.6 9 83.5 4 83.6 0 83.4	2 83.33 8 83.67 5 83.61 6 83.69 0 83.80 0 83.80	81.1	:	
113 113 113 113 113 119 119	99A 99B 99C 99D 99A 99B 99C	81.1 80.9 81.1 81.2 80.9 81.2	83.4 5 83.6 9 83.5 4 83.6 0 83.4 0 83.4	2 83.33 8 83.67 5 83.61 6 83.69 0 83.80 0 83.80 0 83.80	81.1	:	
113 113 113 113 113 119	99A 99B 99C 99D 99A 998	81.1 80.9 81.1 81.2 80.9	83.4 5 83.6 9 83.5 4 83.6 0 83.4 0 83.4	2 83.33 8 83.67 5 83.61 6 83.69 0 83.80 0 83.80 0 83.80	81.1	0 83.3	83.6
113 113 113 113 113 119 119	99A 99B 99C 99D 99A 99B 99C	81.1 80.9 81.1 81.2 80.9 81.2	83.4 5 83.6 9 83.5 4 83.6 0 83.4 0 83.4 0 83.4	2 83.33 8 83.67 5 83.61 6 83.69 0 83.60 0 83.60 0 83.60 0 83.50	81.1	0 83.3	83.6
113 113 113 113 113 119 119 119	99A 99B 99C 99D 99A 99B 99C 99D	81.1 80.9 81.1 81.2 80.9 81.2 81.2	83.4 83.4 83.4 83.6 83.5 4 83.6 0 83.2 0 83.4 0 83.4 0 83.4	2 83.33 8 83.67 5 83.61 6 83.69 0 83.80 0 83.80 0 83.60 0 83.50	81.1	0 83.3	83.6
113 113 113 113 113 119 119 119 119 121 121	99A 99B 99C 99D 99A 99B 99C 99D 99A 99B 99B	80.6 81.1 80.9 81.1 81.2 80.9 81.2 81.1 81.0 80.8	83.2 83.4 83.6 83.6 83.6 83.6 83.6 83.6 83.4 83.6 83.2 0 83.4 0 83.4 0 83.4 0 83.4	2 83.33 8 83.67 5 83.61 6 83.69 0 83.60 0 83.60 0 83.60 0 83.50 0 83.00 0 83.00	81.1	0 83.3	83.6
113 113 113 113 113 119 119 119 119 121	99A 99B 99C 99D 99A 99B 99C 99C 99D	80.6 81.1 80.9 81.1 81.2 80.9 81.2 81.1	83.2 83.4 83.6 83.5 4 83.6 0 83.2 0 83.4 0 83.4 0 83.4 0 82.6 0 82.7 0 82.7	2 83.33 8 83.67 5 83.61 6 83.69 0 83.60 0 83.60 0 83.60 0 83.50 0 83.00 0 83.00	81.1	0 83.3	83.6
113 113 113 113 113 119 119 119 119 121 121 121	99A 99B 99C 99D 99A 99B 99C 99D 99D 99D	81.1 80.9 81.1 81.2 80.9 81.2 81.1 81.0 80.8 80.8	83.4 83.4 5 83.6 8 83.5 4 83.6 0 83.4 0 83.4 0 83.4 0 82.6 0 82.6 0 82.7 0 83.2	2 83.33 8 83.67 5 83.61 6 83.69 0 83.80 0 83.80 0 83.80 0 83.50 0 83.50	81.1	0 83.5	83.6 73 82.5
113 113 113 113 113 119 119 119 119 121 121 121 121 121	99A 99B 99C 99D 99A 99B 99C 99D 99D 99B 99C 99B 99C 99B	81.1 80.9 81.1 81.2 80.9 81.2 81.1 81.0 80.8 80.8	83.4 83.4 5 83.6 8 83.5 9 83.5 9 83.6 0 83.4 0 83.4 0 82.6 0 82.7 0 83.2	2 83.33 8 83.67 5 83.61 6 83.69 0 83.80 0 83.80 0 83.80 0 83.80 0 83.80 0 83.80 0 83.00 0 83.00 0 83.00	81.1	0 83.5	83.6 73 82.5
113 113 113 113 113 113 119 119 119 121 121 121 121 121 121	99A 99B 99C 99D 99A 99B 99C 99D 99D 99A 99B 99C 99D	80.6 81.1 80.9 81.1 81.2 80.9 81.2 81.1 81.0 80.8 80.5 80.1	83.4 83.4 83.6 83.6 83.6 83.6 83.6 83.6 83.4 83.6 83.4 83.4 83.4 83.4 83.4 83.4 83.4 83.4 83.6 83.4 83.6	2 83.33 8 83.67 5 83.61 6 83.69 0 83.80 0 83.80 0 83.80 0 83.50 0 83.00 0 83.00 0 83.00 0 83.00 0 83.00	81.1	0 83.5	83.6 73 82.5
113 113 113 113 113 113 119 119 119 121 121 121 121 121 130 130	99A 99B 99C 99D 99A 99B 99C 99D 99A 99B 99C 99D	80.6 81.1 80.9 81.1 81.2 80.9 81.2 81.1 81.0 80.8 80.9 80.1 80.5 80.5 80.5 80.5	83.4 83.4 83.6 83.6 83.6 83.6 83.6 83.6 83.6 83.4 83.6 83.4 83.6 83.4 83.6 83.2 83.4 83.6 83.2 83.6 83.2 83.6	2 83.33 8 83.67 5 83.61 6 83.69 0 83.60 0 83.60 0 83.60 0 83.50 0 83.00 0 83.00 0 83.00 0 83.00 0 83.00 0 83.00 0 83.00	81.1	0 83.5	83.6 73 82.5
113 113 113 113 113 113 119 119 119 121 121 121 121 121 121	99A 99B 99C 99D 99A 99B 99C 99D 99D 99A 99B 99C 99D	80.6 81.1 80.9 81.1 81.2 80.9 81.2 81.1 81.0 80.8 80.5 80.1	83.4 83.4 83.6 83.6 83.6 83.6 83.6 83.6 83.6 83.4 83.6 83.4 83.6 83.4 83.6 83.2 83.4 83.6 83.2 83.6 83.2 83.6	2 83.33 8 83.67 5 83.61 6 83.69 0 83.60 0 83.60 0 83.60 0 83.50 0 83.70 0 83.10 20 82.77 27 83.55 42 83.24 23 83.24	81.1	0 83.5	83.6 73 82.5
113 113 113 113 113 113 119 119 119 121 121 121 121 121 130 130	99A 99B 99C 99D 99B 99C 99D 99D 99D 99A 99B 99C 99D 99C 99D	80.6 81.1 80.9 81.1 81.2 80.9 81.2 81.1 81.0 80.8 80.5 80.1	83.4 83.4 83.6 83.6 83.6 83.6 83.6 83.6 83.4 83.4 83.4 83.4 83.4 83.4 83.4 83.4 83.4 83.4 83.5 83.4 83.5 83.4 83.5	2 83.33 8 83.67 5 83.61 6 83.69 0 83.80 0 83.80 0 83.80 0 83.50 0 83.00 0 83.00 0 83.00 0 83.00 0 83.00 0 83.30 0 83.30 27 83.53 42 83.22	81.1	0 83.3 0 82.3 67 83.	83.6 73 82.5
113 113 113 113 113 113 119 119 119 119	99A 99B 99C 99D 99A 99B 99C 99D 99A 99B 99C 99D	80.6 81.1 80.9 81.1 81.2 80.9 81.2 81.1 81.0 80.8 80.5 80.7 80.6 80.6	83.4 83.4 83.4 83.6 83.6 83.6 83.6 83.6 83.4 83.6 83.4 83.4 83.4 83.4 83.4 83.6 83.4 83.6 83.4 83.6 83.4 83.6	2 83.33 8 83.67 5 83.61 6 83.69 0 83.80 0 83.80 0 83.80 0 83.50 0 83.50 0 83.10 20 82.77 10 82.87 27 83.53 27 83.53 28 83.42 23 83.22	81.1	0 83.3 0 82.3 37 83.	83.6 73 82.5
113 113 113 113 113 113 119 119 119 119	99A 99B 99C 99D 99A 99B 99C 99D 99A 99B 99C 99D 99A 99B 99C 99D	80.6 81.1 80.9 81.1 81.2 80.9 81.2 81.1 81.0 80.8 80.5 80.7 80.6 80.6	83.4 83.4 83.4 83.6 83.6 83.6 83.6 83.6 83.4 83.6 83.4 83.4 83.4 83.4 83.4 83.6 83.4 83.6 83.4 83.6 83.4 83.6	2 83.33 8 83.67 5 83.61 6 83.69 0 83.80 0 83.80 0 83.80 0 83.50 0 83.50 0 83.10 20 82.77 10 82.87 27 83.53 27 83.53 28 83.42 23 83.22	81.1 80.7 3 80.6 4 3 2 2 6 Excludes Ou	0 83.3 0 82.3 37 83.	85 83.6 73 82.9

NETC Round Robin 99 - Refined G* Values for DSR - RTFO Testing

				-	Lab Avera	ges Excluding	Outliers
		Single specim	en mounted	New specimen	Single specime	en mounted	New specimen
Lab#	Sample #			G* 64 C, kPa	G* 58 C, kPa C	6* 64 C, kPa	G* 64 C, kPa
200 11	Comp.c.						
101	99A	6.435	2.897	2.714	6.126	2.737	2.713
101	998	6.081	2.672	2.671			
101	99C	5.794	2.628	2.769			
101	990	6.194	2.749	2.698			
			-				
102	99A	6.178	2,739	2.759	6.311	2.838	2.835
102	998	6.405	2.934	2.868			
102	99C	6.264	2.830	2.877			
102	99D	6.350	2.849	2.837			
				·			
103	99A	6.988	3,132	3.059	7.094	3,19	3.278
103	99B	7.082	3.215	3.143			
103	99C	7.930	3.559		·		
103	99D	6.374	2.886	3.287]		
	,						2000
104	99A	7.046	3.155	3.168	6.632	2.95	6 2.883
104	99B	6,000	2.749		- ∤		
104	99C	7.360	3.270		4.		
104	99D	6.120	2.650	3.097	1		
h.,					·		<u> </u>
107	99A	7.748	3.608			3,26	0 3.279
107	99B	6.695	3.150		-4		
107	99C	6.967	3.36		- 4 .		
107	99D	6.224	2.910	2.89	9		
109	99A	美大学等3.22	2 167	1 25 20 20 1 62	7.317	3,27	1 3.232
109	998	6.824	3.29		- 4		
109	99C	7.902	3.60				
109	99D	6.731	2.93	7 2.89	2		
							-1 0007
110	99A	7.393	3,29			3.07	2.967
110	99B	6.830	2.98	9 2.90	6]		
110	99C	6,952	3.03				
110	99D	6.78	2.99	8 2.97	7]		
							0.400
111	99A	6.70				3.1	81 3.193
111	998	6.73				•	
111	99C	7.00					
111	99D	7,40	3.33	3.40	9		
				· · · · · · · · · · · · · · · · · · ·	-1		94 2.983
113	99A		3.17	- +		2,9	2.903
113	99B	6.65					
113	99C	6.88					
113	99D	. 6,62	1 2.9	29 2.9	24]		
					wi 6.754	3 2.9	65 3,033
119		6.62				2.8	0.035
119		6.96					
119		6.84					
119	99D	6.59	2.8	94 3.1	<u>~</u>]		
		·	-1	401 00	49 6.87	51 20	84 2.992
121		6.81				-1 2.8	2.332
121		6.32					
121		6.75					
121	99D	7.60		66 3.3	<u>.न</u>		
			201 20		95 7.03	1 2	043 3.073
130		6,96				., 33	
130		7.0	_ +		 -		-
130		7.0		82 3.0			
13	D 99D	7.0	3.0	176 3.1	50		
			201	vael 64	97 Cvaldon ()	liare	* .
	Avera				37 Excludes Out		
Stan	dard Devia	ion 0.4	8/1 0.2	244 0.2	257 Excludes Out	1619	
			471 -	001 0	40 Evaluados Ca	liore	
Std.	Dev % of A	vg.[7.	17] - 8	.03 8	.48 Excludes Out	1010	
703.7	arana e	. d &sam e	hoosuse it diffe	nod from the sue	rage by more than	3 Standard C	eviations

Excluded from average because it differed from the average by more than 3 Standard Deviations

NETC Round Robin 99 - Refined BBR Data

	i	Beam 1		Beam 2		Lab Average	
Lab#	Sample #		tiffness, MPa		Stiffness, MPa	m-value	Stiffness
				······································			
101	99A	0.301	232.0	0.301	229.0	0.302	224.9
101	998	0.301	223.0	0.301	227.0		
101	99C	0.297	216.0	0.303	229.0		
101	99D	0.310	217.0	. 0.302	226.0		
102	99A	0.294	252.0	0.293	253.0	0.293	252.6
102	998	0.293	256.0	0.288	248.0		
102	99C	0.293	251.0	0,292	252.0		
102	99D	0.296	254.0	0.297	255.0		
	<u> </u>	·					
103	99A	0.301	239.0	0.303	255.0	0.292	240.1
103	99B	0.295	246.0	0.294	227.0		 -
103	99C	0.253	234.0	0.299	242.0		
103	99D	0.295	252.0	0.296	226.0		
	·	' 					
104	99A	0.308	199.0	0.288	210.0	0.291	211.0
104	99B	340308	206.0	220306	213.0		
104	99C	0.290	219.0				•
104	99D	0.288	2.544.189.0	0.282	219.0		
L							<u>·</u> .
107	· 99A	0.305	245.1	0.310	244.2	0.309	241.3
107	998	0.302	238.1	. 0.311	238.1	-	
107	99C	0.305	258.6	0.311	243.1		
107	99D	0.314	241.5	0.311	221.8		
109							
109							
109							
109							
110	99A	0.311	250.5	0.310	249.2	0.303	242.9
110	998	0.303	237.8	0.303	240.7		
110	99C	0.294	244.1	- 0.296	238.0		
110	99D	0.300	243:3	0.305	239.4		
111	99A	0.298	259.0	0.304	250.0	0.298	248.5]
111	99B	0.296	232.0	0.294	240.0		
111	99C	0.296	251.0	0.300	255.0	!	
111	99D	0.294	260.0	0,305	241.0	}	
					·	· · · · · · · · · · · · · · · · · · ·	
113	99A	0.299	243.2	0.295	250.1	0,300	237.3
113	99B	0.305	242.7			1	
113	99C	0.298	- 229.2			4	
113	99D	0.304	- 238.1	0.297	229.2		
			A 1440 - 24 - 1	·	· · · · · · · · · · · · · · · · · · ·		
119	99A	0.301					235.0
119	99B	0.295					
119	99C	0.300					
119	99D	0.301	231.6	0.299	244.5	<u>'</u>	
				7		1	040 4
121	99A	0.296					246.4
121	99B	0.293					
121	99C	0,291					
121	99D	0.293	240.	0.292	2 251.0	וו	
· <u>-</u>							
			Overall Avera		1		
		n-value	0.29		Excludes Outlie		
	Stiffr	iess, MPa	238.71	4 13.48	Excludes Outlie	ers	
					-		
	Std. [Dev % of Avg			Excludes Outlie		
			Stiffness	5.6	5]Excludes Outlik	ers	
			,				

Excluded from average because it differed from the average by more than 3 Standard Deviations

Equipment not functioning properly, excluded form overall average

Appendix D

Round Robin 99 Participants

NETC Round Robin 99 Participants

Maine DOT

New Hampshire DOT

Vermont AOT

Mass Highway Department

Rhode Island DOT

New York State DOT

Hudson Asphalt

Sun Company

Chevron

Citgo

Bitumar

CAP Lab

Appendix V

and the second control of the second control

Lab Visits – Observations

State DOT Binder Lab Visits

Visits have been made to all of the New England State Departments of Transportation except Massachusetts. A visit was also made to the New York State Department of Transportation. The visit was made to NYSDOT since they are a "Lead State" for the implementation of Superpave. A visit to Massachusetts has not yet been scheduled since they are still in the process of installing the Superpave binder testing equipment.

These visits were intended to identify variations in testing techniques which might account for some of the variations observed in recent round robins. Emphasis was placed on trying to observe lab personnel performing binder testing as they would normally. Observations were also made during the visits for techniques which may save time. In order to protect the confidentiality of labs performing tests improperly, this information will be reported in a list form only – no agency names will be assigned to this list.

Bending Beam Rheometer

- 1. Using silicone rubber molds rather than the aluminum molds.
- 2. Adjusting loads on asphalt beams rather than the steel beams. The test should begin immediately after placing asphalt beam in supports and lowering the load nose.
- One BBR was modified significantly. It is not clear whether or not this is affecting the test results.
- 4. Using the glycerin-talc mixture over the entire inside of the aluminum beam molds rather than using the plastic strips.
- 5. Covering the end-spacers with Vaseline rather than the glycerin-talc mixture.
- 6. No thermometer capable of measuring the temperature of the BBR bath.
- 7. The cooling unit for the BBR bath should not be placed on the same counter top as the BBR due to vibrations.
- 8. Using the AASHTO Fluid (methanol, water and ethylene glycol) causes the beams to float. If the beams are not submerged in the fluid and are allowed to float around the surface of the fluid, the beams are probably not at the test temperature.

Rolling Thin Film Oven (RTFO)

- 1. Not using the RTFO and instead using the Thin Film Oven.
- 2. Losing track of amount of time samples stayed in the RTFO.
- 3. Only one state scrapes their RTFO bottles.

Pressure Aging Vessel (PAV)

- 1. The pressure regulator set either too low or too high.
- 2. The amount of time to de-air samples after removing samples from the PAV varies from 30 minutes to 120 minutes at 163 °C for similar materials.
- 3. Temperature which the de-airing was performed was close to 180 °C.
- 4. About half the labs visited de-aired their samples in the PAV pans while the other half of the labs transferred the samples (as soon as the samples were heated to pourable state) to a container which could be covered while it is in the oven.

Rotational Viscometer

- 1. Only 1 Paar Physica Rotational Viscometer was observed to still be in service in the New England Region.
- 2. Labs only utilizing the #27 Brookfield Spindle can not usually achieved the torque required by the Brookfield Viscometer for high resolution of the viscosity at 20 RPM. This can be corrected by utilizing the #21 Brookfield Spindle. By increasing the spindle the viscosity reading will be better defined although for the most part most asphalts do not approach the failure criteria defined by AASHTO MP-1.

Dynamic Shear Rheometer (DSR)

Note: Work performed with the 8mm DSR plates was not emphasized since they will be replaced with the 12 mm plates.

- 1. One lab did not have any ability to measure the temperature between the plates.
- 2. Daily temperature calibration to adjust for wide temperature fluctuations within a lab probably did not improve the equipment's temperature accuracy since the calibration was performed early in the morning and it was never rechecked as the room temperature increased.

- 3. Strong air drafts across the DSR, even with the oven closed on the machine, can effect the sample temperature.
- 4. Trimming of samples in DSR many places tended to leave a ragged front side to the sample.
- 5. Amount of time sample was allowed to stand in the silicone mold. Some samples were allowed to stand open in the lab for several hours. These samples had the opportunity to be contaminated with dust or other impurities. It takes very little dust to begin to alter the properties of the asphalt on the DSR.
- 6. Cleaning the DSR plates with a solvent and then not rinsing the solvent off of the plates.
- 7. Zeroing the gap on the DSR and then removing the Spindle to mount the sample.
- 8. Zeroing the gap on the DSR without first warming the DSR plates.
- 9. About half of the labs used a heated trimming tool for trimming DSR samples of neat asphalts. All labs used a heated trimming tool for modified asphalts.

Time Saving Techniques

- 1. Glass cleaning ovens are being used for their RTFO bottles. Ignition ovens are also employed to burn out the RTFO bottles. This technique appears to work very well as long as the bottles are allowed to warm up with the ovens. Placing the room temperature bottles into a hot oven has created some problems. Burning the contents out of the bottles tends to leave only a small amount of ash in the bottles which can be rinsed out with water. New Hampshire's glass cleaning oven had the largest capacity of any lab visited and it appeared to do the best job. The ignition ovens appeared to work adequately although some modification may be required to hold the bottles properly. Maine has created a rack which sets on top of their baskets for their Thermolyne Ignition oven.
- 2. The plastic strips in BBR aluminum molds which are too tall can be trimmed down to size using a razor blade.
- 3. The plastic strips for the BBR molds can be sized by photocopying lines onto the plastic sheets for guides to cut the strips.

- 4. One lab does not use solvent for their BBR molds. Instead of soaking the molds, they scrape the excess binder off of the molds using a razor blade. This is performed immediately after the beam has been demolded and placed into the bath. The binder is still stiff from being frozen and is easily removed. Care must be used to avoid gouging the aluminum with the razor blade.
- 5. Rather than preheating rotational viscosity spindles in the machine they can be preheated in an oven.
- 6. Placing ovens on timers so that they can be preheated before anyone arrives in the morning will save time.
- 7. The use of straight alcohol in the BBR will save time (If allowed by your regulations) because it changes temperature much quicker than the AASHTO Mixture does.

How particular things are being handled

Solvents being Utilized

Solvent	# of States using
Toluene	1
Xylene	2
Citrus	3

BBR Bath Fluids

Fluid	# of States using
Methanol	1
Ethanol	3
AASHTO Mix	2

Conclusions

For the most part, the labs visited were complying with the requirements of the AASHTO Standards. The largest recommendation I can make would be the use of time log sheets. On these sheets, the time is recorded for the beginning of each step of the test process. This would help to reduce uncertainties regarding the length of time samples are in each step. This may help to reduce questions which arise about certain samples.

Appendix VI

NETC Binder Technician Workshops Presentations

1999 NETC Binder Technician Workshop Executive Summary

February 8, 1999

NETC Project 96-1 "Superpave Implementation"

Dear Technical Committee Member,

On January 19, 1999, the CAP Lab hosted a one-day NETC Binder Technician Workshop. On January 20-21, 1999, the CAP Lab hosted a NECEPT/CAP Lab Binder Technician Workshop. The NETC Binder Technician Workshop focused on the progress that has been made so far during this NETC project. The NECEPT/CAP Lab Workshop focused on the Binder Technician Certification program under development jointly between the CAP Lab and NECEPT.

NETC Binder Technician Workshop

During the NETC Binder Technician Workshop, presentations were made by Dr. Jack E. Stephens and James Mahoney. These presentations included data on the Round Robin #2 (March 1998), Pre-molded DSR samples, Observations made during lab visits, the '99 Round Robin and the Purpose of the 1999 Lab Visits to be made by the CAP Lab in Late February/March. I have included the presentations which were made during the workshop. I have also included a floppy disk containing all of the presentations — the graphs are much easier to see on the computer rather than the printouts. The presentations were made on PowerPoint/Windows 97. I have tried to save them in a lower format and all of the formatting ends up lost and makes the slides difficult to understand. I have also included print outs of all the data from Round Robin #2.

Round Robin #2 has been a joint effort between the CAP Lab and NECEPT. This was done to increase the number of participants and to increase the statistical value of the data. The final report on Round Robin #2 will be a joint effort between the CAP Lab and NECEPT since the entire Round Robin has been a joint effort. The CAP Lab has submitted information to NECEPT to assist in the preparation of the final report for Round Robin #2 and edit the final report as it is compiled.

Information regarding the Pre-Molded DSR samples was already circulated to all of the participants and to the Technical Committee members. The amount of data collected during the testing was small but it was the inspiration of the NETC 99 Round Robin. The samples used in the testing were prepared identically and the spread of the data was greatly reduced.

The presentation of the observations made during visits to the state labs were an opportunity to share what the different state DOT's were doing (both good and bad) without embarrassing anyone, since the observations were reported anonymously. Several participants commented that they appreciated the ability to share their technique problems with others while remaining anonymous.

The '99 NETC Round Robin testing procedures were discussed and samples distributed to the participants present. Samples and a detailed set of sample handling instructions were mailed to the participants unable to attend the workshop. The goals of the 99 Round Robin will be discussed following the submission of the data. This Round Robin is being handled solely by the CAP Lab as a NETC function. The goal is to be able to present results of the 99 Round Robin before the construction season gets too far underway.

The 99 Lab visits are in conjunction with the NETC 99 Round Robin. The CAP Lab will send Jim Mahoney out to each of the New England State DOT's with identical samples prepared at the CAP Lab. Jim Mahoney will run these samples on each DOT's equipment. The idea of these visits is to try to separate the differences between equipment and the differences caused by different operators of the equipment during the 99 Round Robin. These visits should commence in Late February/March. The CAP Lab would like to run these samples on each DOT's Dynamic Shear Rheometer prior to the DSR's 6 month preventive maintenance. This will enable the CAP Lab to better differentiate where the sources of variation are occurring.

NECEPT/CAP Lab Binder Technician Workshop

This workshop was held in duplicate at the CAP Lab facility in Storrs, CT and at the NECEPT facility at Penn State University. During this workshop, presentations were made by Dr. Jack Stephens and Dr. David Anderson. The focus of this workshop was the binder technician certification program. The presentations made during this workshop were made mainly from the Manual of Practice which is being written by NECEPT. This Manual of Practice will be used to better clarify testing procedures for technician certification. The manual is in the process of being revised following the workshops. When the revision of the manual has been completed, a copy will be forwarded to the members of the technical committee for NETC Project 96-1.

Also during the NECEPT/CAP Lab Workshops, changes to binder testing specifications were discussed by Dr. David Anderson. The largest change proposed to the binder testing specification at this point is the need to vacuum de-gas the PAV residue. This change should come in the 1999 AASHTO revisions to the PAV specification. The equipment requirements are in the manual of practice.

Appendix VI

The RTFO Specification will also see changes. In the future, the RTFO bottles will have to be scraped in order to remove at least 90% of the material in the bottles. The bottles will also have to be stored in a horizontal position immediately after pouring so that modified binders will have a better chance to coat the sides of the bottle.

Improved methods for making temperature measurements were discussed. The use of a laboratory standard against which temperature measuring devices could be calibrated was discussed as being the method of preference. The exact specifications for these laboratory standards has yet to be finalized. The Direct Tension was also discussed. The use of the Direct Tension is coming. There was speculation that the Direct Tension could be in use by next winter.

Several issues that were discussed with no conclusion include the use of the ignition or glass cleaning ovens to clean the RTFO bottles. Some places reported having the bottles turn a milky white color. NECEPT has requested that several of the labs having these problems send them a bottle so that they can have the milky color analyzed to determine if this discoloration would affect the test results. The temperature controller for the Brookfield Rotational Viscometer appears to not be able to maintain temperature as closely as the temperature specification requires. Further investigation is required to clarify this issue.

CC:

Michael Byrne Reid Kiniry Paul Matthews Nellie Perlov Nelio Rodrigues Bruce Yeaton Rhode Island DOT Vermont AOT New Hampshire DOT Mass Highway Connecticut DOT Maine DOT

NETC Binder Technician Workshop Agenda January 19, 1999 – CAP Lab Storrs, Connecticut

10:30 - 11:00	Registration			
11:00 - 11:15	Welcome			
11:15 - 12:00	Discussion of March 1998 Round Robin Results			
12:00 – 1:00	Lunch (Provided)			
1:00 – 1:30	Discussion of Pre-molded DSR Sample Results			
1:30 – 2:45	Discussion of Lab Observations from visits			
2:45 – 3:00	Break			
3:00 – 3:30	Explanation of NETC Round Robin 1999 and distribution of samples			
3:30 – 4:00	Lab visits from CAP Lab during February-March 1999			

NETC Binder Technician Workshop

A one-day NETC Binder Technician Workshop will be held on January 19, 1999 at 11:00 AM. This workshop will only be held at the CAP Lab in Storrs, CT. (There will be a joint CAP Lab/NECEPT binder technician workshop held on January 20-21 at the CAP Lab. Details on the NECEPT/CAP Lab workshop will follow.) Topics to be discussed at the NETC workshop include: Results from the Second Round Robin (March 1998), the Pre-Molded DSR Sample Results, Observations from the Lab Visits to New England State DOTs, Lab Visits from the CAP Lab with Asphalt Binder Samples (February-March 1999) and instructions for the January '99 Round Robin.

The registration fee for the NETC workshop is \$20.00. Lunch and refreshments are included. This fee will be waived for New England State DOT employees. In order to limit the size of the group (to allow for better participation) registration is limited to 2 technicians from each company or agency.

To register for this workshop, please fax or mail this form back to Jim Mahoney at:

CAP Lab 179 Middle Turnpike, U-202 Storrs, CT 06269-5202 Phone 860-486-5956 Fax 860-486-2399

Registrant1	<u>*</u> ***********************************			
Registrant2			<u></u>	
Company or Agency _		<u> </u>	,	_
Address			****	_
Town	State	Zip		
Work Phone		Fax		-
Home Phone (In the ev	ent of inclem	nent weather)		

Observations from Visits to New England State DOT Binder Labs

New England Transportation Consortium Project 96-1

Labs Visited

- 5 of the 6 DOT Binder Labs in New England were visited
- New York State DOT was also observed since they are a lead state for Superpave Implementation

Objectives of Visits

- Attempt to identify sources of variation observed in Round Robins
- Observe actual techniques being utilized by testing agencies
 - Look for problems with testing techniques
 - Look for techniques which may save time or increase reproducibility

Overall Observations

- Overall, labs were performing the testing in accordance with the AASHTO Specifications
- There were some deviations or interpretations of the specifications
- There also were some procedures being performed which could be altered or eliminated to save time

Overall Observations continued

- Some facilities have created some good time saving procedures
- Every facility visited was very open to discuss their procedures and each wanted to improve their methods anyway possible

Rotational Viscometer

Rotational Viscometer

- Majority of States have switched to the Brookfield Viscometer
- Brookfield Viscometers should have at least two different spindles sizes available
 - #21 and #27 spindles
 - Larger spindles allow machine to develop larger torques at slower speeds - This increases the machine's data resolution

Rotational Viscometer

- Spindles may be heated to the testing temperature in an oven prior to testing this will decrease the amount of time required to heat sample
- Temperature calibration should be performed while the spindle or bob is spinning

Dynamic Shear Rheometer

DSR Temperature

- Strong air currents across plates can cause wide fluctuations in sample temperature
- One facility did not have the ability to measure the temperature between the plates
- Daily calibration of the temperature for the DSR was being performed early in the morning because of the variations in room temperature - temperature was not being checked later in day

DSR Plates

- The DSR plates were being cleaned with a solvent and then not being rinsed
- Zeroing the gap without warming the plates
- Zeroing the gap and then removing the upper spindle to mount sample on it

DSR Trimming

- Most people do a very good job trimming the sample in all locations except for the very front of the sample
- About half of the labs visited used a heated trimming tool for all binders. All labs used a heated tool for modified binders.

DSR Miscellaneous

■ The amount of time the sample was allowed to stand in the silicone mold varied greatly from location to location. The samples in most cases were not covered. This allowed contaminants such as dust to get into samples. It does not take much dust to get a substantial increase in the stiffness of the binder.

Rolling Thin Film Oven

RTFO

- Using the Thin Film Oven rather than the Rolling Thing Film Oven
- Not accurately tracking length of time samples are in the RTFO
- Only one state scrapes their RTFO bottles
- One facility uses bottled compressed air rather than house air

Pressure Aging Vessel

PAV

- Pressure regulator was set to high or too low - can cause timing troubles for PAV
- All states have the same ATS Pressure Aging Vessel Ovens

PAV De-Airing

- Length of time labs are placing material in oven varied from 30 minutes to 2 hours at the same temperature
- Samples were being de-aired at a temperature close to 180 C
- About half of the labs de-aired in the PAV pans and the others heated the material until they could combine residue into a larger covered container and then de-aired

BBR Observations

BBR Molds

- Using Vaseline on end spacers rather than the glycerin-talc mixture
- Using glycerin-talc mixture over entire mold and not using plastic strips
- Using silicone rubber molds rather than the aluminum molds
 - I silicone rubber molds are no longer allowed in AASHTO TP1

BBR Molds Cleaning

- One facility does not use a solvent to clean their molds - they use a razor blade to clean the beam molds. Caution must be used not to gouge soft aluminum with razor blade
- The beam mold parts can be soaked in a can with holes in it. This can is allowed to stand in a larger can of solvent and then removed - the solvent drains out of holes in smaller can.

BBR Test Procedures

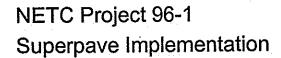
Adjusting testing loads on the asphalt beam just prior to starting test

BBR Miscellaneous

- One BBR was significantly modified unsure if this affected the test results
- No thermometer capable of measuring the temperature of the BBR bath
- Cooling unit placed upon the same shelf as the BBR
- If you use the AASHTO fluid mixture you must ensure beams are submerged

BBR Bath Fluids

- 1 State is using Methanol
- 3 States are using Ethanol
- 2 States are using the AASHTO Mixture
- Fluid level in bath does not have to be to the top of bath - just need sufficient fluid to cover samples


BBR Bath Fluids Continued

■ The use of straight alcohol in the BBR will reduce the amount of time required to bring the temperature bath down to test temperature

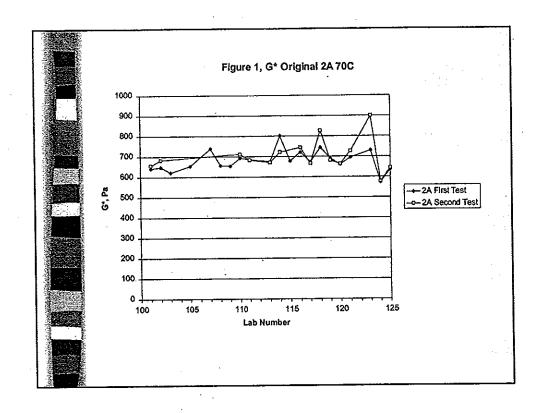
BBR Plastic Strips

- Plastic Strips which extend above the aluminum molds once the molds are already assembled can be trimmed down to the correct size with a razor blade
- Lines for cutting the plastic strips can be photocopied onto the plastic sheets prior to cutting

Round Robin 2 (March 98)

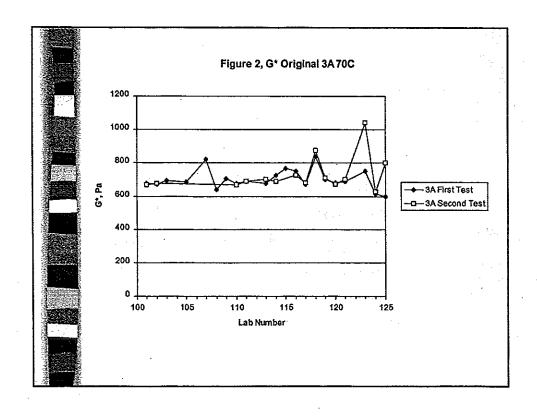
4 Binder Samples Were Sent

- Samples 1A & 4A were the same material
- Samples 2A & 3A were the same material
- Pre-aged samples 1 & 4 were the same
- Pre-aged samples 2 & 3 were the same

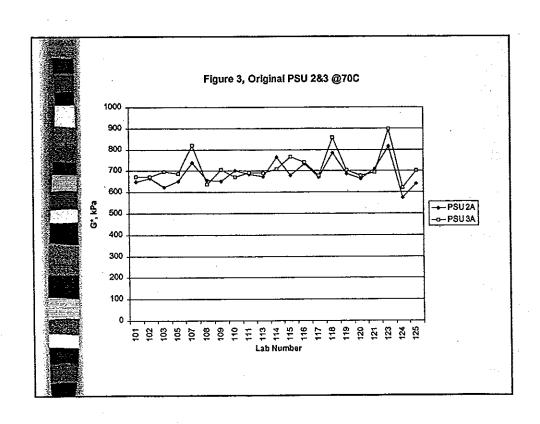


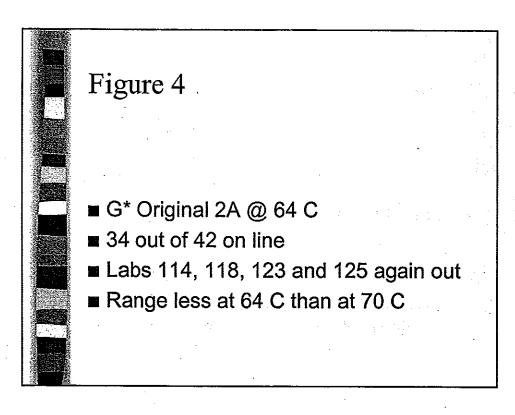
DSR Testing

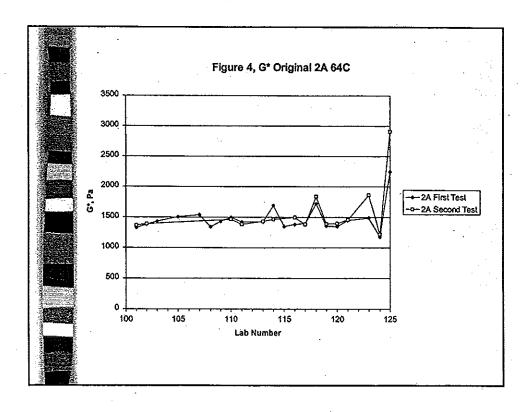
- Performed on Original and RTFO Material
- 1A and 4A tested at 70 & 76 C
- 2A and 3A tested at 64 & 70 C
- Duplicate samples were run of each material at each temperature

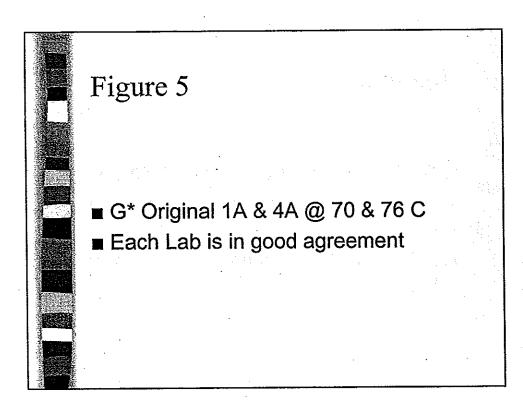


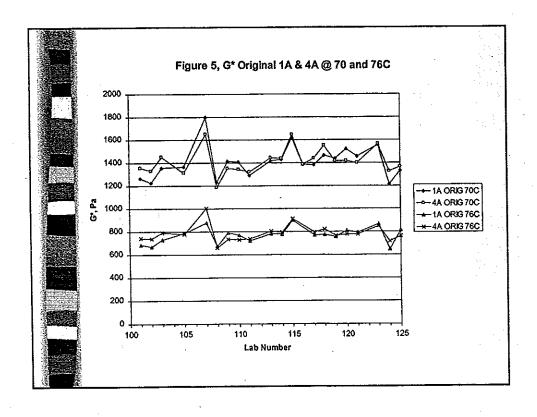
- PSU 2A Original @ 70 C
- Most data points are the average of two G* values
- More erratic on the high side
- G* ranges from 625 to 815 Pa,
- The average was 686 Pa
- The range is 28% of the average

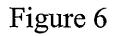

Figure 1 Continued Individual values of G* for PSU 2A Individual values of G* for PSU 2A Individual values of G* Labs 107, 114, 118 & 123 G* values appear high There were no outstanding low values for G*

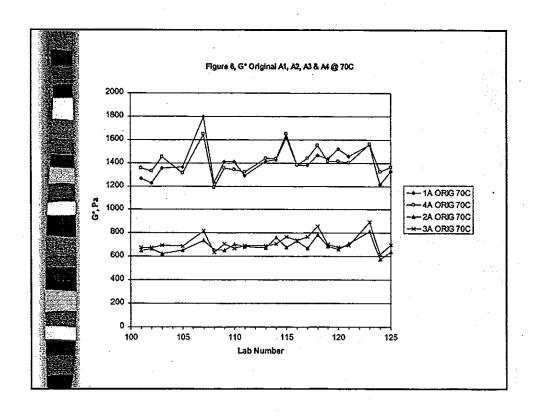

Figure 2 PSU 3A G* @ 70 C Same material as PSU 2A For Figures 1 & 2, 4 of the highs are #2

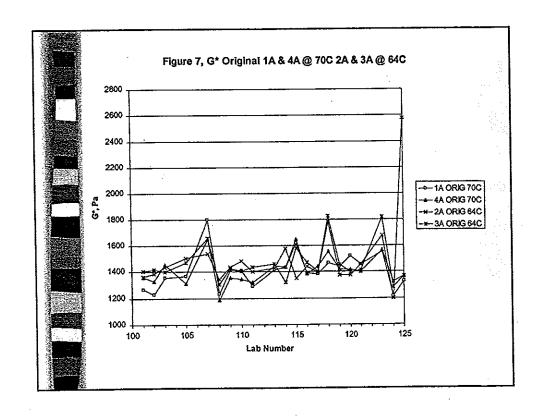




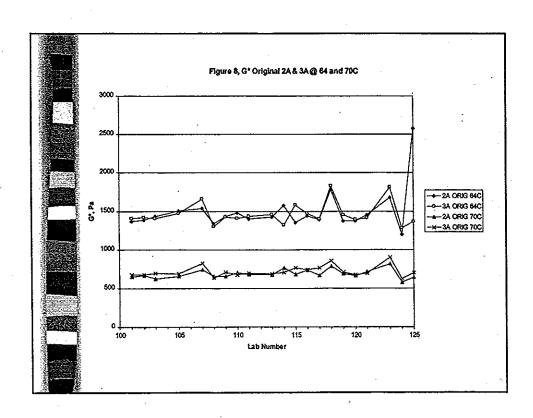

- Original PSU 2A & 3A @ 70 C
- The second G* value was higher 17 out of the 21 times
- Labs 17, 118 and 123 were high for both the first and second tests for both 2A and 3A



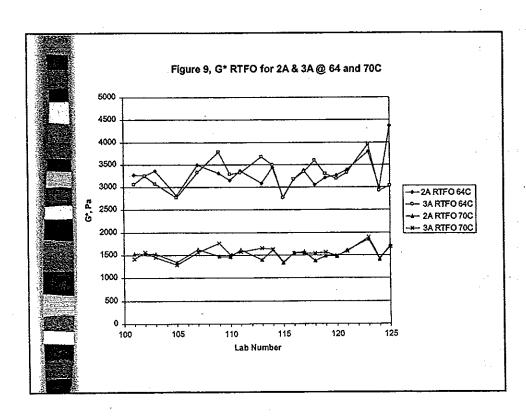




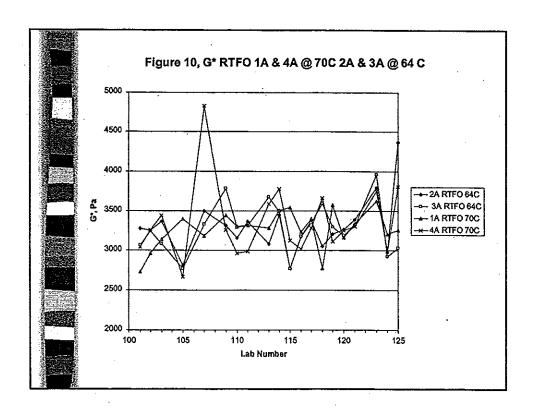
- G* Original 1A, 2A, 3A and 4A @ 70 C
- Labs 107 & 115 only reported one value for G*
- Labs 107, 115, 118 and 123 tend to be high

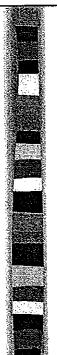


- G* Original 1A & 4A @ 70 C and 2A & 3A @ 64 C
- Lab Pattern
- Labs 107, 115, 118 and 123 Consistently High
- Labs 108 and 124 are low
- Discard outlier at 125

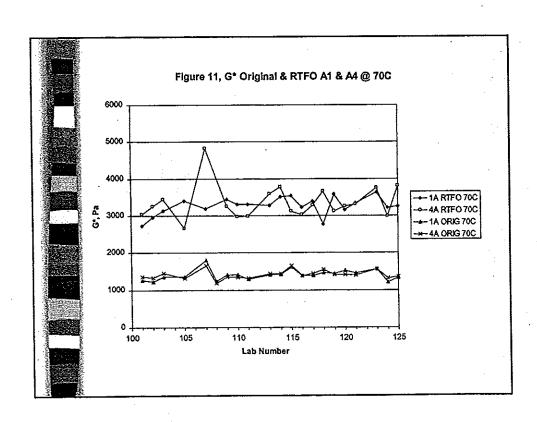


- G* Original 2A and 3A @ 64 and 70 C
- Look at Lab Differences
- Note 107, 118 and 123 are consistently high
- Outlier at 125

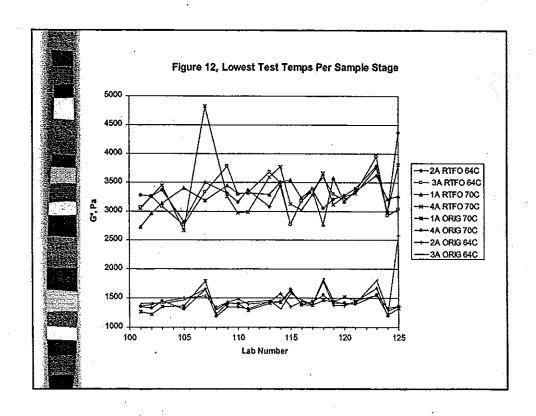




- G* RTFO 2A & 3A @ 64 & 70C
- Lab 105 and 115 G* values are low
- Lab 123 G* continues to be high
- Lab 125 is erratic
- 64 C is more consistent than 70 C
- Compare variation of 1500 Pa to 3300 Pa
- Similar Percentages



- G* RTFO 1A & 4A @ 70 C and 2A & 3A @ 64 C
- Average G* for materials about the same at the two temperatures
- Lab 103, 105, 107, 109 and 115 reported only one value for G*
- Second test could temper the differences



- G* Original & RTFO 1A & 4A @ 70C
- Why is G* Original much more consistent than G* RTFO?
- Labs 107, 115, 118 and 123 still tend to be high

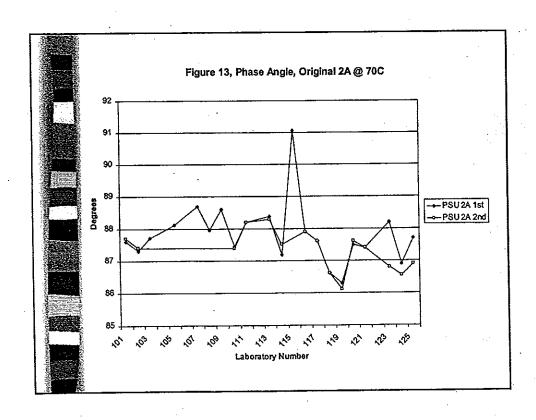
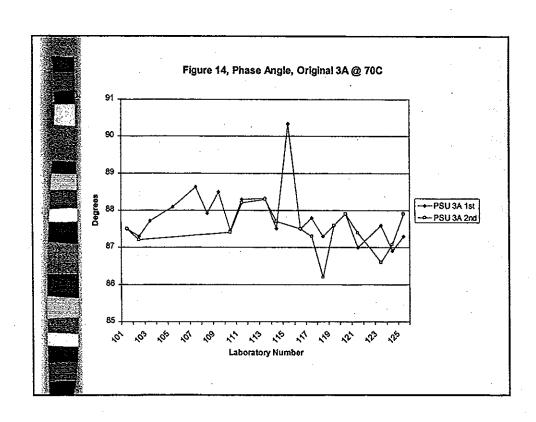
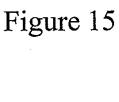
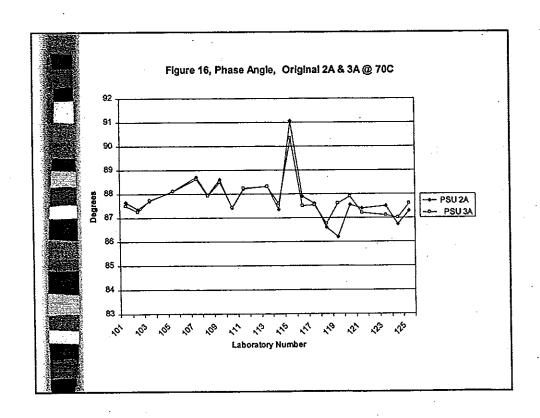
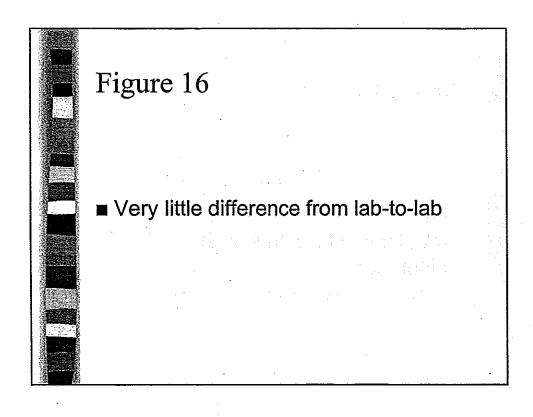


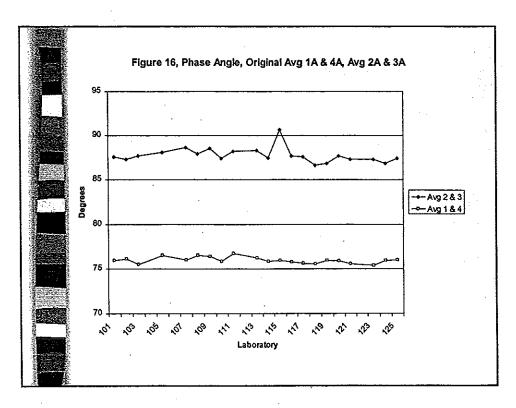
Figure 12 G* at Lowest Test Temp. per Sample Stage Lab 105, 107, 108, 109 and 115 only reported one value For RTFO Material Lab 105 tend to be low and Lab 123 tend to be High For Original Material Lab 107, 118 and 123 tend to be high and Lab 108 and 124 tend to be low



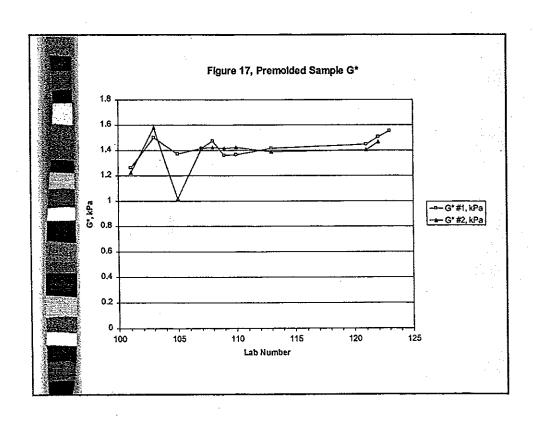

- PSU 2A @ 70 C First and Second Phase Angles
- Twelve Labs have less than 0.5 degree difference
- Lab 115 appears as outlier but is only 3.5 degrees from the average

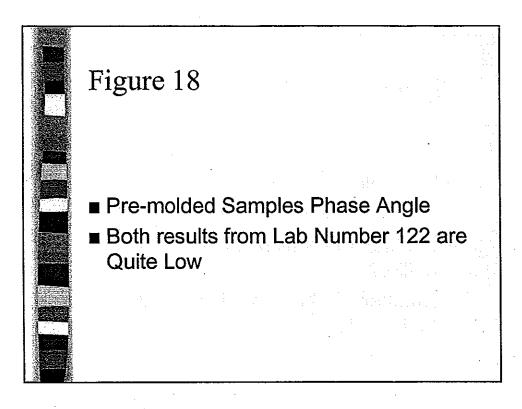


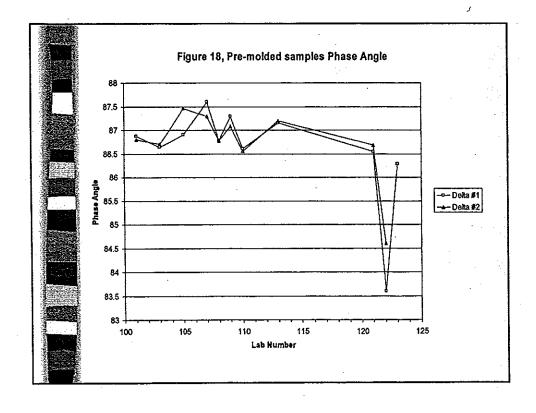

- PSU 3A, First and Second Phase Angles
- Eleven Labs with less than 0.5 Degree Difference
- Lab Number 115 appears as an outlier but is only 2.5 degrees from the average



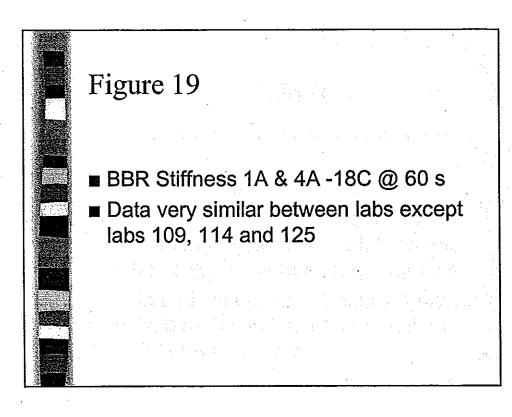
- PSU 2A & 3A @ 70C Average of both reported values if two were reported
- Nineteen Labs with less than 0.5 degree difference
- Lab 115, only one test for each point

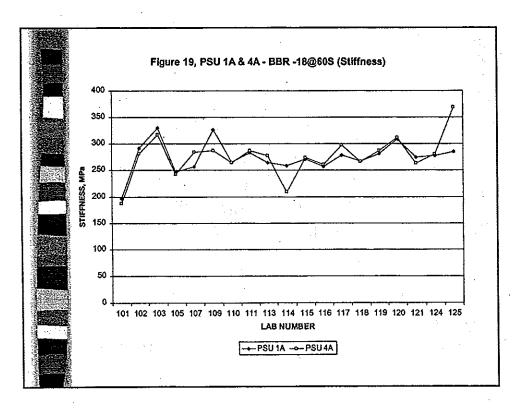






- Pre-molded Sample G*
- Only 11 Labs Participated
- For Lab 105, which data point is an outlier?
- Number 101 has two similar values but both are low

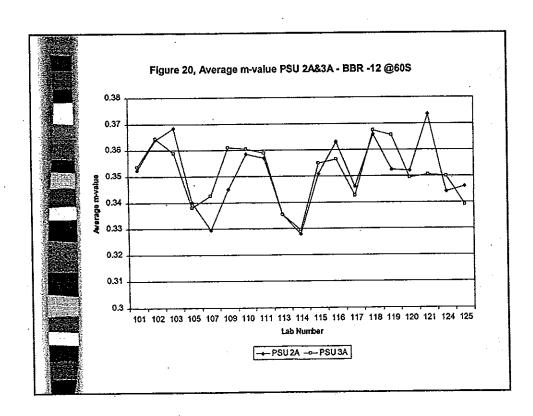

Summation of all G* for All Samples including the pre-molded samples
All of the round robin samples had at least 3 labs with G* more than 1 standard deviation away from the average - pre-molded samples had 1
Every Round Robin sample had at least one lab more than 2 standard deviations away from the average - pre-molded none.

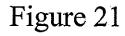

DSR Results Summary

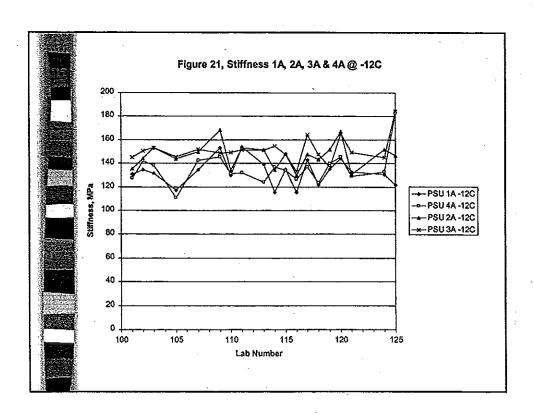
Average G* of Pre-molded samples approximately the same as original 1A & 4A @ 70 C and RTFO 2A and 3A - standard deviation of pre-molded samples less than any of these Repeated similarities in lab versus

property curves indicate equipment differences.

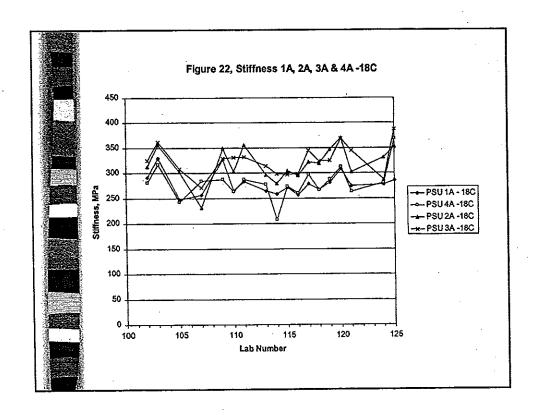
Random Differences Indicate Technique Differences



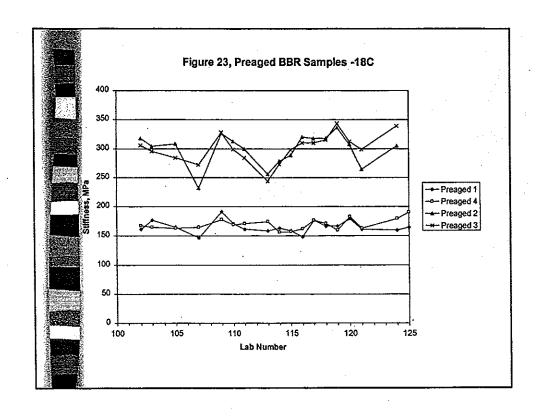


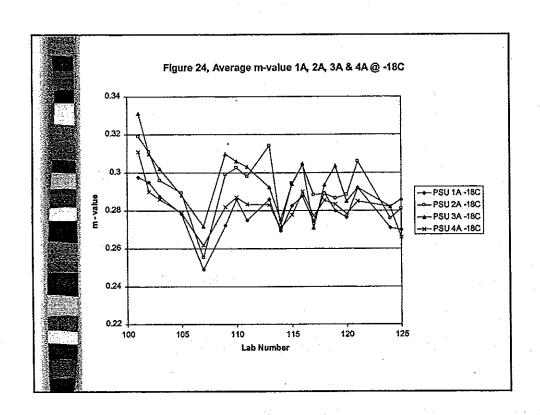

Figure 20

- BBR Average m-value PSU 2A & 3A 12C
- Differences between labs very consistent
- For example lab 113 & 114 are low while lab 118 is high
- At -18C the within lab difference is small as well


- BBR Stiffness 1A, 2A, 3A & 4A -12C @ 60s
- Note Similarity of curve shape from Lab 101 to Lab 110 & 115 to 124






Figure 22

- BBR Stiffness 1A, 2A, 3A and 4A 12C @ 60s
- Differences between labs is similar throughout graph

NETC Binder Technician Workshop January 19, 1999 Storrs, CT Attendance List

Name Alan Lugg	Agency NH DOT	Phone 603-271-7932	Email
Nancy Tkach	NH DOT	603-271-7932	
Raymond Dulac	RI DOT	401-222-2524 X 4153	rdulac@dot.state.ri.us
Dave Clark	RI DOT	401-222-2524 X4153	dclark@dot.state.ri.us
Valerie Baselice	Sunoco .	610-859-1896	valerie_a_baselice@sunoil.com
Nelio Rodrigues	CT DOT	860-258-0325	nelio.rodrigues@po.state.ct.us
Karissa Mooney	Hudson	401-781-5200	hudson@hudsoncompanies.com
Patrick J. Mitchell	Hudson	401-781-5200	hudson@hudsoncompanies.com
Denis Burt	Citgo	609-224-7420	dburt@citgo.com
Tom Waters	Citgo	609-224-7420	
Pete Hennessy	NYS DOT	518-457-5615	rmahoney@gw.dot.state.dot.ny.us
Merlin Williams	ME DOT	207-941-4540	merlin.r.williams@state.me.us
Joseph Varhue	CT DOT	860-258-0341	
Lee C. Del Valle	CAP Lab	860-486-5956	

Appendix VII

Lab Visits - Equipment Comparisons Test Data

	CAP Lab Testing - Original Binder G*			
	Original	Original	Original	
İ	G* @ 58C	G* @ 64C after 58C	G* @ 64 only	
VT	2.976	1.298	1.218	
	2.756	1.209	1.259	
			•	
NH	2.951	1.305	1.259	
	3.099	1.347	1.330	
ME	3.162	1.41	1.369	
	2.975	1.344	1.408	
		,		
RI	2.784	1.354	1.347	
	2.858	1.395	1.452	
		•		
СТ	3.221	1.402	1.419	
	3.164	1.398	1.302	
Excluding CT		•		
Average	2.945	1.333	1.330	
St Dev	0.142	0.063	0.081	
% Average	4.835	4.738	6.054	
Including CT				
Average	2.995	1.346	1.336	
St Dev	0.164	0.063	0.077	
% Average	5.470	4.643	5.781	

C	AP Lab Testing - Or	iginal Binder Phase	Angle
	Original	Original	Original
	delta @ 58C	delta @ 64C after 58C	delta @ 64 only
VT	85.64	87.52	87.7
	85.80	87.66	87.77
NH	85.02	86.62	86.81
	84.59	86.56	86.56
•			
ME	85.20	86.85	86.86
	85.28	<u> </u>	86.91
RI	85.61	87.11	87.19
	85.56	87.13	86.92
СТ	85.05	86.71	86.70
	85.01		85.77
Excluding CT			
Average	85.34	87.04	87.09
St Dev	0.40	0.39	0.43
% Average	0.47	0.45	0.50
Including CT			
Average	85.28	86.97	86.92
St Dev	0.37		0.57
% Average	0.44	0.43	0.66

	CAP Lab Testi	ng - RTFO Residue G)*
	RTFO	RTFO	RTFO
	G* @ 58C	G* @ 64C after 58C	G* @ 64 only
VT	6.260	2.771	2.805
	6.637	2.893	2.734
			,
NH	7.002	3.104	2.929
	6.843	2.993	3.015
ME	7.123	3.183	3.259
	7.122	3.097	3.13
RI	6.564	3.043	3.022
	6.694	3.096	3.066
СТ	7.741	3.361	3.246
	8.032	3.534	3.486
Excluding CT			
Average	6.781	3.023	2.995
St Dev	0.301	0.133	0.170
% Average	4.434	4.415	5.681
Including CT			
Average	7.002	3.108	3.069
St Dev	0.541	0.218	0.224
% Average	7.723	7.023	7.299

	· · · · · · · · · · · · · · · · · ·	FO Residue Phase	J	
	RTFO	RTFO	RTFO	
	delta @ 58C	delta @ 64C after 58C	delta @ 64 only	
VT	81.39	83.96	84.04	
• • • • • • • • • • • • • • • • • • • •	81.23	83.83	84.05	
NH	80.58 80.68	83.19 83.23	83.29 83.32	
ME	80.78	83.35	83.3	
	80.86	83.4	83,3	
			•	
RI	81.37	83.72	83.7	
	81.24	83.6	83.6	
СТ	80.47 80.27	1	83.2 82.9	
	80.27	02.93	02.3	
Excluding CT				
Average	81.02		83.6	
St Dev	0.33		0.3	
% Average	0.40	0.34	0.3	
Including CT				
Average	80.89	<u> </u>	83.5	
St Dev	0.40		0.3	
% Average	0.49	0.40	0.4	

CAP Lab Testing - BBR Testing				
•	Beam 1	Beam 1	Beam 2	Beam 2
	Stiffness, MPa	m-value	Stiffness, MPa	m-value
VT	224.095	0.311	217.53	0.315
	218.39			
	221.15	0.316	224.04	0.320
NH	220.62	0.311	240.27	0.313
· · · · · · · · · · · · · · · · · · ·	198.91	0.313		
	218.33	0.309		
ME .	223.09	0.310	214.4	0.307
IVIC	230.99	0.310	228.75	0.308
	213.45	0.309	224.58	0.307
RI	215,43	0.299	223.06	0.316
	230.34	0.312	220.49	0.306
	212.55	0.310	200.38	0.302
CT	210.89	0.298	195	0.306
<u> </u>	203.6	0.314	190.14	0.309
	199.29	0.314	190.14	0.309
Excluding CT	199,29	0.303	199.00	0.313
Average	219.53	0.310	224.14	0.312
St Dev	8.76	0.004	7.88	0.005
% Average	3.99	1.421	3.52	1.618
Including CT				
Average	216.08	0.309	214.88	0.310
St Dev	9.91	0.005	15.27	0.005
% Average	4.59	1.647	7.10	1,632