Improved Load Rating Procedures for Deteriorated Unstiffened Steel Beam Ends

Aidan Provost, PhD Candidate, UMass Amherst Shahrukh Islam, PhD Candidate, UMass Amherst Dr. George Tzortzinis, Post-Doctoral Researcher, Technische Universität Dresden Dr. Chengbo Ai, Assistant Professor, UMass Amherst Dr. Sergio Breña, Professor, UMass Amherst

- Current State of Inspection and Corrosion Topologies
- Corrosion Mapping via 3D Scanning
- Laboratory Experiments and Capacity Evaluation of Rolled Girders with Corroded Ends

U.S. Department of Transportation Federal Highway Administration

Current State of Inspection and Corrosion Topologies

University of Massachusetts Amherst BE REVOLUTIONARY

3D Scanning for Bridge Inspection – Current State-of-Practice

NEW ENGLAND TRANSPORTATION CONSORTIUM

U.S. Department of Transportation Federal Highway Administration

Bridge Inspection – Compiled Inspection Reports

spection type: Routine spection Date: 3/27/2019 spected by: Team 5	:Bridge No 02929	Crossed	ROUTE IIG I: DEEP RIVER IV ROUTE: Non-NHS			
STRUCTURE IN	VENTORY & APP	RAISAL				
INSPECTION		STRUCTURE	TYPE & MATERIALS			
Structurally Deficient	N (43) Structure	Type Main				
Sufficiency Rating 33.7		A) Material 3 - Steel				
(90) Inspection Date 03/27/2019 (91) Frequency 24	B) Design	Type 02+5				
indepth Imap No. Proposed next Indepth Year		Type, Approach				
Deck Survey Date Class 01	A) Materia	0.0	her			
Access 0-None Plagman 0	B) Design	Type 00-0	Xhei'			
Frequency Date Type	(45) Number o	f Spans, Main U	nit 001			
Fracture	(46) Number o	Approach Spar	46 0000			
Underwater	(107) Deck Str	ucture Type	1 - Concrete CasLin-Place			
Special	(108) Wearing	Surface/Protect	ion Systems			
IDENTIFICATION	A) Type of	Wearing Surlag	e 6 - Bituminous			
Bridge Name 02929		Membrane	0 - None			
Town Code - Name 19130 - DEEP RIVER						
(5) Inventory Route		Deck Protection	0 None			
(A) Record Type 1: Route carried "on" the structure	Substruct	-				
(B) Signing Prefix 3 - STATE HIGHWAY	A) M		STONE			
(C) Level of Service 1 - MAINLINE	Paint	nilign Type	- STUB ABUTMENT			
(D) Route Number: 00060	Type					
(E) De Sulfix 0 - NOT APPLICABLE		_				
(6A) Featured Intersected DEEP RIVER	Vear					
(68) Critical Facility Indicator	Comment					
(7) Facility Carried ROUTE 80		GEOME	ETRIC DATA			
(9) Location 1.1 MI W OF ROUTE 9		Maximum Span	[25]#			
(11) Mile Post 24.21	Miles. (49) Structure	Length	[31 e			
(16) Latitude 41 Dep 22 Min. 18.76 Sec.	(50) Curb or S	idewalk Widths				
(17) Longitude .72 Deg. 27 Min. 25.16 Sec.	A) Let	n 10	In. B) Right D t. D e			
(16) Border Bridge	(51) Bridge Ro	adway Width o	Curb to Curb 30 1. 0			
(18) Border Bridge (A) State Code (18) Percent Responsibility			32 tt 6 in.			

MASSACHUSETTS	DEPARTMENT OF	TRANSPORTATIO	NOE _	1	CF	2
---------------	---------------	---------------	-------	---	----	---

COURAIN	N		C18028-0KQ-DOT-NBI			080.787 D:OPEN		9, 20	
ST112 JCKSNVLLE RD		HERORIAL MARKED CALINAME Rel No. 6				1933 1938	0000		
WATER E BR NOR	TH RI	VER	SARISCHOSAD Rural Minor A			DIST IR	DOUDSER: ON INSPECT	L.A. Buys	
402 : Steel continuo	us Stri	inger/Gir	der State Highway Agency	21-HAINTA State High Agency	NER MRY	TEAMU	ADER N.A. Adama		
1 : Concrete Cast-	in-Pla	ce	Cloudy	22°0	;		NCARI		
ITEM 58	6		ITEM 59		3		ITEM 60	4	1
DECK		0.00	SUPERSTRUCTU	RÆ L	_		SUBSTRUCTURE		
1.Wearing surface	7		1.8Imgers		N		1. Abutments	Ohe Car	6
2. Deck Condition	6		2 Floorboarns		N	1.1	o, Perfesionis A, Bango Stats	H 7 N 7	
3.Stay in place forms	N	•	3 Floor System Brac	ing .	N		C. Bachenitz	H 7	
4.Curbs	5	M-P	4 Girders or Beams		з	S-A	d Brushak	N 6	
6. Modian	N	· ·	5 Trusses - Ceneral		N		 Witgenits Sign: Antonia The Pro- 	H 8	
6.5 deaalks	N		a. Open Dioreb	N		· ·	a Pointing	N N	. L
7. Parapete	N		b. Lover Chards	N		-	A Pastage	N H	: F
F.Railing	3	M-P	G. Mill Marcan	N			/ Pulas	H H	
S.Anti Nissila Fance	N		a waxawaaq	N		-	A Secondary	N 7	
	4		e. Sway Brackeys	N		-	L	H N	
10.Drainage System		M-P	A. Partala	N		•	2. Piera or Benta	N N	4
11.Lighting Standards	N	· ·	g Astrony	N		-	 Performance 	a s	•
12.UHII Nex	N	· ·	6.Pin & Hangara		N	-	A. Gapty	H 4	
13.Dock Joints	4	S-A	7.Conn Pille, Guesch	e & Angles	7		o. Corvers d. Pierraly	H N	
14.	N		8. Cover Plates		N	•	a namatu	H N	
16.	N		9. Bearing Devices		6	M-P	A Feesing	н н	- _
16.	N	•	10. Diaphragma Cros	а Глатна	7	· ·	a Philo A Scient	8 7	
		w	11. Rivers & Rolts		7	· ·	/. SetServer	H 7	· F
CURB REVEAL	50 I	196	12 Welds		N	· ·	1	N N	
(in millinglong)	30	150	13 Vember Alignmen	*	5	N-P	3. Pile Bents	H N	N
APPROACHES		007	14. Paint		5	M-P	d. Pile Dents	H N	N
a Approvement conduct	6		18.		N	· ·	A PAK	N N	
6 App. Roodway Solitowed	7		Your Pointed	1958			c. Dispansi Dracing A. Haurotta Macan	H N	
e Age Server 24 kand	· N	<u> </u>	COLLISION DAVAGE				A HOUSECCO MUCKY	H N	-
		1	Norg(Miner(X)						
r	1.1		LOAD DEPLECTION:	Altern stark	n'n		UNDERMINING COM	resultance	(d) (c)
OVERHEAD SIGNS	(YON)	N	$\operatorname{Nenz}(X):\operatorname{Nenz}(-)$			an (-)	COLLISION DAMAGE:		
		3.57	LOAD VIBRATION: Note(1) Minor (X)	Alexan aspit			None (X) Minor (Audemnia () Seven
a Constitut of Worlds	N	-	ENN(I NR(X)	1000101	1.54	-sti (_)	SCOUR: Altern system hore (X) Minor()	Hoderma *) Seven
b Continent Rolls	N	-	Any Precium Critical	Avenue: 1	1.11	N			
c. Condition of Signa	N			1.1			матраликарынук N	52(0)	Report:
			Any Enicks: (YIN)	N			\$35-OW/OWE) Imp	dta	001000

Courtesy: CTDOT, RIDOT, MassDOT

NEW ENGLAND TRANSPORTATION CONSORTIUM

U.S. Department of Transportation Federal Highway Administration

2

Bridge Inspection – Corrosion Topologies

New ENGLAND TRANSPORTATION CONSORTIUM

U.S. Department of Transportation Federal Highway Administration

Bridge Inspection – Corrosion Topologies

New ENGLAND TRANSPORTATION CONSORTIUM

U.S. Department of Transportation Federal Highway Administration

Bridge Inspection – Corrosion Hole Patterns

2 NEW ENGLAND TRANSPORTATION CONSORTIUM

U.S. Department of Transportation Federal Highway Administration

Corrosion Mapping via 3D Scanning

University of Massachusetts Amherst BEREVOLUTIONARY

3D Scanning for Bridge Inspection

NEW ENGLAND TRANSPORTATION CONSORTIUM U.S. Department of transportation Federal Highway Administration

3D Scanning for Bridge Inspection - Process

1. Component Identification

2. Scanning

3. Model Processing

4. Post-Processing

5. Output map generation

NEW ENGLAND TRANSPORTATION CONSORTIUM

U.S. Department of Transportation Federal Highway Administratio

3D Scanning

New ENGLAND TRANSPORTATION CONSORTIUM

U.S. Department of Transportation Federal Highway Administratio

3D Scanning

NEW ENGLAND TRANSPORTATION CONSORTIUM

U.S. Department of Transportation Federal Highway Administration

2

Case Study: Corroded End

New ENGLAND TRANSPORTATION CONSORTIUM

U.S. Department of Transportation Federal Highway Administratio

2

Case Study: Corroded End

<u>Higher Cloud Density,</u> <u>detail, and accuracy:</u>

- Around 400,000 points in the selected area to the right and millions of points in the full web height area
- Captures difficult to measure components like pitting and section loss at the edge of the web

<u>Portability and</u> <u>maneuverability:</u>

- Roughly 5 minutes per scan
- Easy to train and learn the scanning process
- Handheld and relatively lightweight machinery allows for easy on-site scanning

NEW ENGLAND TRANSPORTATION CONSORTIUM

U.S. Department of Transportation Federal Highway Administra

Laboratory Experiments and Capacity Evaluation of Rolled Girders with Corroded Ends

University of Massachusetts Amherst BE REVOLUTIONARY

Connecticut 1

mass

20

Peak Load: 129.76 kips

0.3

Specimen 1

Exp Peak Load=

FEA Peak Load=

FEA Experiment

0.25

130.319 kips

129.7602

0.2

150

100

50

0

0.05

0.1

0.15

Displacement (in)

Load (kips)

0.45

0.4

0.35

0.3

0.25

0.2

UNIVERSITY OF MASSACHUSETTS AMHERST

16

14

10

8

U.S. Department of Transportation Federal Highway Administration

2

5

10

15

Connecticut 2

Beam Type: CB 24x8.5 (Best match) **Intact Thickness:** 0.42 inches **Height:** 24 inches **Peak Load:** 113.27 kips

NEW ENGLAND TRANSPORTATION CONSORTIUM

U.S. Department of Transportation Federal Highway Administration

2

mass

Beam Type: B33x132 Assumed Intact Thickness: 0.58 inches Height: 33.150 inches **Peak Load:** 224.14 kips

NEW ENGLAND TRANSPORTATION CONSORTIUM

mass

Intact Thickness: 0.58 inches Height: 33.150 inches

2

U.S. Department of Transportation

Federal Highway Administration

NEW ENGLAND TRANSPORTATION CONSORTIUM

Peak Load:

2

U.S. Department of Transportation Federal Highway Administratio

Beam Type: B33x132 Assumed Intact Thickness: 0.58 inches Height: 33.150 inches **Peak Load:** 247.36 kips

NEW ENGLAND TRANSPORTATION CONSORTIUM

Beam Type: B33x132 Assumed Intact Thickness: 0.58 inches Height: 33.150 inches **Peak Load:** 257.31 kips

NEW ENGLAND TRANSPORTATION CONSORTIUM

U.S. Department of Transportation Federal Highway Administration

massD

2

U.S. Department of Transportation Federal Highway Administration

KNEW ENGLAND TRANSPORTATION CONSORTIUM

massDO

NEW ENGLAND TRANSPORTATION CONSORTIUM

Beam Type: B33x132 Assumed Intact Thickness: 0.58 inches Height: 33.150 inches

 $\boldsymbol{\lambda}$

U.S. Department of Transportation Federal Highway Administration **Peak Load:** 232.32 kips

Current Provisions For Capacity Evaluation of Corroded Ends

Federal Highway Administration

MassDOT

Web Crippling

$$R_n = a * \sqrt{E * F_y * t_f} * t_{ave}^{1.5} + b \frac{(0.33*d)}{N} * (\frac{4(N-H)}{d} - 0.2) * \frac{\sqrt{EF_y t_f}}{t_{ave}^{1.5}} * t_{ave}^3 * (\frac{CL}{(N+md)})^{0.15}$$

AASHTO LRFD

Web Crippling $R_n = (0.4 * t_{wcrip}^2 * (1 + (\frac{4N}{d} - 0.2) * (\frac{t_{wcrip}}{t_f})^{1.5}) * \sqrt{\frac{(E_S * F_y * t_f)}{t_{wcrip}}}$

NETC 19-3, Normalized New England Beam End Capacity

massDO

New ENGLAND TRANSPORTATION CONSORTIUM

U.S. Department of Transportation Federal Highway Administ

Corrosion Profiles:

- The groupings of W1/W2 and W3/W4 corrosion profiles were the most prevalent observed throughout the data of bridge inspections provided by the states of New England
- Beams from the same bridge exhibit similar corrosion shapes

Scanning:

- Scanning provides the inspector/user with a comprehensive profile for a corroded end as opposed to just using visual and point measurements
- **Enhanced Inspection:** Easy to use even with limited access
- High fidelity modelling and measurement reliability: More data, higher accuracy, higher precision

Experiments and Ratings :

- Each experiment was successful in capturing capacity of the corroded end; failure in the form of **web buckling** was achieved in each experiment
- Overall, MassDOT's capacity predictions for corroded beam ends performed with higher accuracy and consistency across all twelve experiments

NEW ENGLAND TRANSPORTATION CONSORTIUM

ind:

September 2019 Report No. 19-008 Charles D. Baker Deveroor Karyn E. Polito Destenaet Glaverner Stephanle Politack MailbOTSecetury & CCO

Development of Load Rating Procedures for Deteriorated Steel Beam Ends

> Principal Investigator Dr. Simos Gerasimidis Dr. Sergio Brena University of Massachusetts Amhe

More detailed information can be found:

- 1. Tzortzinis, G., Knickle, B., Bardow, A., Breña, S., Gerasimidis S. "Strength evaluation of deteriorated girder ends. I: Experimental study on naturally corroded I-beams." *Thin-Walled Structures*, 2021.
- Tzortzinis, G., Knickle, B., Bardow, A., Breña, S., Gerasimidis, S. "Strength evaluation of deteriorated girder ends. II: Numerical study on corroded I-beams." *Thin-Walled Structures*, 2021.
- 3. Tzortzinis, G., Breña, S., Gerasimidis, S. "Experimental, computational and analytical evaluation of plate girders with corroded ends." (In Press)
- 4. Tzortzinis, G., Ai, C., Breña, S., Gerasimidis, S. "Using 3D laser scanning for estimating the capacity of corroded steel girders: Experiments, computations and analytical solutions." (Under Review)
- 5. Tzortzinis, G., Gerasimidis, S., and S. Breña. 2021 "Improved load rating procedures for deteriorated steel beam ends with deteriorated stiffeners. *Final Report*". *MassDOT Research Rep. 21-024, Massachusetts Department of Transportation, Office of Transportation Planning*, Boston, MA
- 6. Tzortzinis, G., Gerasimidis, S., Breña, S., and B. Knickle. 2019. "Development of load rating procedures for deteriorated steel beam ends: deliverable 4." *MassDOT Research Rep. 19-008, Massachusetts Department of Transportation, Office of Transportation Planning*, Boston, MA

September 2021 Report No. 21-024 Charles D. Baker Governor Karyn E. Polito Lieutenat Governor Jamey Tesler MassD07 Secretary & CEO

Improved Load Rating Procedures for Deteriorated Steel Beam Ends with Deteriorated Stiffeners

> Principal Investigator (s) Georgios Tzortzinis, Graduate Researcher Dr. Sergio F. Breña Dr. Simos Gerasimidis University of Massachusetts Amherst

Acknowledgements:

MassDOT NETC Technical Committee FHWA/USDOT Mark Gauthier

University of Massachusetts Amherst

Thank You!

