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Executive Summary 
 
 
Data is becoming increasingly important to state Departments of Transportation (DOTs) in 
making strategic and day-to-day decisions. Different DOT divisions have specific data needs. 
These needs sometimes overlap with each other but are not always addressed in a holistic 
manner or by a central office. The growing volume and complexity of data is another major 
challenge to state DOTs. Each year, various DOT divisions generate substantial amounts of data 
using LiDAR, drones, radar and loop detectors, weather stations, Bluetooth readers, traffic 
cameras, Automated Traffic Signal Performance Measure (ATSPM) systems, General Transit 
Feed Specification (GTFS) systems, pavement, and rail track inspection vehicles, among others. 
Data storage, security and privacy are also critical aspects of transportation data analytics. 
Additionally, with recent technological advancements, third-party data vendors using non-
traditional data sources are playing an increasingly important role in supplying transportation 
data. DOTs need to carefully assess the pros and cons of relying on third-party data vendors 
versus their own data collection infrastructure to achieve a balance. 
 
The objectives of this research are three-folds:  
 

(1) Providing a clear and comprehensive picture to the six New England state DOTs 
regarding their data assets and needs, data modeling and workforce requirements, 
emerging data sources, as well as data collection, analysis, utilization, storage (e.g., 
security), and sharing (e.g., security) practices related to traffic operations. 

(2) Offering strategic and practical recommendations to prepare New England DOTs for 
future data-driven transportation system analytics, considering emerging sensing and 
analytical technologies such as connected vehicles, the Internet of Things (IoT), and 
Artificial Intelligence (AI).  

(3) Conducting case studies using AI techniques and/or emerging data sources for improving 
traffic operations and safety. 

 
A comprehensive review of existing and emerging data sources for Transportation Systems 
Management and Operations (TSMO) has been conducted. The pros and cons of each data 
source are discussed and summarized. Additionally, interviews with domain experts have been 
undertaken to gather their insights on future data sources and needs, data integration and 
analysis, data archiving, sharing, security, and privacy, as well as stakeholders and workforce 
development. The results of the review and interviews are provided in Chapter 2. Based on the 
findings in Chapter 2, recommendations for future data needs, emerging data sources, data 
processing and analytics, etc. are presented. 
 
This study also identifies several research topics to demonstrate the potential of using emerging 
data and AI technologies to address TSMO needs. The first case study utilizes an ultra-high-
definition radar and a thermal camera to study driver behavior on horizontal curves. For the five 
selected horizontal curves, the collected vehicle trajectories suggest that drivers do not 
significantly alter their speeds when approaching horizontal curves. The collected speed data is 
compared with TomTom data at one site. Overall, the radar speed data and TomTom speed data 
match well. However, the radar sensor clearly provides more samples early in the morning, and it 
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seems that TomTom data overestimates vehicle speeds during this period. Algorithms have been 
developed to identify speeding activities and risky drivers from the radar data. The 
corresponding thermal video clips have also been filtered out to confirm the radar results. The 
combined data provides a useful tool to monitor traffic and identify periods with more risky 
events for targeted law enforcement. AI algorithms have been developed to process the collected 
thermal videos, generating vehicle counts, vehicle time headways, and detecting and counting 
risky driving behaviors. This case study suggests that the radar and camera sensors ideally 
should be mounted on a fixed structure to mitigate the negative impacts of vibration. Also, both 
sensors should be mounted directly above the traffic to accurately capture vehicle lane-changing 
activities.  
 
The second case study focuses on highway work zone safety. A work zone on I-93 in Campton, 
NH, has been selected. This work zone is equipped with both flashing speed limit signs and 
changeable message signs. The purpose of this case study is to find out how such signs can affect 
vehicle speed and merging behavior. One week of radar data and two weeks of thermal videos 
are collected from this work zone. AI algorithms have been developed to process thermal videos 
and count vehicles that merge at different distances from the beginning of the work zone lane 
closure taper. The results suggest that flashing speed limit signs are helpful in reducing vehicle 
speed when approaching a work zone as well as prompting drivers to merge earlier. The first two 
case studies successfully demonstrate the benefits of using portable sensors to collect detailed 
vehicle trajectories for both TSMO and safety purposes. 
 
The third case study utilizes location-based service (LBS) data, specifically StreetLight data, to 
investigate vehicle speeding activities at highway horizontal curves. Lane departure collisions 
contribute significantly to roadway fatalities in the United States, with many occurring on 
horizontal curves or ramps due to speeding. This case study explores factors influencing 
speeding on Interstate horizontal curves and ramps, utilizing two unique data sources. The first 
database incorporates comprehensive curve and ramp characteristics from MaineDOT, while the 
second includes volume, average speed, and speed distribution data from StreetLight Insight®. 
The evaluation considers factors such as level of service (LOS), time of day (morning, evening, 
and off-peak hours), day of the week (weekdays and weekends), and month of the year (January-
December), along with geometric characteristics like curve radius, arc angle, and superelevation. 
The findings indicate increased odds of speeding at horizontal curves with improved LOS, larger 
radii, and greater superelevation. Conversely, speeding decreases on curves with larger arc 
angles and during winter months. Similar trends are observed in ramp models, except for ramp 
radius, which is found to be an insignificant factor. These results underscore the significance of 
speed enforcement and other countermeasures to reduce speeding on curves and ramps with low 
traffic volumes, high speed limits, and large radius and superelevation, particularly in rural areas. 
The results can inform the prioritization of locations for implementing speed countermeasures or 
signage, such as advisory speed signs, as well as deploying enforcement resources to high-
priority locations and times. 
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1.0 Introduction 
 
 
Data is becoming increasingly important to state Departments of Transportation (DOT) for 
strategic and day-to-day decision-making. Different DOT divisions have specific data needs, 
which sometimes overlap but are not consistently addressed in a holistic manner or by a central 
office. Intuitively, close collaborations among different divisions (e.g., planning, operations, 
safety, transit, maintenance, asset management) would lead to more integrated, coordinated, and 
cost-effective efforts to make the best use of data and DOT resources. By integrating data from 
different sources and better understanding the needs of various DOT divisions, duplication of 
data collection and analysis efforts can be avoided, and the value of data can be fully understood 
and exploited. 
 
The increasing volume and complexity of data pose another major challenge to state DOTs. Each 
year, various DOT divisions generate a substantial amount of data using LiDAR, drones, radar 
and loop detectors, weather stations, Bluetooth readers, traffic cameras, Automated Traffic 
Signal Performance Measure (ATSPM) systems, General Transit Feed Specification (GTFS) 
systems, pavement, and rail track inspection vehicles, among other sources. Some critical 
problems include:  
 

• How to transform data of different types, quality, varieties, etc. into useful information 
for decision-making?  

• How to manage such a vast amount of data, sometimes unstructured, and archive only the 
essential information with long-term value? 

• How to train/recruit engineers with expertise in both transportation domain knowledge 
and advanced models to analyze the data? 

 
Data storage, security, and privacy are also critical aspects of transportation data analytics. For 
instance, many DOTs simply use cameras to monitor traffic and do not further analyze or archive 
traffic videos due to concerns about data storage and privacy, even though Artificial Intelligence 
(AI) methods now are sophisticated enough to extract accurate and useful information from 
videos. Additionally, data generated by drone cameras, transit fare collection systems (some 
based on mobile apps), license plate recognition systems, cell phone towers, cell phone GPS, and 
Wi-Fi/Bluetooth readers contain valuable information for improving traffic operations but may 
also include personally identifiable information. Therefore, it is important to examine and update 
existing data storage, security, and privacy policies and practices, so that such datasets can be 
effectively and safely utilized. 
 
Most DOTs rely on both agency-owned data collection infrastructure and third-party data 
vendors, such as INRIX. The conditions of the data collection infrastructure are often overlooked 
during data inventory. It is important to keep track of them to ensure that DOTs’ data collection 
infrastructure is in a state of good repair. Such a database is also important for DOTs to develop 
short- and long-term data infrastructure investment plans. 
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With recent technological advancements, third-party data vendors using non-traditional data 
sources are playing an increasingly important role in supplying transportation data. DOTs need 
to carefully assess the pros and cons of relying on third-party data vendors versus their own data 
collection infrastructure to achieve a balance. While doing this, it is important to consider 
emerging data sources (e.g., connected and automated vehicles), the quality and reliability of 
third-party data sources, future data needs, life-cycle costs of each option, etc. For example, can 
third-party vendors still provide reliable information under severe weather conditions? Can their 
data cover rural and urban areas equally well to ensure fair treatment for rural travelers? 
 
The objectives of this research are three-folds:  
 

• Providing a clear and comprehensive picture to the six New England state DOTs 
regarding their data assets and needs, data modeling and workforce requirements, 
emerging data sources, as well as data collection, analysis, utilization, storage (e.g., 
security), and sharing (e.g., security) practices related to traffic operations. 

• Offering strategic and practical recommendations to prepare New England DOTs for 
future data-driven transportation system analytics, considering emerging sensing and 
analytical technologies such as connected vehicles, the Internet of Things (IoT), and 
Artificial Intelligence (AI).  

• Conducting case studies using AI techniques and/or emerging data sources for improving 
traffic operations and safety. 

 
While the primary focus of this research is data analytics for traffic operations, we will also 
address related topics, including safety. The results will serve as an example for state DOTs to 
expand this research and cover other application areas (e.g., engineering, planning, asset 
management) of transportation data analytics. 
 
This project is divided into two phases. Phase I focuses on reviewing current DOT needs and 
practices related to data and TSMO, while Phase II involves conducting case studies using AI 
techniques and/or emerging data sources to improve traffic operations and safety. The results of 
Phase I are presented in Chapters 2 and 3, based on which several candidate topics for Phase II 
are identified. After consulting with the project panel, the research team eventually conducts 
three case studies. The first and second case studies aim to demonstrate the advantages of using 
portable sensors to collect detailed vehicle trajectory data for studying driver behavior under 
different circumstances. They also showcase the capability of using AI to analyze and reduce the 
collected trajectories, generating meaningful conclusions. Specifically, the first case study 
focuses on driver speed choices on horizontal curves. The second case study centers on driver 
speed choices and lane-changing behavior when approaching a highway work zone. While the 
first two case studies focus on collecting and modeling detailed trajectory data, the third case 
study aims to show the power of combining location-based service (LBS) data and traditional 
road inventory data to study driver speeding activities at a network scale. 
 
The rest of this report is organized as follows: 
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• Phase I results are presented in Chapters 2 and 3, where Chapter 2 provides a 
comprehensive review of data and data sources for TSMO purposes, along with 
presenting the interview results with federal and state DOT employees.  

• Building on the findings of Chapter 2, Chapter 3 offers recommendations regarding data 
needs, emerging data sources, data processing and analytics, and others, to state DOTs in 
the New England region.  

• Phase II results are provided in Chapters 4 through 6, which describe the details for the 
three case studies, respectively. 

• Chapter 7 summarizes this entire research and highlights important findings. 
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2.0 Review of Data and Data Sources 
 
 
This chapter aims to provide a clear and comprehensive picture to the six New England state 
DOTs regarding their data assets and needs, data modeling, and workforce requirements, along 
with emerging data sources. It also covers data collection, analysis, utilization, storage (e.g., 
security), and sharing (e.g., security) practices related to traffic operations. The chapter begins 
with an analysis of data and data sources related to Transportation Systems Management and 
Operations (TSMO) (Section 2.1), followed by potential applications of AI techniques in 
modeling TSMO data (Section 2.2). Interviews with domain experts regarding TSMO data and 
data analytics are conducted, and the results are summarized in Section 2.3. 
 
2.1 Analysis of Data and Data Sources 
 
The analysis of data and data sources consists of two sections: the first focuses on traditional data 
and sources, and the second on new and emerging data and sources. 
 
2.1.1 Traditional Data and Data Sources 
2.1.1.1 Highway Data 
Traditional highway data sources mainly include loop detectors, microwave detectors, CCTV 
traffic cameras, and Bluetooth/Wi-Fi MAC address readers. From these sources, agencies can 
obtain occupancy, delay and travel time, spot and segment speeds, and volume data. Many 
agencies also acquire data from weather stations and weigh-in-motion stations. Since such data 
are quite different from traffic flow parameters, they are discussed separately in Sections 2.1.1.2 
and 2.1.1.4, respectively. 
 

2.1.1.1.1 Inductive loop detector 
Inductive loops are one of the most common data sources for highways. They have been widely 
adopted by state DOTs to collect traffic count, speed, length (if dual loop detector), occupancy, 
etc. on highways. They have also been extensively used at intersections to provide input data to 
traffic signal controllers.  
 
These loop detectors are less sensitive to the environment (e.g., temperature, lighting, snow, 
strong wind, vibration) and provide robust traffic measurements. However, since they are 
installed underneath the pavement, it is difficult to repair them if broken. Another major issue is 
that such detectors often are used to generate Annual Average Daily Traffic (AADT) data to 
meet the Highway Performance Monitoring System (HPMS) reporting requirements. The 
generated traffic measurements typically are not streamed in real time to Highway Operations 
Centers (HOC) or Traffic Management Centers (TMC), making them unsuitable for real-time 
applications such as incident detection and response.  
 
Additionally, these detectors are installed at limited locations on major highways and 
intersections. Therefore, they can only provide situational awareness for highway segments near 
those locations. For traffic incidents that happen far away from those locations, they will not be 
detected in a timely manner, which is critical to emergency response.  Even if an incident is 
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detected, it is difficult to accurately estimate its location with a sparse inductive loop detector 
network. Again, knowing the location of an incident is very important for efficient emergency 
response operations.  
 
The above issues can be addressed by adding more loop detectors and investing in 
communication and IT infrastructure. For example, Caltrans maintains a PeMS (Performance 
Measurement System), which consists of about 40,000 detectors covering freeways across all 
major metropolitan areas of California, providing both real-time and historical traffic data. 
However, the cost for doing so can be prohibitive, especially for many New England state DOTs 
with a significant portion of their highways in rural areas. 
 

2.1.1.1.2 Microwave sensor 
Similar to inductive loop detectors, microwave sensors are installed at limited locations. Also, 
the collected data sometimes are not streamed in real time to HOC or TMC. In this sense, 
microwave sensors share the abovementioned limitations of inductive loop detectors. However, 
compared to inductive loop detectors, microwave sensors are easier and less expensive to install 
and maintain. They are installed on roadside poles and the installation and maintenance cause no 
or little impacts on traffic. Some new microwave sensors can each cover more than 20 lanes and 
over 200 ft of road segments. They can also track individual vehicles, detect lane changes, and 
measure vehicle length in these segments, while inductive loop detectors can only measure 
traffic at a single point or over a very short segment (e.g., 20 ft). 
 

2.1.1.1.3 CCTV camera 
All New England state DOTs operate and maintain a CCTV camera network. For example, 
RIDOT has about 200 cameras (many of them are around rest stops) and plans to add more. 
These cameras provide important video feeds for identifying and confirming traffic incidents. 
However, in most state DOTs such CCTV traffic videos are reviewed manually to confirm traffic 
incidents (detected/reported using other methods) and provide traffic situational awareness. Such 
traffic videos typically are not recorded. They are not utilized to automatically detect traffic 
incidents, although technically it is possible to utilize video image processing algorithms to 
process live CCTV camera feeds and generate data such as vehicle count, speed, and density for 
data collection and detecting incidents.  
 
Like inductive loop and microwave detectors, CCTV cameras are deployed at limited locations, 
although they are getting increasingly popular. One concern with CCTV is privacy, especially 
for high-definition cameras. Such a problem can be addressed in many ways. One solution is to 
utilize edge computing devices to process videos in the field without saving them (i.e., only keep 
and stream the extracted traffic measurements). With the wide deployment of CCTV cameras 
and adoption of Artificial Intelligence (AI) based video processing algorithms, CCTV cameras 
may potentially become a major source in the future for traffic data collection and incident 
detection.  
 
Some toll road authorities are using high-definition CCTV cameras for toll by plate purposes. 
This application can generate Origin-Destination (OD) and segment travel time data beyond 
count, speed, and density. Such travel time data allows HOC operators to identify congested 
segments. However, it cannot provide much useful information related to location (e.g., where a 
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congested segment starts and ends), unless the distance between upstream and downstream 
cameras is sufficiently short. 
 
Some New England state DOTs have investigated the possibility of turning existing cameras into 
traffic sensors for traffic data collection and incident detection. A few issues they encountered 
include the low resolution of existing cameras, Pan-Tilt-Zoom (PTZ) cameras making it difficult 
to calibrate them, preferring a central video processing solution than adding video processing 
hardware to individual cameras, etc.  
 

2.1.1.1.4 Bluetooth data 
Bluetooth technology has been widely used in collecting travel time data. It detects the Media 
Access Control (MAC) addresses of Bluetooth devices on passing by vehicles and matches 
upstream and downstream MAC addresses to derive travel time. This is like matching upstream 
and downstream license plate numbers as some toll road authorities are doing (see discussion in 
Section 2.1.1.1.3 above) to determine the toll rate for charging users. A main difference is that 
Bluetooth readers are less expensive and do not require sophisticated data processing algorithms 
(e.g., AI algorithms for detecting and recognizing license plates).  
 
Portable Bluetooth readers have been developed and can be easily deployed as needed. The 
collected data can be either stored locally or transmitted to TMC in real time via a 4G cellular 
network. Given that most new cars are equipped with Bluetooth, this data source is becoming 
increasingly important and reliable. However, there are several major limitations for Bluetooth 
data. First, the data sample is often biased. It is not uncommon to have several people (i.e., 
multiple Bluetooth devices) in one vehicle. This can lead to biased travel time measurements. 
Second, like all previously discussed sensors, the coverage of Bluetooth readers is still limited. A 
dense network of Bluetooth readers is needed, especially for quickly detecting incidents and 
accurately estimating their locations. Third, Bluetooth cannot provide information for individual 
lanes like what inductive loops, microwave, and cameras can do. Finally, some mobile devices 
can randomize their MAC addresses to avoid being tracked.  
 
Another potential application of Bluetooth sensors is to derive OD and driver route choice data, 
which are very useful for TSMO. With such information, DOTs can better understand how 
drivers respond to congestion (e.g., messages displayed on changeable message signs) and make 
route choice decisions. This may help TMC operators develop effective traffic management and 
control strategies. However, deriving accurate OD and driver route choice data is not a trivial 
task, especially given some of the limitations of Bluetooth sensors. 
 
MassDOT has a Bluetooth travel time system called GoTime and seems to be satisfied with its 
performance. NHDOT and VTrans have tested Bluetooth travel time systems but are not very 
satisfied with their performance. 
 

2.1.1.1.5 Summary 
Data from loop detectors often are not streamed to HOC in real time and are mainly used for 
HPMS reporting purposes. Such data are saved in roadside devices and are manually 
downloaded. Some New England DOTs (e.g., NHDOT) are thinking about connecting these loop 
detectors wirelessly to Traffic Management Centers (TMC) so that data can be downloaded in 
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real time and remotely. Most DOTs are moving away from loop detectors due to the high 
installation and maintenance costs. Installing or repairing loop detectors requires setting up 
temporary work zones, which is expensive and creates safety risks.  
 
Microwave sensors are widely used by New England DOTs. Data from microwave sensors (e.g., 
volume, speed, and occupancy by lane, vehicle length, vehicle type) are typically streamed to 
TMC in real time. Compared to cameras, microwave sensors are not affected by lighting 
conditions. Although thermal cameras can address the lighting issue, they are more expensive, 
tend to have lower resolutions than regular cameras in the same price range, and are not 
deployed at large scales. 
 
Some retrofit loop detectors can generate inductive vehicle signatures, which can be used to re-
identify vehicles at different locations. Similarly, Bluetooth/Wi-Fi sensors and CCTV camera-
based vehicle re-identification techniques can match vehicles at different locations, thus 
generating vehicle Origin-Destination (OD) information. The vehicle signatures generated by 
loop detectors are usually only effective for matching vehicles at nearby locations, while MAC 
addresses from Bluetooth/Wi-Fi readers and license plate numbers (or vehicle video signatures) 
generated by CCTV cameras are generally more accurate. Research is still needed to derive 
accurate OD information from MAC addresses due to issues such as randomization, sampling 
rate, and bias. For the license plate method, a wide deployment of CCTV cameras is required, 
and its performance can be affected by lighting and camera angle factors.  
 
2.1.1.2 Road Weather Information System (RWIS) and Winter Maintenance 
State DOTs are using remote weather stations to monitor road surface conditions under different 
weather. Also, DOTs are interested in integrating data from weather forecasts, weather stations, 
and sensors installed on vehicles (e.g., plow trucks). Some states have plow trucks equipped with 
AVL and sensors, which provide real-time locations and speeds of plow trucks, material types 
and application rates, pavement and air temperatures, engine diagnostics, dashcam images, 
surface friction, and humidity. Information from weather stations, probe vehicles, and weather 
stations are critical to TSMO under severe weather conditions. 
 
CTDOT installed an Integrated Mobile Observations (IMO) system in maintenance vehicles. 
Approximately 210 plow trucks (with the eventual goal of all plow trucks) are equipped with 
forward looking video camera, GPS, and temperature and relative humidity sensors. The 
collected data is sent to a vendor for CTDOT. The data is fed into a local weather forecasting 
system, and the processed data is then used to inform a Maintenance Decision Support System 
(MDSS), which recommends which and when roadway segments should be plowed and how 
much salt should be used in the winter to improve traffic safety. 
 
The MDSS also takes data from a Roadway Weather Information System (RWIS) deployed at 40 
fixed locations, which collects pavement friction, wet, dry, icy, salinity surface and sub-surface 
pavement temperature as well as atmospheric temperature information. A mobile version of this 
sensor suite is under development (MRWIS). 
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MassDOT has remote sensors to monitor roadway conditions, real-time locations and speeds of 
plow trucks, National Weather Service Data, smart work zone data (e.g., locations, durations, 
configurations). 
 
Besides NOAA data, NHDOT also collects many data elements (e.g., pavement temperature, 
visibility, precipitation, water, ice, friction factor) from about 30 weather stations that are mainly 
on interstate highways and the turnpike. The weather station data are used to guide snow plowing 
and salting activities. If the friction factor is below standard, a text message will be generated by 
the weather station and sent to maintenance crews.  
 
The plow trucks owned by NHDOT are equipped with the AVL system, which provides real-
time information such as speed, location, plow up, plow down, spreading rate, etc. They are 
planning to add mobile RWIS to these plow trucks. NHDOT also has some maintenance trucks 
(not plow trucks) equipped with air and pavement temperature sensors. These trucks are driven 
by highway patrol foremen after snowstorms to determine how road segments should be treated. 
However, these maintenance trucks do not have the AVL system. They are thinking about 
integrating the data from weather stations, maintenance trucks, plow trucks, and weather forecast 
and presenting them in a simple but meaningful format for decision making. 
 
NHDOT currently does not have a Maintenance Decision Support System (MDSS®). A 
consulting company took all the weather data from NHDOT and tried to develop a system to 
predict temperature at any point in the road network. The predictions sometimes were accurate, 
but the accuracy was not stable. 
 
NHDOT, MaineDOT, and VTrans all divide their states into zones (6 for NHDOT, over 100 for 
Maine, and about 10 for VTrans). They use weather stations, trucks equipped with weather 
sensors, sensors at highway maintenance sheds, cameras, speed data, and NOAA data to estimate 
roadway conditions and publish the results on the regional 511 website. 
 
2.1.1.3 Work Zone 
Smart work zone technologies have been widely used by New England state DOTs. These smart 
work zones utilize sensors such as microwave, camera and Bluetooth to monitor traffic and 
collect data such as travel time, speed, delay, and queue. MaineDOT uses Linear Referencing 
System (LRS) to manage their work zone related information in ATMS, although the 
information is not updated in real time and requires data standardizations. FHWA established the 
Work Zone Data Exchange (WZDx) program a few years ago, and RIDOT is working on sharing 
smart work zone data using WZDx. 
 
2.1.1.4 Weigh-in-Motion (WIM) 
State DOTs also collect data from WIM stations, including traffic volumes by vehicle 
classification and weight, date, time, vehicle length by axle spacing, speed, and axle weight. 
 
2.1.1.5 Tolling Data 
Since toll roads are typically operated by private companies, DOT TSMO divisions often do not 
have full/direct access to tolling data. They must request such data through their turnpike 
authorities. Two types of tolling data can be useful for TSMO purposes: E-ZPass and license 
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plate records. E-ZPass data is similar to Bluetooth data. The main difference is that E-ZPass uses 
the Dedicated Short-Range Communications (DSRC) technology to read transponders in 
individual vehicles instead of MAC addresses. Since each vehicle has a unique transponder ID, 
the travel time derived from E-ZPass data is less biased than Bluetooth data. From E-ZPass 
records, time-dependent OD can be easily derived. 
 
Some turnpikes also allow vehicles not equipped with E-ZPass to use by tracking their license 
plate numbers. By matching license plate numbers observed at entrances and exits, accurate OD 
and travel time information can be obtained. A clear limitation with the E-ZPass and license 
plate number data is that they are only available for toll roads. 
 
2.1.1.6 Incident and Crash  
All state DOTs have a database for historical incidents and crashes. Such data include 
incident/crash location, time, duration, etc. Some state DOTs also keep track of highway safety 
patrol records (e.g., MaineDOT) and 511 phone call records. NHDOT does not have a 511 
system anymore but has access to highway safety patrol records and 911 calls related to traffic 
accidents. Their safety patrol records are in paper format and are entered into a database by 
TSMO staff. NHDOT uses the incident data information to optimize (based on human 
intelligence not automated algorithms) safety patrol schedules.  
 
NHDOT’s ATMS can take state police inputs to show crash alarms. It also allows traffic 
operators to define speed thresholds to display roadway segments in different colors based on 
their speeds. NHDOT finds this to be very useful for detecting incidents. The speed data used in 
the application come from both TomTom and microwave sensors on the roads. One issue with 
TomTom (and other similar products) is that DOTs do not have control over the segment length 
and only average speed data for the entire segment are provided. If an incident happens on a long 
segment, its impact may take a long time to be reflected in the average segment speed. 
Therefore, NHDOT uses DOT owned microwave sensors to complement TomTom data for 
incident detection on long segments. 
 
In Connecticut, some highway patrol vehicles are equipped with data collection devices 
developed by a private company. CTDOT takes data from both highway patrol and Waze for 
incident detection. They have access to the incident information entered into the Connecticut 
State Police (CSP) Computer-Aided Dispatch (CAD) system. CSP dispatchers also notify the 
CTDOT of incidents on state roadways via dedicated telephone lines. CSP is in the process of 
revising its CAD time logs to provide additional scene clearance information for improved 
analysis of incident clearance times. CTDOT found the CSP CAD records to be a timely and 
reliable data source for incident detection, since almost all drivers have a cell phone. Overall, 
CTDOT is satisfied with the performance of the CSP CAD and Waze reports for incident 
detection. 
 
For incidents reported by Waze, CTDOT uses CCTV cameras to further verify them. The 
incoming Waze reports of the same incident are automatically aggregated so that one incident 
will not generate many alerts that overwhelm HOC operators. CTDOT can also update Waze 
incident data to remove false alarms and incidents that have already been cleared. This two-way 
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communications between CTDOT and Waze help provide reliable information to travelers and 
improve incident response. 
 
2.1.1.7 Arterial 
Loop detectors, traffic cameras and microwave sensors are commonly used at arterial 
intersections for sensing and data collection. Some state DOTs (e.g., MassDOT) also 
experimented with drones to collect traffic condition data (e.g., queue length) at intersections. 
Several state DOTs (e.g., VTrans, MassDOT) have deployed Automated Traffic Signal 
Performance Measures (ATSPM) systems, which provide real-time data on traffic detector state 
(e.g., occupied vs. unoccupied) and health condition, traffic control (e.g., which signal head is 
currently in green), turning movement counts, queue length, and speed. For intersections not 
equipped with ATSPM, the above data sometimes are also captured but are often not streamed to 
TMC. The ATSPM data can have many applications other than monitoring the health conditions 
of traffic detectors and controllers but have not been fully utilized yet. Since not every state has 
ATSPM, it is considered as an emerging data source and is further discussed in Section 2.1.2.3. 
 
2.1.1.8 Transit 
Transit agencies also collect many data that can be used for TSMO purposes, including General 
Transit Feed Specification (GTFS) data, transit fare collection data (e.g., smart card, Mobile 
ticket), CCTV camera videos, Automated Passenger Counter (APC) data, and ridership. For 
example, GTFS data can be used to estimate link travel time on urban arterials. However, the 
GTFS data is only widely available in major cities with many bus routes like Boston, not on 
state-maintained highways. Also, such data are owned by transit agencies, and are not directly 
accessible by TSMO division. For example, in Rhode Island, Rhode Island Public Transit 
Authority (RIPTA) is an agency separated from RIDOT. Sharing data across agencies is 
important, but can be difficult, especially for real-time data sharing. This partially explains why 
none of the six New England state DOTs explicitly utilize transit data for TSMO. For example, 
NHDOT TSMO does not utilize any transit data. 
 
Delaware Transit Corporation (DTC) supplies fixed route and paratransit services statewide. 
DTC is an agency under DelDOT. DTC’s automated fleet management system is integrated in 
DelDOT’s AI-ITMS. Future AI-ITMS development could include transit system status 
information. 
 
2.1.1.9 Parking 
Static (e.g., location and # of lots) and dynamic parking data (e.g., parking duration), parking fee 
data, and mobile parking app data can also be useful for traffic management and control. For 
example, The Boston Central Transportation Planning Staff (CTPS) has done license plate 
surveys at commuter rails stations to derive passenger OD information, which is important for 
multimodal corridor transportation management.  
 
TSMO division often does not have direct access to parking data. One reason is that many of the 
parking facilities are owned and operated by private companies. NHDOT provides support to 
allow third-party Apps to show the availability of parking spaces. However, the data is not 
utilized for TSMO purpose at this moment. NHDOT is only concerned about parking in a very 
limited number of areas (e.g., White Mountains). 
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2.1.1.10 Assets 
Asset condition data are handled by different DOT divisions mostly in GIS format, including 
pavement, bridges, speed limits, traffic signs and markings, tunnels, Intelligent Transportation 
System (ITS) equipment, etc. Other than the conditions of bridges and tunnels, state DOTs are 
also collecting the condition data for ITS assets. NHDOT maintains a detailed database for ITS 
equipment such as variable message signs, sensors, communication devices, and traffic 
controllers. 
 
NHDOT is in the process of loading all their ITS assets into a comprehensive GIS database. 
Previously NHDOT only tracked the locations of ITS devices (e.g., cameras, variable message 
signs), not the detailed condition information for each asset, for example, the cabinet for a 
camera has a modem and a server rack. They are also working on a work order system to ensure 
the state of good repair for ITS assets. The goal is to collect detailed asset condition and 
configuration data (e.g., modem type, maker) and connect them to asset locations managed by 
GIS. Also, such a system will be integrated with the work order system (e.g., Assetworks), so 
that NHDOT can track when and where a device is replaced or repaired. Maintenance is 
important for ITS assets. To maintain a state of good repair, DOTs need to know how much 
funding is needed for the next five or ten years for ITS asset maintenance, which will benefit 
from a detailed and accurate asset inventory system. 
 
Laser, LiDAR (Light Detection and Ranging), and camera (mounted on vehicles and drones) 
have been extensively used by state DOTs to collect asset inventory and condition data. Such 
sensors have generated an enormous amount of data. More research is needed to reduce such 
datasets and explore how they may be used for TSMO purposes. 
 
2.1.2 New and Emerging Data and Data Sources 
2.1.2.1 Drone 
Drones or Unmanned Aerial Vehicles (UAV) have been used as a popular platform for collecting 
highway data. RGB and infrared cameras and LiDAR have been mounted on drones for various 
applications. Those related to TSMO include providing situational awareness at incident/crash 
scenes and traffic monitoring. Traffic monitoring via drones can overcome the limitations of 
traditional methods of monitoring due to their simplicity, mobility, and ability to cover large 
areas. A recent paper presents a good review of research efforts that use drones in relation to 
online and offline extraction of traffic parameters from video data [7]. MassDOT is working on 
establishing a drone-based emergency response network and has used drones to monitor queue 
length at signalized intersections. Drones have been extensively used by RIDOT for construction 
sites monitoring.  
 
2.1.2.2 LiDAR 
LiDAR has also attracted significant attention in the past decade. MassDOT used LiDAR to scan 
all state-maintained highways, resulting in several hundred terabytes of data. They extracted 
useful information, such as traffic signs, from the LiDAR data. 
 
Drones and LiDAR have generated a vast amount of data. How to extract useful information 
from such datasets and share and store them has now become a major issue. DOTs certainly do 
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not want to discard such datasets and later find that valuable information could have been 
extracted from them. A good idea is to share such datasets (when possible) with universities, 
private companies, and the public, allowing them to come up with innovative ideas to analyze 
and utilize the data. 
 

 
Figure 2-1. Data elements collected by well-known ATSPM systems [2] 
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2.1.2.3 ATSPM 
Utah was among the first few states to invest in the Automated Traffic Signal Performance 
Measures (ATSPM) system starting in 2013 [1]. Several New England state DOTs now have 
also deployed the ATSPM, which collects very detailed traffic signal performance measures 
every 1/10 seconds and stream the data in real time [2] to TMC. The data elements collected by 
well-known ATSPM systems are listed in Figure 2-1.  
 
NHDOT currently has very few intersections that are connected via fiber to TMC. Over the next 
few years, many intersections will be connected to TMC either by fiber or wireless network. The 
ATSPM data can be used for improving traffic safety and operations at intersections. Since this 
system is relatively new, researchers and practitioners are still trying to find out how to 
effectively utilize the generated data. A potential challenge for example is that traffic signals are 
not directly under the TSMO bureau at NHDOT. Traffic signals, pavement marking, and signs 
are under the bureau of traffic at NHDOT. The NHDOT TSMO bureau does not have traffic 
signal engineers or technicians on staff. This organizational structure is typical for other DOTs. 
Overall, how to make full use of ATSPM data seems to be an interesting and timely topic for 
DOTs. 
 
2.1.2.4 Crowdsourced, Probe Vehicle, and Connected Vehicle Data 
Smartphones, probe vehicles, and connected vehicles all rely on GPS and have generated a 
tremendous amount of data that can be used for TSMO purposes. Since these data sources are 
based on similar technologies, they are thus discussed under the same main category. However, 
there are some subtle but important differences among these data sources.  
 
Smartphones users contribute their data either actively or passively. One example of active 
smartphone data contribution is the Waze App. Waze users report roadway conditions such as 
incidents, debris, and speed traps. Both incidents and debris are critical safety hazards and need 
to be cleared as soon as possible. Such crowdsourced data are important for DOTs to improve 
highway safety. Smartphone users in many cases also passively contribute their data. For 
example, when drivers are using navigation Apps, they often contribute their speed and location 
information every few seconds. The speed and location information from all drivers collectively 
can be used to predict travel time, estimate travel speed, detect incidents, and identify safety 
hazards (e.g., locations with frequent harsh brakes). These Apps share some of the derived data 
with data contributors, but not all. 
 
Probe vehicles refer to vehicles equipped with GPS and wireless communications technology. 
Sometimes this is called Automated Vehicle Location (AVL). Many buses and commercial 
trucks (e.g., owned by UPS and Walmart) are equipped with AVL. With AVL and other onboard 
sensors, system operators can know in real time where drivers are, how many times a heavy 
truck backs up, whether turn signals are used when they should be, speed violations, etc. Drivers 
of Transportation Network Companies such as Uber and Lyft need to install an App to connect 
with customers/passengers. These Uber and Lyft vehicles essentially work as probe vehicles. 
Companies such as INRIX and TomTom then take probe vehicle data from different sources 
(The exact sources are not disclosed and they may not include Uber and Lyft), clean them, and 
sell them to customers such as state DOTs. The INRIX and TomTom data are aggregated. One 
can only know the average segment speed or travel time, not individual vehicle speeds and 
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locations. Given the original probe vehicle data, theoretically it is possible for INRIX and 
TomTom to provide disaggregated data to customers. However, this requires customers to have 
the capability of analyzing very detailed and large datasets. 
 
USDOT has three ongoing connected vehicles pilot studies in Wyoming, New York City, and 
Tampa. In these studies, thousands of connected vehicles have generated very detailed vehicle 
trajectory data. However, such data only cover the three pilot sites. On the other hand, many new 
vehicles on the market are now equipped with GPS and wireless communications capability. Car 
manufacturers collect vehicle location and speed information, engine and wiper status, etc. and 
sell them to companies such as Wejo and Otonomo. Both probe vehicle data and connected 
vehicle data are based on GPS and wireless communications. The vehicle location and speed 
data are usually transmitted from vehicles to data center every few seconds. The processed data 
are then shared with customers in about one minute, which is sufficient for many TSMO 
applications such as incident detection. Different from INRIX and TomTom, Wejo and Otonomo 
provide disaggregated data to customers. Although such detailed data can be very useful, 
analyzing them is difficult. So far, none of the six New England state DOTs have used either 
Wejo or Otonomo data.  
 
In the rest of this section, the above data sources are discussed in more detail. In this report, these 
data sources are grouped into the following three sub-categories: 
 

• User Reported Data: This specifically refers to data contributed actively by travelers using 
cellphones. Waze is a main source of such data. Some navigation Apps such as Google 
Maps also allow users to report incidents and speed traps.  

• Aggregated Probe Data: This sub-category includes aggregated speed and travel time data 
such as those provided by INRIX, TomTom, etc. Also, Uber Movement provides zone to 
zone travel time and road segment travel speed data. Google sells travel time data. All these 
aggregated datasets are based on GPS coordinates generated by smartphone Apps, AVL, 
or connected vehicles.  

• Trajectory Data: This sub-category is for unprocessed GPS coordinates generated by 
smartphone Apps, AVL, or connected vehicles. Examples include Wejo and Otonomo. 

 
2.1.2.4.1 User Reported Data 

Almost every driver now has a cellphone. When a crash occurs, it usually will not take much 
time for the driver(s) involved or passing by drivers to call 911 and report it. Some state DOTs 
rely a lot on such information for AID. A limitation of driver incident reporting is that non-
collision (e.g., road debris) and property-damage-only (PDO) incidents may be under-reported. 
Also, for drivers calling 911, they sometimes do not know their exact locations on the road 
(unless they are using a mobile App).  
 
Most state DOTs have access to Waze data and are using Waze incident reports for AID. Issues 
with Waze incident reports include: (1) submitting Waze incident report while driving is 
dangerous; (2) usually there is a delay between when an incident is spotted and when it is 
reported, which makes it difficult to directly identify the exact incident location; and (3) 
sometimes there are inaccurate reports. For example, an incident has already been cleared, but it 
still shows up in Waze. In a quantitative comparison by Iowa DOT of various sources of incident 
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detection, Waze was ranked the 4th (out of 8) largest contributing sources. While essentially 
free, Waze incident reports still must be validated by other means, and it captured only 43.2% of 
ATMS recorded incidents during the analysis period (although this has most likely increased as 
the number of users increases). 
 

2.1.2.4.2 Aggregated Probe Data 
Several companies offer aggregate probe data, including INRIX, HERE, TomTom, and Google. 
A significant advantage of probe data is that state DOTs do not need to invest in any data 
collection infrastructure, and do not need to worry about the maintenance of such infrastructure 
either. Although purchasing data can be expensive, clearly many DOTs think it is worthy given 
the trouble and cost associated with maintaining their own data collection infrastructure. In 
addition, probe data usually has a much larger coverage than traditional data sources such as 
inductive loop detectors, microwave detectors, and CCTV cameras. Its actual coverage depends 
on how many users are contributing their data. Usually, there are more data contributors in urban 
than suburban areas.  
 
Most probe data vendors provide information aggregated by road segments, such as segment 
speed and travel time. State DOTs take what these vendors provide and do not know the details 
of how the data are aggregated. The length of each segment is also decided by vendors. Different 
vendors often have different standards/ways to divide roads into segments. When DOTs have 
data from multiple vendors, they often face the challenge to reconcile data aggregated using 
different segment definitions, which is not a trivial task. In addition, state DOTs lose the 
opportunity to extract more granular and useful information from the aggregated probe data. 
 
Using Automated Incident Detection (AID) as one example, DOTs may want to have short 
segments in areas prone to incidents (ideally in all areas if computational power is not a 
constraint). With short segments, changes in individual vehicles’ speeds and travel times can be 
quickly reflected in the corresponding segment measures. On the other hand, providing 
aggregated data and hiding the details to some extent is beneficial to DOTs, as they often do not 
have the human resources to handle the large volume of raw trajectory data and extract critical 
information out of them. 
 
As discussed previously, the aggregated probe data originally come from detailed vehicle 
trajectories. Besides the aggregated road segment measures, some data vendors (e.g., INRIX) 
provide more detailed data at the lane level. They can also generate incident and dangerous 
slowdown alerts. 
 
Overall, state DOTs are satisfied with probe data quality. CTDOT has validated HERE travel 
time data. DOT staff had driven some routes to verify the travel time estimated by HERE and 
found that they meet the DOT data quality standards (FHWA 23CFR511 quality standard for 
traffic data). CTDOT noted they only display the probe data when it is accurate, which at this 
point is mostly during daylight hours and some early evening hours on weekdays and weekends. 
NHDOT was able to detect crashes based on TomTom speed data even before they were notified 
by state police. 
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The City of Boston partnered with Waze to identify traffic signals that need improvements. They 
worked with MBTA to measure impacts of signal timing along the Silver Line [3]. Although it 
was not explicitly mentioned what data from Waze was used, it is likely the travel speed data 
(similar to the probe vehicle data) and the more detailed vehicle trajectories (see discussion in 
the next subsection) were used.   
 

2.1.2.4.3 Trajectory Data 
Smartphones, probe vehicles, and connected vehicles can also generate vehicle trajectories, 
which are much more detailed than the aggregated probe data described in the previous 
subsection. Two trajectory data vendors are Wejo and Otonomo. They provide similar vehicle 
trajectory datasets, which include data elements such as longitude, latitude, speed, heading, 
wipers change, seat belt change, autonomous emergency braking, etc. These data elements are 
collected from some commercial vehicles sold in recent years at short intervals (e.g., every 3 
seconds) and are transmitted back to a data warehouse and made available to end users within 60 
seconds. Currently, there are over 10 million vehicles contributing trajectory data, and this 
number is growing as more new vehicles are being sold. 
 
Such vehicle trajectory data can be used to measure traffic operations performance and derive 
surrogate safety measures such as harsh-braking events. For example, researchers from Purdue 
University used Wejo data to correlate harsh-braking events with crash occurrences near 
highway work zones [4]. Vehicle trajectories are also useful for some real-time applications, 
such as detecting traffic incidents and traffic slowdowns and generating safety hazard alerts (e.g., 
black ice on road).  
 
The Eastern Transportation Coalition (previously known as the I-95 Corridor Coalition) 
conducted a pilot study to estimate traffic volume using Wejo data in real time [5]. Their study 
utilized data from six states: Alabama, Florida, Georgia, North Carolina, Tennessee, and 
Virginia. They found that Wejo data covered about 3% of all vehicles on the road and the pilot 
study received data from each connected vehicle every 3 seconds. Wejo generated over 230B 
data points in the 3-month pilot study period. Their study concluded that using Wejo data to 
estimate traffic volume in real time is a viable solution, particularly given that the number of 
connected vehicles is continuously growing.  
 
Many DOT vehicles are equipped with the AVL system, allowing DOTs to track their vehicles 
(e.g., plow trucks) in real time. These vehicles can provide valuable trajectory information 
especially under severe weather conditions. Other public agencies also have AVL in their fleets, 
such as state police and transit. Integrating all fleet data can generate very useful traffic 
information benefiting all participating agencies (e.g., first responders always want to have 
accurate traffic information to find the best routes). In Delaware, all state vehicles have GPS 
based tracking. As part of their ATCMTD AI-ITMS project, DelDOT is equipping some DOT 
vehicles to monitor vehicle data port and to integrate the data into their AI-ITMS. 
 

2.1.2.4.4 Summary 
Crowdsourced, probe vehicles, and connected vehicles data are playing a critical role in TSMO. 
For example, RIDOT is exploring INRIX data for AID. Currently, RIDOT relies on CCTV 
cameras and reviews the footage manually to detect incidents. RIDOT also has access to the 
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radio of state police, which is another important source (i.e., user reported data) for incident 
information. Although user reported data via Waze are a little noisy (see discussion in the second 
paragraph of Section 2.1.2.4.1), they are very useful to DOTs due to its coverage.  
 
Overall, state DOTS are satisfied with probe data given that they are maintenance free and cover 
a very large area. Issues with probe data include low sampling rate in rural areas, reliability 
(sampling rate for the same segment changes over time), and data conflation.  
 
It is estimated that by 2023 90% of new vehicles in the United States will be shipped with 
embedded connectivity. The near real-time connected vehicle trajectory data provides a source 
with many great possibilities for improving the understanding of traffic flows and developing 
advanced traffic management strategies. State DOTs should carefully monitor the development 
of connected vehicles and their impacts on traffic data collection and TSMO. 
 
2.1.2.5 Other Mobile Device Location Data 
Since almost every driver now has a cellphone, being able to accurately locate cellphones can 
help estimate vehicle speeds. Cellphones can be used to generate user reported data (Section 
2.1.2.4.1) and aggregate probe data (Section 2.1.2.4.2). Besides cellphones, there are many other 
mobile devices such as tablets and smart watches. It is mentioned in a 2019 news article [6] that 
“Every minute of every day, everywhere on the planet, dozens of companies — largely 
unregulated, little scrutinized — are logging the movements of tens of millions of people with 
mobile phones and storing the information in gigantic data files.” It is estimated that there is a 
$12 billion market [7] for such data. There is a long list of companies that use mobile device 
location data for various applications, including AirSage, SkyHook, Cuebiq, and SafeGraph. 
 
There are mainly three types of mobile device location data: cell tower triangulation data, mobile 
device GPS location data, and mobile carrier data. These data sources are further detailed below. 
 

2.1.2.5.1 Cell Tower Triangulation 
Each cellphone must be connected to at least one cell tower. The distance between the cellphone 
and cell tower can be estimated by measuring the strength of wireless signals transmitted 
between them. Since the cell tower location is fixed and known, the location of the phone can be 
narrowed down to a circle. If the phone is communicating with two cell towers, its location can 
be further narrowed down to two points. With three cell towers, theoretically the phone location 
can be uniquely determined. However, the accuracy of distance estimation based on wireless 
signal strength is not perfect. Even with three cell towers, a cellphone can usually be located 
within an area of ¾ square miles. 
 
Mobile device location data obtained via cell tower triangulation usually is not very precise, and 
cannot be used for calculating speed, travel time, etc. However, it can be used to estimate time-
dependent OD data. OD data is important for understanding travel demand. It can be used 
together with traffic simulation tools to answer questions such as what may happen if a road 
segment is shut down due to major accidents or construction. 
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2.1.2.5.2 GPS Location or Location Based Service (LBS) Data 
Smartphone are all equipped with GPS, which provides more accurate location information than 
cell tower triangulation. Most mobile device location applications are based on GPS location 
data. GPS location data (e.g., obtained via navigation and other LBS Apps) can be used to derive 
travel time and speed (see Section 2.1.2.4.2). It also has many other important applications. For 
example, GPS location data can be used to derive trip generation rates and help businesses find 
optimal retail locations. Similar to cell tower triangulation data, GPS location data can be used to 
derive OD data. In addition, it can potentially be used to drive trip chain, travel mode, and route 
choice information, which is important for both transportation planning and TSMO.  
 
A major issue with GPS location data is latency. Unlike the connected vehicle trajectory data in 
Section 2.1.2.4.3, GPS location data in many cases are not immediately available to end users. 
An exception is the GPS location data obtained via navigation Apps, which is aggregated and 
made available to App users in real time. It would be ideal if Google and Apple could share their 
real-time navigation App data (e.g., trajectory, travel time, incidents) with state DOTs to improve 
TSMO (e.g., incident detection). Even historical GPS location data can be useful for DOTs. They 
can be used to identify and prioritize bottlenecks, safety hazards, etc. 
 

2.1.2.5.3 Mobile Carrier Data 
Through either cell tower triangulation or smartphone GPS, mobile carriers can have the location 
information of their subscribers. This data source is likely to have a much higher sampling rate 
of users than other sources such as probe vehicles and generate more accurate measurements of 
traffic speed and travel time. 
 
The wireless communications solution for future connected vehicles is not clear at this moment. 
It could be based on DSRC, 5G, or 6G. If 5G or 6G is used as the backbone for connected 
vehicles, mobile carriers will play a critical role and will have access to a vast amount of vehicle 
related data, including the trajectory data discussed in Section 2.1.2.4.3. 
 
Some mobile carriers have also shown great interest in ITS and smart cities. Verizon partnered 
with some cities (e.g., Boston and Kansas City) to install sensors in the pavement and connect 
cameras to traffic lights for detecting traffic [8] and improving traffic signal operations. AT&T 
also has an “AT&T Smart Cities Structure Monitoring” program, which adds AT&T LTE-
enabled sensors to the existing lighting infrastructure in some U.S. cities (e.g., Atlanta, Dallas) to 
monitor traffic and parking, and detect gunshots [9]. 
 

2.1.2.5.4 StreetLight Data 
StreetLight is essentially based on mobile device GPS location data (Section 2.1.2.5.2). It applies 
AI algorithms to integrate mobility device location data provided by sources such as Cuebiq 
[10], data from DOT permanent traffic counting stations, etc. to estimate AADTs, bike and 
pedestrian volumes, OD, and so on. It is listed here in a separate subsection because it is being 
used by both MaineDOT and MassDOT. 
 
2.1.2.6 Social Media 
Some researchers proposed to use data from social media such as Twitter for TSMO purposes. 
They use the Natural Language Processing (NLP) method to extract traffic incident related 
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information from social media feeds. For instance, after identifying an incident-related tweet, 
words related to “when”, “where”, and “how bad the incident is” will be extracted and analyzed 
if they exist. An issue with this data source is that incidents are not guaranteed to be posted in a 
timely manner and with sufficient details to accurately determine their nature and location 
information. 
 
Most state DOTs (e.g., NHDOT and MassDOT) use Twitter and Facebook to share traffic 
information with the public, not to model data (e.g., major crashes, traffic disruptions due to 
snowstorms) from those social media platforms. 
 
2.1.2.7 Autonomous Vehicles 
Each autonomous vehicle is equipped with a suite of sensors, which generate a vast amount of 
data each day. It is not a secret that Tesla collects data from its vehicle owners [11] to improve 
their self-driving algorithms. Even human-driven vehicles are now collecting and sharing data 
(e.g., Wejo and Otonomo). Some autonomous vehicle companies such as Lyft and Waymo have 
made part of their collected data (e.g., LiDAR, vehicle trajectory, camera) available to the public.  
 
Autonomous vehicles can sense the surrounding traffic and generate more detailed information 
than vehicle trajectories. They can detect damaged traffic signs and guardrails, potholes, 
distracted pedestrians, aggressive drivers, debris on the road, etc. However, they are not 
obligated to share anything with state DOTs. An interesting question is whether it is ethical for 
car manufacturers to collect data from drivers but do not share it with public agencies (e.g., state 
DOTs) for the benefit of drivers. The same question can be brought up to tech companies that 
collect mobile device location information. 
 
2.1.2.8 Artificial Intelligence (AI) 
AI technologies are well known for being data hungry. They often require a tremendous amount 
of data for model training and validation. On the other hand, AI is also an important tool for 
generating data. With cameras, drones, LiDAR, etc., transportation agencies have accumulated 
enormous images, video, and point cloud data that they sometimes cannot effectively utilize. 
Well-trained AI models can be used to turn such data into useful information. For example, 
traffic counts and assets can be derived from videos and LiDAR point cloud, respectively. AI 
algorithms are also widely used in autonomous driving to process camera, LiDAR, and 
microwave sensor data. 
 
2.1.2.9 Summary 
The data sources discussed are summarized in Table 2-1 below. The discussion above suggests 
that the landscape of traffic data collection has changed substantially in the past two decades 
given the advancements in sensors, wireless communications, the Internet of Things (IoT) and 
smart cities, GPS and mobile devices, connected vehicles, and automated driving. Among them, 
mobile devices and GPS probably have the most profound impacts on traffic data collection. 
They significantly expand the coverage of traditional sensors (e.g., loop detectors, cameras) and 
provide a maintenance free approach for transportation agencies to collect detailed data elements 
such as vehicle trajectory, wipers change, seat belt change, and autonomous emergency braking. 
Another important front is the wide applications of AI technologies in sensor data processing, 
generating valuable traffic measurements for data-driven decision making. 
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Table 2-1. Traditional and Emerging Data and Data Sources for TSMO 

 Traditional Data & Data Source 

Highway 

Loop detectors, microwave detectors, traffic 
cameras, Bluetooth/Wi-Fi MAC address 
readers, weather stations, weigh-in-motion 
stations 
Occupancy, delay and travel time, spot and 
segment speeds, volume, vehicular OD 

Incidents and 
Crashes 

Incident/crash records (e.g., location, time, 
duration), highway safety patrol records, 511 
phone records 

Arterial 

Traffic signals, vehicle detectors, cameras, data 
from Automated Traffic Signal Performance 
Measures (ATSPM) system, queue length from 
drone. 

Transit 
GTFS, transit fare collection data (e.g., smart 
card, Mobile ticket), traffic cameras, APC data, 
ridership, etc. 

Parking 
Static (e.g., location and # of lots) and dynamic 
data (e.g., parking duration), parking fee data, 
Mobile parking app data 

Assets 

Highway: conditions of traffic sign, pavement, 
marking, guardrail, bridges, tunnels, etc. 
ITS: conditions of variable message signs, 
sensors, communication devices, traffic 
controllers, etc. 
GIS maps (e.g., highway geometry), speed 
limits 

Maintenance 
& Work 

Zone 

Maintenance: real-time locations and speeds of 
plow trucks, National Weather Service Data 
Work Zone: smart work zone data, location, 
duration, configuration, etc. 
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New and Emerging Data and Data Source 
Drone, Mobile LiDAR 
 
Crowdsourced Data (e.g., Waze) 
 
Fleet data (DOT vehicles, commercial 
vehicles) 
 
Transportation Network and Logistics 
Companies (e.g., Uber Movement) 
 
Connected Vehicle Pilot Deployment 
Program  
 
TomTom, HERE, WeJo, StreetLight, INRIX, 

AirSage, SkyHook, Cuebiq, SafeGraph, 
Google, Apple 

 
Mobile Carrier (e.g., AT&T, Verizon) 
 
Cell tower triangulation, Cell Phone (or 
vehicle) GPS 
 
Social Media (e.g., X, formerly Twitter, 
Facebook) 
 
Data from Autonomous Vehicles (e.g., Lyft, 
Waymo) 

 
2.2 Potential AI Applications in Modeling TSMO Data 
 
In the Sources Sought Notice 693JJ3-21-SS-0013 released by the FHWA [12] in July 2021, the 
following applications of AI in TSMO have been identified: 
 

• Predict/detect traffic incidents efficiently and proactively using AI and multi-
source/multi-sensor data and generate response plans, 

• Predict multimodal delays in real-time using AI, 
• Model urban network traffic as completely as possible using AI, 
• Optimize signal timing plans offline to service all modes of transportation by predicting 

vehicle and pedestrian arrivals, queues, and delays, 
• Optimize traffic signals in real-time using AI, 
• Enhance ramp metering strategy to rapidly adapt to anticipated or predicted conditions, 
• Use AI techniques to validate and verify datasets, 
• Use AI techniques to detect work zone location, schematic, and hazards; alert 

construction crews; and disseminate traveler information, 
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• Detect and predict queues and shockwaves to harmonize speeds for reducing work zone 
crashes and delays, 

• Predict road surface conditions before they become dangerous and respond accordingly, 
• Proactively identify target speeds, lane assignments, ramp metering rates, etc. for 

improved traffic flow and throughput, 
• Collaborate across agencies in real-time using Decision Support Systems (DSS) and 

Knowledge Based Expert Systems (KBES), 
• Improve situational awareness by fusing data from multiple sources and multiple sensors 

across the region, and 
• Test advanced traffic management and connected & automated vehicle technologies. 

 
Based on the above ideas, the team further identified the following more specific potential 
applications of AI for the NETC project panel and the six New England state DOTs to consider. 
Two of these topics are considered for the case studies in Phase II of this project. 
 

• Use AI for data modeling and data-driven decision making: 
o Some DOTs (e.g., VTrans, MassDOT) have deployed Automated Traffic Signal 

Performance Measures (ATSPM) systems. How to make the full use of ATSPM data 
is an interesting and timely topic. 

o Integrate data from the National Oceanic and Atmospheric Administration (NOAA), 
weather stations, and sensors installed on vehicles (e.g., plow trucks) for Winter 
Maintenance Decision Support Systems. One possible application is to determine the 
optimal amount of salt to be applied. 

o Queue/slow moving traffic detection using detailed trajectories generated by 
connected vehicles. 

o Use incident data to optimize safety patrol schedules. Currently, highway patrol 
schedules are decided based on human intelligence not algorithms. 

o Use location-based data to estimate traffic volumes, especially for low-volume roads 
and intersections. 

o Use AI to model data from multiple sources, including probe and/or connected 
vehicle, for safety applications. 

 
• Use AI for data processing and reduction: 

o Automatically detect incidents/risky events and collect traffic data using advanced 
sensors such as thermal traffic cameras. 

o Develop strategies to conflate and integrate data from different sources. 
o Use AI to process LiDAR data and automatically extract asset information such as 

asset type and location. 
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2.3 Interviews with Experts 
 
In addition to reviewing existing and emerging data sources, the team conducted interviews with 
staff from the six New England state DOTs. The interviews covered a range of topics, including 
their data needs, data analysis, archiving, sharing, security, and privacy protection practices, 
among others. The team also interviewed staff from the Federal Highway Administration, as well 
as from the DOTs of Texas, Oregon, Virginia, and Delaware, along with the Eastern 
Transportation Coalition (previously known as the I-95 Corridor Coalition). The questions posed 
during these interviews and the results are summarized in the rest of this section. 
 
2.3.1 Data and Needs 
2.3.1.1 Data Sources 
Question: Are we missing any major data elements/sources in Table 2-1? 
Most DOTs found the data elements in Table 2-1 to be very comprehensive. One possible way to 
further enhance Table 2-1 is by providing more detailed information about specific data 
products, data locations, and temporal limitations (e.g., real-time data, archived data). 
 
2.3.1.2 Data Needs 
Question: Any existing and future data needs for TSMO (e.g., estimating OD in addition to 
segment AADTs)? 
The identified future data needs for TSMO include:  
 

• Integration of data from different sensors (e.g., loop detectors, AVL, pavement 
sensors), at various rates, and stored in different databases, 

• Connected vehicle data (e.g., detailed vehicle trajectories), 
• Data related to public and private truck parking spaces and availability on major 

highway corridors, 
• Better data sharing with travelers, such as broadcasting traffic signal timing information 

to drivers, 
• Data for determining incident duration, clearance time, and secondary incidents, as well 

as separating incidents from recurring congestion. A reliable data source for identifying 
secondary crashes is currently unavailable, and such incidents are sometimes under-
reported in police reports (e.g., noted as primary incidents). Recurring congestion 
makes it challenging to determine when an incident is cleared, 
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Figure 2-2. TSMO performance measure needs provided by RIDOT. 
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• Reliable queue length (or unexpected stops/slow-moving traffic on highways), 
• Estimate highway and arterial traffic volume, density, and capacity from different 

locations in real time. Existing probe data only covers speed and travel time,  
• OD data will significantly increase DOTs’ ability to predict transportation system use 

and system response to demand changes. Reliable OD data, together with digital twins, 
AI, and simulation could substantially improve TSMO by quickly identifying changes, 
understanding their impacts, evaluating and recommending options, implementing 
those options, and continuously monitoring and adapting to the impacts of the changes, 

• DOTs need more detailed and real-time condition information about ITS assets, and 
• CAVs will generate a considerable amount of data that can be used for TSMO 

applications. On the other hand, CAVs will need precise data for making safe, efficient, 
and eco-friendly driving decisions. In the future, variable message signs may not be 
needed. Instead, DOTs need to provide traveler information in digital formats that can 
be unambiguously interpreted by CAVs. 

 
Additionally, RIDOT provided a detailed list of performance measures needed for TSMO, 
presented in Figure 2-2. While this list is not specifically for data needs, the listed items will 
depend on data and will guide researchers and engineers to find appropriate data sources to 
support the development of such performance measures. One example is the percentage of 
secondary incidents. Such data does not currently exist in police reports and is difficult to obtain. 
However, it may potentially be obtained from new and emerging data sources, such as connected 
vehicle data. 
 
In addition to data needs, the research team identified some needs for data analysis methods, 
including: 
 

• Data conflation is a major issue faced by many DOTs. For probe data, such as INRIX, 
TomTom, and HERE, data vendors only provide aggregated information, such as 
segment speed and travel time. State DOTs adopt what these vendors provide and lack 
details on how the data are aggregated. The length of each segment is also decided by 
the vendors. Different vendors often employ different standards or methods to divide 
roads into segments. When DOTs possess data from multiple vendors, they encounter 
the challenge of reconciling data aggregated using different segment definitions (e.g., 
Linear Referencing System (LRS) used by DOTs to manage pavement conditions, 
bridges), which is not a trivial task. Additionally, state DOTs lose the opportunity to 
extract more granular and useful information from the aggregated probe vehicle and 
GPS data. Using automated incident detection (AID) as one example, DOTs may want 
to have short segments in areas prone to incidents (ideally in all areas if computational 
power is not a constraint). With short segments, changes in individual vehicles’ speeds 
and travel times can be quickly reflected in the corresponding segment measures. On 
the other hand, providing aggregated data and obscuring the details to some extent is 
beneficial to DOTs, as they often do not have the human resources needed to handle the 
large volume of raw trajectory data and extract critical information from them. 

• Data aggregation and mining are important. DOTs need a systematic way of integrating 
data from different sources (e.g., loop detectors, CCTV cameras, Waze, HERE, INRIX) 
and generating useful data for performance measurement, incident detection, traveler 
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information system, etc. Note that these data come in at varying rates, latencies, and 
accuracies. For example, Waze incident report data can be quite noisy with multiple 
reports for one incident, and the reported locations of the same incident may not match 
well. Another example is loop detector data, which can be used to complement and 
verify INRIX data. However, unlike INRIX data, loop detector data are often not 
streamed to the HOC in real time and are only for fixed locations instead of segments.  

• Innovative data analysis methods and approaches are needed. The existing data analysis 
methods can be adapted and applied in different ways, depending on the available data. 
Using AID as one example, traditional AID methods are based on loop detector data 
and focus on identifying critical patterns/thresholds in terms of spot speed, volume, and 
occupancy measured at up- and downstream locations. With INRIX and HERE data, 
the same statistical or machine learning methods can be used but applied in a different 
way. The focus now is to compare the current and previous speeds of adjacent 
segments, taking segment length into consideration. If Wejo data (i.e., raw vehicle 
trajectories in real time) are available, the AID problem will become identifying 
changing points in time series (i.e., vehicle trajectories). Therefore, evolving data 
sources will necessitate new methods and innovative applications of existing methods. 

• Data sharing and brainstorming: For example, LiDAR data can be used to derive 
accurate ramp geometry information, which can be combined with drone captured 
vehicle trajectories to identify safe entrance speed for speed advisory applications. The 
treasures hidden in various datasets require creative thinking and analysts with both a 
data science background and transportation engineering domain knowledge.  

• With real-time data at more granular levels, we need to know how to process and store 
the data, and ensure that we do not overwhelm our communication and computing 
systems. 

 
2.3.1.3 Data Quality 
Question: Are you satisfied with the existing data quality and reliability?  For example, many 
state DOTs have purchased Waze, INRIX, and StreetLight data. The quality of these datasets 
needs to be rigorously checked. Given their accuracies, they can then be used for appropriate 
applications.  
DOTs in general are satisfied with probe data, which appears to be reliable on high-volume 
roadways (~8-10% penetration rate). For low-volume roadways, traffic data can be less reliable. 
The dependability of probe/crowdsourced data, such as Waze and INRIX, relies heavily on the 
number of users or data contributors. Therefore, such data for low-volume roads (e.g., rural 
roads) with few Waze or GPS users could pose challenges. Although averaging data over 
extended time periods can partially address this issue, the optimal solution is to increase the 
number of data contributors.  
 
Probe and crowdsourced data are widely utilized by DOTs, with an awareness of their limitations 
but a recognition of the benefits derived from their extensive coverage and high temporal 
granularity. DOTs express interest in a systematic assessment of the quality of such data, 
considering factors like sampling rate, accuracy, and confidence levels. Additionally, there is a 
need to maintain and modernize traditional sensors, to monitor their conditions and stream data 
to highway operation center (HOC) in real time. 
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A gap exists between infrastructure assets management (e.g., bridges, pavement) and ITS/TSMO 
assets management. Maine, Vermont, and New Hampshire are actively working to bridge this 
gap, aiming to develop an asset inventory for their ITS and TSMO-related assets. This effort can 
be coupled with the modernization of traditional sensors. Unlike physical infrastructure like 
bridges or tunnels, ITS assets may appear normal but can stop functioning suddenly. Therefore, 
real-time status monitoring is crucial. 
 
It is important to assess the quality of data from third-party vendors. Such evaluations ideally 
should be conducted at a regional level instead of by individual DOTs, as the cost of a thorough 
study can be high. At times, traditional data sources may be entirely absent. In such cases, 
considering nontraditional data sources is beneficial and likely better than having no data at all.  
DOTs typically lack a specific protocol for determining which data source(s) can be used for 
design and other purposes. They approve the use of nontraditional data source(s) on a case-by-
case basis.  
 
Several informal studies have been conducted to compare the traffic counts from StreetLight 
with field measurements. One concern was that StreetLight traffic counts were calibrated based 
on permanent counting stations on major highways. The accuracy of StreetLight traffic counts 
for local roads was not as high as that for major highways. 
 
All DOTs have stationary sensors (e.g., loop detectors, microwave sensors) to collect traffic 
counts, speeds, etc., on major highways. Although this data could potentially be used to calibrate 
probe data, there are some issues: (1) these sensors are not connected to the highway operation 
center (HOC), and traffic operators do not have real-time information on the status of these 
sensors. Sometimes, DOTs lose months of data from a sensor before realizing it; and (2) most 
sensors are on interstate highways, making it challenging to validate probe data for other 
highways. Adding new sensors at strategically chosen locations on local highways for data 
validation would be beneficial. Additionally, being able to monitor sensor health status, similar 
to what the ATSPM system does, is important. Some DOTs have found that TomTom data 
matches their sensor data well, potentially due to TomTom's integration of information from 
diverse sources. 
 
The Eastern Transportation Coalition has conducted many validation studies of the probe data 
primarily for highways. They plan to expand such efforts to cover arterials and local roads over 
the next few years. 
 
2.3.2 Emerging Data Sources 
2.3.2.1 Data Collection Methods 
Question: Short- and long-term plans to meet agency’s data needs while minimizing the life-
cycle cost (e.g., relying on 3rd-party vendors vs. investing in data collection infrastructure) 
and maximizing the data collection system robustness and reliability (e.g., reliability of 
crowdsourced data depends on the number of data contributors). 
DOTs do not have a consensus on the direction of future data collection methods. Currently, 
most DOTs utilize a combination of methods, including their own data collection infrastructure 
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and third-party data vendors. It is likely that DOTs will continue with this dual approach in the 
near future. 
 
Some DOTs prefer third-party data vendors over DOT’s own data collection infrastructure due to 
considerations of life cycle and maintenance costs. Maintaining DOT’s own infrastructure often 
requires setting up short-term work zones. Using data vendors such as HERE does not require 
significant infrastructure investment, and it reduces personnel risk during infrastructure 
maintenance. In some states, Bluetooth is primarily used in smart work zones for travel time data 
collection. Meanwhile, traffic detection is shifting to systems like radar and cameras, and in-
pavement loop detectors are no longer being installed. 
 
Traffic counters and weather stations are still being added in some states. The collected data can 
be compared with data products from third-party vendors, even though such data are limited to 
fixed locations. There is no clear consensus on the preferred direction (e.g., investing in their 
own data collection infrastructure vs. purchasing data from third-party vendors) for the future. 
DOTs acknowledge the benefits of leveraging data from private vendors, as it entails no initial 
investment and avoids the costs and challenges associated with maintenance. 
 
Another challenge involved in making this decision is the constant evolution of technologies, 
which is difficult for public agencies to keep up with. Some technologies may become obsolete 
quickly, posing a risk to heavy investments. From this perspective, it makes sense to shift the 
risk to private companies and procure data products from them. In most cases, private companies 
can adapt to technological changes more swiftly than public agencies. The traditional model of 
design, build, and maintain may not be as effective in the future. It is likely more beneficial to 
adopt a data-as-a-service model. 
 
The maintenance of ITS and data collection infrastructure is a significant challenge for DOTs. 
When DOTs own the infrastructure, they must invest in staff training, especially as new 
technologies are constantly introduced. Sometimes, hiring vendors becomes necessary for 
maintenance. Additionally, ensuring consistency in technology is critical. Otherwise, DOTs 
might end up with various types of devices on the road, requiring them to keep a broad range of 
spare parts and their maintenance staff to be familiar with diverse technologies. Simply letting 
vendors handle operations and maintenance is not a perfect solution either. This approach gives 
rise to data integration issues. For example, some DOTs encountered difficulties in obtaining 
data from toll road authorities. Moreover, different vendors use distinct data structures and 
formats, creating barriers for integrating data from various sources for in-depth data analysis. 
 
DOTs are constantly facing the question of whether to repair and install additional traffic sensors 
or simply purchase data from private companies. A main reason for this dilemma is the 
maintenance cost associated with existing traffic sensors. If companies can provide accurate 
volume data, many DOTs are likely to favor third-party data vendors to avoid the hassle and 
costs of maintaining existing sensors. Another issue with buying data from vendors is their 
reliability, which is significantly affected by the sample size. In Northern New Hampshire, the 
sample size for probe data is lower than Southern New Hampshire, and understandably, the data 
quality is also lower. 
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In addition to building and investing in data collection infrastructure, maintenance is critical. 
Maintaining a state of good repair of ITS infrastructure is important but has not received enough 
attention. DOTs are not only concerned with the price of data products provided by vendors; they 
are also concerned with the life-cycle costs for maintaining their own data collection 
infrastructure. 
 
2.3.2.2 Emerging Data Sources 
Question: Ridesharing companies (e.g., Uber, Lyft), logistics companies (e.g., UPS), Cell 
Phone data (e.g., from Verizon), and Connected and Automated Vehicles are producing tons 
of data each day. Any plans to utilize data from emerging sources for TSMO? 
Some of these datasets are also included in the probe data such as HERE and INRIX. In this 
sense, they have been widely utilized by DOTs. Overall, DOTs are aware that there are many 
emerging data sources beyond the probe data that could be useful. But DOTs have not yet 
extensively incorporated those. One reason is that DOTs have not seen convincing examples 
demonstrating how the emerging data could significantly benefit TSMO. 
 
Although some mobile carriers have approached DOTs, specific applications have not been 
implemented yet. Cameras have been widely used by DOTs for generating traffic counts. DOTs 
acknowledge that, compared to probe vehicle data, this method requires equipment installation 
and is difficult to scale up. 
 
Autonomous vehicle (AV) companies have collected a vast amount of data, including high-
resolution vehicle trajectories of AVs and nearby vehicles, and roadway conditions derived from 
camera/LiDAR data. There is no clear legislative guidance on what data could and should be 
shared. AV companies are concerned about data privacy, which hinders data sharing. On the 
other hand, public agencies do not know what data is available, what to request from AV 
companies, and how to securely store and analyze the massive data. Data from such tech 
companies will become increasingly important, which may cause some of the existing ITS 
technologies to be obsolete (e.g., variable message signs). At the moment, DOTs lack a formal 
plan on how to prepare for this future. 
 
2.3.2.4 Data Sharing 
Question: Transit agencies (e.g., GTFS data), DOT’s maintenance vehicles (e.g., plow trucks), 
and Automated Traffic Signal Performance Measures (ATSPM) systems can also be used to 
generate a lot of valuable data. Any plans to coordinate different DOT divisions? 
Many DOTs are either using or planning to use AVL and their maintenance vehicles for data 
collection. Several DOTs have deployed the ATSPM system and are interested in exploring how 
such data can be used for improving traffic operations and safety. 
 
There is a consensus that data sharing among different DOT divisions would be beneficial. 
However, there are not many data-sharing activities among different divisions of DOTs. Several 
reasons could contribute to this. First, there are not many urgent needs to share data. Second, 
individuals are not familiar with the types of data owned by other divisions own. Third, there 
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was a lack of full understanding regarding the value of the data they possessed for other 
divisions. 
 
2.3.3 Data Integration and Analysis 
2.3.3.1 Artificial Intelligence (AI) and Data Analysis 
Question: AI and edge computing technologies are making it possible to extract accurate 
traffic data using existing traffic cameras (or drone-mounted cameras) and turn cameras into 
smart sensors, better utilizing the existing data and data collection infrastructure. Is your 
agency investigating/interested in such technologies? 
There are many potential AI and edge computing applications such as traffic camera data 
processing. Issues related to camera data processing, including software licensing, access, 
privacy, and recording, have limited DOTs’ ability to apply them on a large scale. Besides 
cameras, AI has been used for modeling TSMO data, although this is usually outsourced rather 
than done in-house by DOTs. Another important application area for AI and edge computing is 
CAV. Edge processing could help with the structuring and application of CAV data, allowing 
them to be more effectively utilized for downstream analysis. 
 
With the assistance of consultants, most DOTs have experience with using AI for various 
applications, including pedestrian detection in tunnels using existing cameras, processing drone 
videos, and counting traffic. Some DOTs do not have an immediate plan to use AI and edge 
computing technologies. They are concerned about the significant efforts needed to upgrade and 
expand the existing camera network. Overall, although most DOTs have not conducted in-house 
case studies using AI and edge computing, they express interest in innovative technologies that 
can enhance efficiency and reduce costs. 
 
As part of DelDOT’s AI-ITMS project, they are developing and testing machine vision 
capabilities. Their goal is to gradually replace in-pavement detection technologies with “non-
intrusive” detection technology. The entire transition is expected to take many years, given that 
DelDOT is responsible for between 20,000 and 30,000 loop detectors. DelDOT is reviewing 
detector design requirements to fully leverage the potential of AI. 
 
2.3.3.2 In-House Data Analysis or Outsourcing 
Question: Should data analysis be done in-house or by consultants? How to integrate the data 
analysis efforts of different DOT divisions?   
Most DOTs engage in data analysis work both in-house and through consultants, depending on 
the type of work, available resources, and their workload. Some DOTs have established a 
dedicated data analysis team within their agency. It is unclear to what extent the in-house 
analysis would cover. For the in-house data analysis, the priority areas are like to be crash data 
and traffic data analysis (e.g., probe data, ITS data). 
 
Many DOT vendors store their data on cloud servers. Therefore, IT support is important for 
DOTs to integrate data from vendors and other sources, such as downloading those datasets to a 
local server and integrating them. Data vendors typically are profit-driven and may not always be 
motivated to integrate their data with DOT data. As a result, some of the data integration work 
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may need to be performed by DOT staff. This issue is closely related to workforce development, 
DOT staff training, etc. 
 
At times, DOTs prefer to conduct data analysis in-house if resources are available. While hiring 
consultants can be helpful, it is beneficial to have experts in DOTs knowing what consultants are 
doing and what DOTs are paying for, underscoring the importance of developing in-house data 
analytics capabilities. 
 
2.3.3.3 Investing in Data Analytics 
Question: Short- and long-term plans for investing in data analytics and workforce 
development. 
Although DOTs may not have specific plans to invest in data analytics and workforce 
development, they all recognize the importance of such efforts. Several state DOTs have recently 
hired data analysts/scientists or created related positions/offices.  
 
2.3.4 Data Archiving, Sharing, Security, and Privacy 
2.3.4.1 Data Management Protocols 
Question: Any protocols for how data should be reduced and how long should a dataset be 
archived (in the original form or reduced/processed form)?  
How long a dataset should be retained generally depends on the nature of the data and agency 
data retention policies. DOTs have established policies governing data retention, privacy, and 
security. However, many DOTs face challenges in handling the growing volumes of data and 
extracting insights from the massive datasets. Data storage is a major challenge for the IT 
departments of state DOTs. It is critical to involve IT in data collection, storage, and sharing 
processes to ensure that data sharing align with agency privacy and security policies. 
 
2.3.4.2 Measures for Protecting Privacy and Security 

Question: What kind of measures is in place to protect privacy and security?  
All DOTs recognize the importance of data privacy and security. Some have a position 
specifically for handling data and policy. Some have their IT department work closely with the 
TSMO division to handle data security issues. 
 
2.3.4.3 Data Sharing 
Question: Standards and protocols to guide practices such as: what kind of data should (or 
should not) be shared and how to share them (e.g., using Amazon Web Services or DOT 
owned servers)? 
Most DOTs use both third-party cloud services and in-house servers for data storage. Each state 
has its own record retention policies that apply to the collected data. These policies specify how 
long records or data should be retained and when they can be destroyed. New system vendors 
often host data on the cloud, and they need to comply with state data security requirements while 
providing a data retention plan. In some cases, hosting data on the cloud is the only option. 
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Most data collected by public agencies is subject to the Public Information Act. Agencies 
typically avoid collecting data with personally identifiable information (PII) or business 
confidential information, making it easier to share the collected data. 
 
2.3.5 Stakeholders and Workforce 
2.3.5.1 Stakeholders 
Question: List of stakeholders? We may want to identify stakeholders within DOT to support 
the investment in data collection and analytics. 
Stakeholders identified include: 

• Internal: IT, ITS, TMC, safety/traffic, GIS, maintenance, planning, performance measures, 
communications to the public, legal. Essentially, all divisions within a DOT should be 
considered key stakeholders for data collection and analytics because any decision-making 
process should be data-driven. It is important to involve IT, especially for system and data 
integration, as well as maintenance. 

• External: 911, transit, emergency response/first responders, state police, MPO 
 
2.3.5.2 Organizational Structure 
Question: What kind of organizational structure changes are both feasible and necessary to 
better prepare DOTs for the future? For example, Iowa DOT has an Office of Analytics; 
Arizona DOT has a Data Analytics section responsible for reporting, maintaining, collecting, 
analyzing, and visualizing the data on roadways in Arizona; and Florida DOT has a 
Transportation Data and Analytics Office that is FDOT’s central clearinghouse and the 
principal source for highway, traffic, travel time, multimodal, and freight and passenger data 
information. 
There is no one-size-fits-all solution regarding organizational structure, as it should be based on 
the needs and available resources of the specific organization. Data analyst positions are being 
created within most DOTs. Sometimes, these positions are distributed across different divisions 
of a DOT, leading to coordination problems. Establishing a central data analytics division to 
coordinate efforts is critical. Creating a central data office/section will provide data analysts with 
a sense of belonging to a core group, making it easier for them to exchange ideas and learn from 
each other. In some cases, DOTs also assign the central data office with tasks such as innovative 
research and grant applications. 
 
2.3.5.3 Workforce Development Needs 
Question: Workforce development needs and current strategies? 
Workforce development is crucial, and providing competitive salaries is essential to attract and 
retain skilled data analysts. DOTs should prioritize hiring data analysts with a background in 
both transportation and data science. Data scientists without a civil/transportation background 
may struggle to understand the nuances, leading to potential problems. Consider training civil 
students and encouraging them to take data analytics courses. This approach allows new hires to 
focus on transportation data analytics and commit to it. 
 

https://iowadot.gov/analytics
https://azdot.gov/planning/transportation-analysis/data-analytics
https://www.fdot.gov/statistics/default.shtm
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Mainstreaming the importance of data and data analytics would be a great strategy. Additionally, 
training the existing workforce to acquire the necessary data skills is another viable approach. 
Some DOTs offer in-house training courses developed by consultants. 
 
2.3.5.4 Additional Thoughts 
Question: Additional Thoughts: Any thoughts you have related to data driven TSMO 
applications. 
There is no boundary when it comes to collaboration in data-driven TSMO applications. 
Collaboration among divisions within DOT is crucial, and inter-agency collaboration in this area 
is equally important. It is also desirable to investigate the impact of Connected and Autonomous 
Vehicles (CAV) on TSMO. 
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3.0 Assessment of Data Needs, Emerging Data 
Sources, and Data Processing and Analytics 

 
 
Building upon the review and interview results in Chapter 2, this chapter offers 
recommendations in four sections: data needs, emerging data sources, data processing and 
analytics, and others, respectively, to state DOTs in the New England region. Based on the 
recommendations and the potential AI application topics identified in Section 2.2, three case 
study topics are selected, which are 
 

• Speed behavior on highway horizontal curves, 
• Speed and lane-changing behavior prior to highway work zone, and 
• Network-wide speeding activity analysis using probe vehicle data. 

 
The first two case studies aim to demonstrate the advantages of using portable sensors to collect 
detailed vehicle trajectory data for studying driver behavior under different circumstances, which 
corresponds to recommendations #2 in Table 3-1 and #10 in Table 3-2. They also showcase the 
capability of using AI to analyze and reduce the collected trajectories (see recommendation #20 
in Table 3-3), generating meaningful conclusions. The third case study is to show the power of 
combining location-based service (LBS) data and traditional road inventory data to study driver 
speeding activities at a network scale, which reflects recommendations #9 in Table 3-2 and #15 
in Table 3-3. 
 
3.1 Recommendations on Data Needs 
 

Table 3-1. Recommendations on Data Needs 

ID Data Needs Recommendations 

1 

• Incident detection 
• Traveler Information 

Systems (TIS) 
• Travel time estimation 

The existing probe data (e.g., TomTom, INRIX) in general 
provides a good coverage of highways. The penetration rates 
of emerging connected vehicle data (e.g., Wejo, Otonomo) 
are continuously growing. DOTs should not invest in 
additional roadside sensors such as Radar and camera for 
incident detection, TIS, and travel time estimation purposes, 
unless it is for areas that are poorly covered by the above 
data sources, or these data sources are unreasonably 
expensive. 

2 • Vehicle trajectories 

Safety is an important aspect of TSMO. Safety analysis has 
been done reactively and based primarily on historical crash 
data. It is interesting to use vehicle trajectory data to 
proactively evaluate safety risk in the future. Vehicle 
trajectories from connected vehicles (e.g., Wejo, Otonomo) 
cover a large area but only a small sample of all vehicles. 
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ID Data Needs Recommendations 

Roadside sensors (e.g., high-resolution Radar, camera, 
LiDAR) cover a short road segment but can capture all 
passing vehicles. Both data sources are important for 
proactive safety risk analysis. DOTs are encouraged to 
investigate both data sources (i.e., connected vehicles and 
roadside sensors). When investing in new roadside sensors, 
DOTs are encouraged to consider sensors that can generate 
vehicle trajectories during both daytime and nighttime. 

3 
• Passenger and freight 

OD 

Data from mobile device GPS (e.g., location-based service 
data) and various vehicle ReID technologies make it possible 
to derive traffic OD for a large geographic area. This may 
potentially be done for passenger vehicles and heavy trucks 
separately. Such OD information is not only important for 
planning purposes, but also will substantially increase 
DOTs’ ability to understand driver behavior and predict 
transportation system use and response to disruptions. 
TSMO and planning divisions are encouraged to work 
together on deriving and evaluating OD information using 
LBS and vehicle ReID data. 

4 
• Traffic volume and 

capacity 

Existing probe data only covers speed and travel time. 
Estimating traffic volume and capacity (e.g., under different 
weather conditions) can be very interesting. Such 
information can be used together with OD to predict when 
congestion (not caused by incidents) may occur and the 
corresponding queue growing and dissipating processes. 
Although some data vendors claim that they can provide 
traffic volume data such as segment AADTs and intersection 
turning movement counts, the accuracy of such data needs to 
be thoroughly evaluated, especially for rural areas where 
there are not many permanent traffic monitoring stations to 
provide calibration data. 
 
Existing traffic monitoring stations are mainly on major 
highways to satisfy the HPMS requirement. DOTs should 
expand the station network using roadside sensors. Such 
sensors may also be used to provide vehicle trajectory data 
for safety analysis, vehicle OD, and detailed vehicle 
classification data (see below). 

5 
• Detailed vehicle 

classification and 
ReID data 

AI technologies make it possible to detect, track, and classify 
vehicles reliably from RGB camera, thermal camera, Radar, 
LiDAR, and traditional loop detectors. For example, 
retrofitted loop detectors and camera + AI technologies can 
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ID Data Needs Recommendations 

differentiate among vehicles such as flatbeds, dry goods 
semitrailer, tankers, refrigerated trucks, and recreational 
vehicles. DOTs are encouraged to consider such 
technologies.  
 
DOTs are not encouraged to install new loop detectors due to 
their high installation and maintenance costs. However, 
retrofitting existing loop detectors can extend their service 
life and generate more useful information. 

6 • Travel time  

For areas without good probe data coverage, DOTs are 
encouraged to consider installing Bluetooth sniffers/readers 
to collect travel time data. DOTs can also install sensors to 
read E-ZPass transponders. For example, New York City has 
been using E-ZPass transponder data to track vehicles and 
measure travel time. 

7 • Corridor freight data 
Parking information along major corridors such as I-95 is 
important for truck drivers. DOTs may use camera + AI + 
edge computing + 4G technologies to collect and share such 
information. 

8 
• ITS asset condition 

data 

Detailed and real-time condition information about ITS 
assets is critical. This is especially true for traffic controllers 
(e.g., ATSPM) and ITS assets that provide real-time traffic 
data. Tracking such data is important for ensuring system 
safety (e.g., a malfunctioning traffic signal can cause 
accidents) and developing preventative maintenance plans. It 
is strongly recommended that DOTs invest in this area. 
Some of the data does not need to be transmitted to the 
Traffic Management Center (TMC) in real time. For 
instance, the detector condition data may be reported every 
hour instead of minute to the TMC. 

 
3.2 Recommendations on Emerging Data Sources 
 

Table 3-2. Recommendations on Emerging Data Sources 

ID Emerging Data Sources Recommendations 

9 
• Connected vehicles 

and travelers 

It may take many years for automated vehicles to occupy the 
streets. However, connected vehicles are very close to us 
now. Many auto makers have already been collecting data 
using their new vehicle models. These datasets are packed 
and sold by companies such as Wejo and Otonomo. They 
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include vehicle trajectories as well as event logs such as 
wiper speed and activation/deactivation. 
 
Travelers nowadays depend heavily on mobile devices and 
various Apps, even knowing that their privacy is at risk. 
These mobile devices and Apps are contributing critical data 
(e.g., StreetLight) for understanding traveler behavior under 
different traffic conditions.  
 
Useful information can be derived from such data sources, 
including OD, route and mode choice, driver behavior, and 
safety issues associated with highway geometric designs. 
DOTs should explore the potential applications of such 
datasets and their impacts on traffic operations and safety. 
 
DOTs should also work with legislators to push technology 
companies such as Google to make such datasets available to 
public agencies. Such datasets are collected from the public 
and probably should be made available for free or at a 
reduced price to public agencies for the benefits of whoever 
contribute the data. 

10 

• Sensors powered by 
AI and edge 
computing: thermal 
and RGB cameras, 
loop detectors, 
LiDAR, Radar, E-
ZPass transponder 

Advanced sensors powered by AI and edge computing 
technologies will be another important data source.  
 
Thermal and RGB cameras can detect, track, and classify 
vehicles, pedestrians, and bicycles. They can detect lane 
changing activities, vehicles stopped in the emergency lane, 
bus lane violations, reidentify vehicles at different locations, 
etc. 
 
High-resolution LiDAR and radar can generate more 
accurate vehicle speed and location information than 
cameras and cover larger areas.  
 
Vehicle signatures from retrofitted loop detectors can be 
used to classify and reidentify vehicles.  
 
New York City has been using E-ZPass transponder data to 
estimate travel time.  
 
DOTs are encouraged to explore the potential of traditional 
and new sensors mounted on portable platforms. These 
portable platforms can be moved to different locations to (1) 
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collect trajectory data for safety studies, and (2) collect speed 
and travel time data to complement the probe and connected 
vehicle data in rural areas. 

11 
• Automated vehicle 

data 

Car manufacturers such as Tesla are collecting a vast amount 
of data (e.g., videos, vehicle control parameters) from 
vehicle owners. The data covers driver behavior and the 
surrounding environment.  
 
For example, Tesla uses such data to calculate safety scores 
for drivers. Such data can also be used to detect road debris, 
pavement cracks, pavement marking conditions, damaged 
traffic signs, problematic highway geometric designs, etc.  
 
There are already commercial products based on probe (e.g., 
INRIX) and connected vehicles (e.g., Wejo, Otonomo) data. 
It is anticipated that there will be commercial datasets 
available in the future that are collected by semi- or fully 
automated vehicles. DOTs should take this potential data 
source into consideration when making future data and data 
collection infrastructure decisions. 

 
3.3 Recommendations on Data Processing and Analytics 
 

Table 3-3. Recommendations on Data Processing and Analytics 

ID Data Processing and 
Analytics Recommendations 

12 • Data quality validation 
DOTs should continuously monitor the quality of probe and 
connected vehicle data, particularly for rural areas where the 
penetration rates might be low. 

13 
• Data integration and 

conflation 

It would be interesting to integrate crash history, pavement 
condition, and probe vehicle data to find connections among 
them. However, these datasets are organized using different 
referencing systems. Crash data is often based on 𝑥𝑥 and 𝑦𝑦 
coordinates; pavement condition data is typically stored 
using linear referencing systems; while probe data is 
organized by segments (e.g., INRIX uses XD segments). 
Data conflation is a major issue faced by many DOTs and 
should be given enough attention. 

14 
• More detailed incident 

data analysis 
With probe data such as TomTom and INRIX, DOTs can 
derive more detailed incident information, including 
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duration, queue length, clearance time, and effects on 
secondary incidents. Such information can be correlated with 
incident characteristics such as # of lanes closed, # of 
vehicles involved, and injury and casualty to establish 
models to predict future incident impacts. In addition, probe 
data can be used to separate recurring congestion from 
incidents and for queue detection and warning. The recurring 
congestion information in conjunction with OD and travel 
mode choice (e.g., from StreetLight) data can be used to 
develop comprehensive transportation network improvement 
solutions. DOTs are encouraged to explore this area and 
conduct more detailed analysis of probe data. 

15 
• Connected vehicle 

data analysis 

USDOT has funded three connected vehicle pilot projects. 
These vehicles have generated a vast amount of exciting 
data. In the meantime, many auto makers have already been 
collecting data using their new cars. These datasets are 
packed and sold by companies such as Wejo and Otonomo. 
These datasets are not aggregated by segments (like what 
TomTom and INRIX do) and contain more details. DOTs are 
encouraged to investigate such datasets and explore their 
applications beyond incident detection and travel time 
estimation. They can potentially be utilized to estimate crash 
risk and identify safety issues due to inappropriate highway 
geometric designs. 

16 
• Effective utilization of 

existing data 

Existing datasets are not effectively utilized or explored. For 
example, StreetLight data is mainly used for planning 
purposes. It can provide useful OD and mode/route choice 
information for developing contingency traffic management 
plans for special events, major construction projects, and 
accidents. 
 
Data from loop detectors are often not streamed to highway 
operations center in real time. Traffic cameras are only used 
for incident verification and traffic videos are reviewed 
manually. Waze data is not seamlessly integrated with 
INRIX or TomTom data for incident detection/verification. 
DOTs are encouraged to explore methods to integrate such 
data sources and automate the process of integrating them. 

17 • ATSPM data analysis 
Several New England State DOTs have implemented or are 
planning to implement the Automated Traffic Signal 
Performance Measure (ATSPM) system. ATSPM allows 
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DOTs to detect traffic signal related hardware and control 
plan issues in real time and remotely from the Traffic 
Management Center (TMC), identify potential causes, and 
quickly dispatch staff as needed.  It helps to minimize the 
impacts of traffic signal control malfunction and improve 
traffic safety at signalized intersections. ATSPM systems 
generate high-resolution (e.g., every 1 second) detector and 
signal controller data (e.g., detector on/off, green light on). 
How to effectively utilize such data beyond calculating 
signal performance measures is a very interesting question, 
which has not been adequately investigated. ATSPM is 
getting increasingly popular. DOTs are encouraged to 
explore such datasets for both traffic operations and safety 
applications. 

18 
• Innovative data 

analysis methods 

Emerging data sources such as probe vehicles, connected 
vehicles, and ATSPM require innovative data analysis 
methods. For example, previous incident detection methods 
based on loop detectors are not applicable to probe vehicle 
data. DOTs should investigate innovative analysis methods 
to get the most out of these new data sources. 

19 
• Data sharing and 

brainstorming 

DOTs are encouraged to share data with the public when 
applicable. This may help to generate new application ideas. 
For example, MBTA makes real-time GTFS data public, 
based on which many mobile Apps have been developed 
without costing MBTA anything. With the shared data, 
DOTs may hold data analytics competition among college 
and high school students to identify interesting ideas and 
attract students into the transportation data analytics area. 

20 
• AI + Edge computing 

for data analysis and 
reduction 

Most DOTs struggle with the growing data volumes and how 
to extract insights out of the massive data. With real-time 
data at more granular levels, DOTs need to investigate how 
to best process and store the data, and how not to overwhelm 
communication and computing systems. For example, DOTs 
are encouraged to explore AI and edge computing 
technologies to speed up the processing of images and 
videos. This will significantly reduce the amount of data that 
needs to be transferred and stored. DOTs are encouraged to 
work with universities on this topic. 

21 
• Road Weather 

Information System 
Although all six New England state DOTs have invested a 
lot in stationary and mobile weather stations, more still needs 
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to be done to analyze the collected data. For example, such 
data can be used to estimate the optimal amount of deicing 
materials to be applied. 

 
3.4 Other Recommendations 
 

Table 3-4. Other Recommendations 

ID Others Recommendations 

22 
• Collaboration among 

DOTs 

State DOTs in the New England region face many similar 
issues that are unique to this region (e.g., winter 
maintenance). It is strongly recommended that leaders from 
their TSMO divisions get together regularly to share best 
practices, experience, and issues encountered. 
 
For procurement decisions (e.g., which probe vehicle dataset 
to purchase), working together will give New England state 
DOTs more bargaining power. 

23 
• Organizational 

changes 

Since we are increasingly relying on data to make decisions, 
DOTs should have a central office to handle data related 
issues.  
 
Instead of hosting data scientists/analysts in different DOT 
divisions, having a central office is beneficial for workforce 
training, recruiting, and retaining. Employees in this data 
office can easily help and learn from each other, which is 
helpful for data modeling.  
 
The data office will be similar to the IT department. Every 
DOT division can have some IT experts. However, it makes 
more sense to have a central IT department.  
 
Almost every DOT division depends on data and needs to 
collect, analyze, and store data. Having an office of data 
analytics will allow things to be done more efficiently and 
professionally (in terms of data safety, retention, sharing, 
etc.). With a holistic view of all the DOT data assets and 
how they are being utilized, it would be easier to develop 
data sharing, retention, privacy, and security policies. This 
central office can discuss the data retention needs and 
sharing policies with individual DOT divisions. 
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24 

• Data storage and 
sharing among 
different DOT 
divisions 

Most DOTs use both third-party cloud services and in-house 
servers for data storage. Most states have their own formal 
and informal record retention policies that apply to the 
collected data. 
 
DOTs are recommended to move their data to the cloud 
when applicable, which will make it easy to share data and 
help to ensure data safety, security, privacy, and integrity. 
 
More work needs to be done to promote and facilitate data 
sharing among different divisions of DOTs and different 
agencies (e.g., Transit vs. Highway; Turnpike vs. TSMO). 
Having a central Data Office may help to facilitate data 
sharing. 

25 • Workforce 

Many DOTs are creating data scientist/analyst positions, and 
they are encouraged to continue doing this as needed. 
Although DOTs can always outsource the data analytics 
work to private companies, it is important for DOTs to 
understand what is being done by private companies. 

26 

• Personalized TIS with 
more dynamic and 
precise traffic 
information 

A major part of TSMO is TIS. In the future, personalized 
data sharing with travelers would be important (e.g., sharing 
traffic signal timing data with connected vehicles, Alexa type 
of system instead of 511 phone system, recommender system 
that provides personalized traffic information based on a 
traveler’s location and trip history). Google maps to some 
extents are doing this. With detailed and comprehensive 
(e.g., Transit, work zone) information, DOTs should explore 
what roles public agencies can play in future TIS. For 
example, can DOTs develop an App to share information not 
readily available on Google maps (e.g., scheduled work 
zones) with travelers in this region? Such an App can also 
collect travelers’ mobile device GPS information (when it is 
within the boundary of state highways) for estimating travel 
time and detecting incidents. Such information will not be 
used for any commercial purpose unlike Google maps. 
 
Connected and Automated Vehicles (CAV) will generate a 
lot of data that can be used for TSMO applications. On the 
other hand, CAV will need precise traffic data for making 
safe, efficient, and eco-friendly driving decisions. In the 
future, variable message signs most likely will be phased out. 
Instead, DOTs need to provide traffic information in digital 
formats that can be easily and precisely interpreted by CAV. 



44 
 

ID Others Recommendations 

The traffic information will be much more detailed than what 
is displayed on a variable message sign today and can 
include information such as which lane is closed, taper 
length, distance to lane closure point, average left-turn phase 
duration, average queue length, etc. 

27 
• Drone as a data 

collection platform 

Drones have been widely used by many DOTs for 
infrastructure inspection and providing situational 
awareness. DOTs are encouraged to investigate the potential 
of AI + drones (e.g., drone-in-a-box solution) for post-
disaster roadway condition assessment.  

28 

• Relying on data 
vendor vs. investing in 
data collection 
infrastructure 

Some DOTs are reluctant to invest in new roadside traffic 
sensors such as inductive loops, Radar and camera due to 
installation and maintenance costs. They are more willing to 
simply purchase probe data. DOTs should conduct studies to 
compare the life-cycle costs of relying on data vendors and 
their own data collection infrastructure. 
 
In the future, DOTs can invest in mobile/portable data 
collection units (similar to portable variable message signs) 
for areas that are not well covered by probe data. These 
portable data collection units can also be used to collect 
trajectory data for safety studies.  
 
Also, DOTs should invest in retrofitting existing traffic 
cameras and loop detectors using AI and edge computing 
technologies to expand the capacities of these traditional 
sensors. 
 
DOTs may work together and develop data and 
communication interface standards for vendors. In this way, 
DOTs can easily switch from one vendor to another to obtain 
the same data elements. This flexibility and independence 
may potentially increase the competition among vendors and 
reduce the sensor maintenance and replacement costs. 
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4.0 Case Study on Speed Behavior on Highway 
Horizontal Curves 

 
 
It is estimated that over 25% of fatal crashes are on horizontal curves. It is important to have a 
clear understanding of how vehicles behave on those segments in response to different warning 
signs and pavement markings and under various weather and environmental conditions. This 
case study utilized advanced radar and thermal camera sensors to collect vehicle trajectories on 
horizontal curves. The collected data was analyzed and compared with the corresponding 
TomTom data.  
 
The main purpose of this study was to demonstrate the advantages of using portable sensors to 
collect detailed vehicle trajectory data and use AI techniques to model the data for understanding 
driver behavior. Given the limited time and resources available, this study did not include 
altering existing traffic signs and pavement markings and investigating the impacts of such 
changes on driver behavior. However, the proposed portable sensors can be used for this 
purpose. 
 
4.1 Site Identification and Data Collection 
 
With the inputs from the NHDOT, the research team identified five high-risk horizontal curves. 
We initially planned to identify sites based on crash history. However, such data was 
unavailable. The selected sites are provided in Table 4-1 and listed in Figure 4-1 through Figure 
4-5. 
 

Table 4-1. Selected Horizontal Curves 

Site # Coordinate Site Name Start Date End Date 
1 42.7316584, -71.4535208 Nashua 4/11/23 4/16/23 
2 43.4534073, -71.5710513 Tilton North 6/8/23 6/17/23 
3 43.4529169, -71.5707403 Tilton South 6/8/23 6/17/23 
4 44.3247220, -71.8052780 Littleton North 6/21/23 6/26/23 
5 44.3064868, -71.7982047 Littleton South 6/21/23 6/26/23 
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Figure 4-1. Overview of the Nashua Site 

 

 
Figure 4-2. Overview of the Tilton North Site 
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Figure 4-3. Overview of the Tilton South Site 

 
 

 
Figure 4-4. Overview of the Littleton North Site 
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Figure 4-5. Overview of the Littleton South Site 

 
Ultra-high-definition radar and thermal cameras were used to collect traffic data at each site. The 
radar sensor used can detect and track individual vehicles up to 1,000 ft. Both the radar and 
camera sensors were powered by battery and solar panel. Some lessons learned regarding data 
collection through this case study include: 
 

• The radar sensor should be mounted between 20 and 26 ft above the pavement. 
• Ideally, both radar and camera sensors should be mounted on a stable structure (e.g., a 

sign gantry) directly above the traffic, although achieving this in many cases is difficult. 
• Mounting radar and camera on the roadside makes it challenging to separate trajectories 

by lane. Therefore, if the research aims to study lane changes, mounting sensors on the 
roadside will make the subsequent data analysis very challenging. 

• Both radar and camera were mounted on a trailer. The trailer’s vibrations affected the 
quality of the collected data. 

• The radar unit reliably detected and tracked small-sized vehicles. For heavy trucks, it 
sometimes generated phantom objects. This was likely caused by the radar’s mounting 
position. Mounting the radar directly above the traffic may well address this problem. 

 
4.2 Radar Data Analysis 
 
The purpose of collecting the radar data was to understand how drivers behave when 
approaching and traversing a horizontal curve. Although interesting empirical findings were 
obtained from the collected radar data, the data was collected from only five sites and the sample 
size was not enough to show how roadway geometry such as lane width and curve radius affect 
driver behavior. Therefore, this study also utilized StreetLight data for highway horizontal curves 
and ramps in Maine and conducted a network-wide speeding analysis. The speeding analysis 
results are presented in Chapter 6 of this report.  
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The speed data generated by radar was analyzed from the following three perspectives, and the 
analysis results are presented in the remaining part of this section. 
 

• How do average vehicle speeds change over time for different sites? This includes speed 
distributions at fixed locations and how average vehicle speeds vary across a road 
segment. 

• Comparison of radar speed data and TomTom speed data. 
• Detection of outliers in speed profiles using artificial intelligence (AI) algorithms.  

 
4.2.1 Speed Distributions and Profiles 
This subsection presents the following results: 
 

• Distribution of Segment Average Speeds: The speeds of vehicles across a road segment 
were averaged, and histograms of the average speeds for small and large vehicles were 
then plotted. For each site, histograms were generated for four time periods to illustrate 
speed variations over time: 0:00-4:00 AM, 6:00-8:00 AM, 10:00 AM-2:00 PM, and 4:00-
6:00 PM. 

• Average Speed Profiles across a Road Segment: For each site, the entire road segment 
was divided into 30-ft sections. For each section, the average speed of all vehicles was 
calculated. This average speed varied across road sections during the above-mentioned 
four time periods and the variations were plotted.  

• Average Speed over Time at a Specific Location: We selected a location on the road 
that is 350 feet away from the radar. The average speed of all vehicles passing this 
location was recorded. This average speed varied over a 24-hour period, and the 
variations were plotted for each of the five locations. 

 
Given the large number of figures generated, they are included in Appendix A instead of this 
section. Some key findings from these figures are: 
 

• Average vehicle speeds during 0:00-4:00AM were clearly lower than those during the 
other three time periods considered in this study.  

• Although the average small-sized vehicle speeds for all sites were close to 70 mph, some 
small-sized vehicle speeds exceeded 80 mph. 

• The average large-sized vehicle speeds were close to 65 mph, with few large-sized 
vehicles exceeding 70 mph. 

• Vehicles did not change speeds significantly when approaching/traversing a horizontal 
curve. This is probably because the horizontal curves selected were all on interstate 
highway 93, which has a high design standard. Also, there were no speed limit signs prior 
to the five selected horizontal curves.  

 
4.2.2 Comparison of Radar Data with TomTom Data 
With the generous support of the NHDOT, we obtained TomTom speed data for the two sites in 
Tilton, NH. The TomTom dataset included speed data for both Tilton North (upstream) and 
Tilton South (downstream). The TomTom upstream data was for a single segment of about 1,600 
feet. The downstream data was for ten shorter segments of varying lengths. To facilitate a 
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meaningful comparison between TomTom and our radar data, we selected the upstream 
TomTom segment and three TomTom downstream segments with the longest lengths. These 
TomTom segments were matched with our radar data. 
 

Table 4-2. Upstream speed comparison 
Time TomTom TomTom  Radar  
 Mean (mph) Sample Size Mean (mph) Sample Size Standard Deviation 

(mph) 
00 – 01 75 6 69, 69, 69 32, 32, 32 7, 7, 6 
01 – 02 69 7 66, 66, 66 16, 16, 16 7, 8, 7 
02 – 03 75 9 74, 74, 74 25, 25, 25 6, 6, 6 
03 – 04 74 7 67, 67, 67 21, 21, 21 15, 15, 14 
04 – 05 74 13 72, 71, 71 34, 34, 34 8, 10, 9 
05 – 06 74 17 73, 73, 73 75, 75, 75 7, 7, 7 
06 – 07 76 45 75, 75, 74 147, 147, 147 5, 5, 5 
07 – 08 74 95 73, 73, 73 306, 306, 306 6, 6, 6 
08 – 09 76 158 74, 74, 74 443, 443, 443 6, 6, 5 
09 – 10 74 206 73, 73, 73 566, 565, 566 5, 5, 5 
10 – 11 75 232 73, 73, 73 677, 677, 677 6, 6, 6 
11 – 12 75 244 74, 73, 73 626, 626, 625 5, 5, 5 
12 – 13 74 248 73, 73, 73 617, 618, 618 6, 6, 6 
13 – 14 72 247 72, 72, 71 555, 555, 555 6, 6, 6 
14 – 15 75 243 74, 74, 74 543, 643, 643 6, 6, 6 
15 – 16 75 269 75, 75, 75 590, 590, 590 6, 6, 6 
16 – 17 77 242 75, 75, 75 409, 409, 409 6, 6, 6 
17 – 18 76 243 76, 76, 76 144, 144, 144 5, 5, 5 
18 – 19 76 244 76, 76, 76 207, 207, 207 6, 6, 6 
19 – 20 76 184 75, 75, 75 205, 205, 205 6, 6, 6 
20 – 21 76 136 75, 75, 75 51, 51, 51 5, 5, 5 
21 – 22 74 159 77, 76, 76 51, 51, 51 7, 7, 7 
22 – 23 75 83 73, 73, 73 161, 161, 161 6, 6, 6 
23 – 24 74 37 73, 73, 73 104, 104, 104 6, 6, 6 

 
The comparison results are presented in Appendix B (Figure 9-49 through Figure 9-72) with 
each figure for one hour. It can be seen from these figures that: 
 

• For the upstream segment, TomTom data matched radar speed data better when the 
traffic volume was higher. Significant differences between the two sets of data were 
observed between 0:00-4:00 AM. This is likely due to the low sample rates during those 
periods, as shown in Table 4-2 and Table 4-3.  

• For downstream segments, there were significant differences between the two sets of data 
throughout the day. A possible reason is that TomTom data only reported the speeds of 
vehicles from the interstate highway, not those from the on-ramp. Our radar captured 
vehicles from both the highway and the ramp, and ramp vehicles were slower than 
highway vehicles. 

• For both upstream and downstream segments, TomTom average speeds appeared to be 
higher than radar speeds. This could be due to the different ways that TomTom and radar 
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average speeds were calculated. We do not know exactly how the TomTom speed data 
was calculated.  

• Overall, the TomTom data at Tilton North (upstream) seemed accurate except for the 
early morning period when the sample sizes were relatively small as shown in Table 4-2 
and Table 4-3. 

 
Table 4-2 and Table 4-3 provide a comparison of data between TomTom and radar for both the 
upstream and downstream locations in Tilton, NH.  
 

Table 4-3. Downstream speed comparison 
Time TomTom TomTom  Radar  
 Mean (mph) Sample Size Mean (mph) Sample Size Standard Deviation 

(mph) 
00 – 01 75, 75, 75 6 58, 59, 60 72, 72, 72 10, 9, 9 
01 – 02 70, 71, 68 7 58, 58, 59 42, 42, 42 8, 8, 8 
02 – 03 73, 73, 71 9 63, 64, 65 45, 45, 45 10, 9, 9 
03 – 04 73, 73, 71 7 61, 62, 63 35, 35, 35 14, 13, 12 
04 – 05 74, 74, 73 13 65, 66, 67 52, 52, 52 10, 9, 9 
05 – 06 75, 74, 74 17 65, 66, 66 130, 130, 130 9, 8, 8 
06 – 07 76, 75, 74 45 66, 67, 68 253, 253, 253 10, 9, 9 
07 – 08 74, 74, 73 95 66, 67, 67 484, 484, 484 9, 8, 8 
08 – 09 76, 75, 74 158 67, 68, 68 689, 689, 689 9, 8, 8 
09 – 10 74, 74, 73 206 66, 67, 68 826, 825, 825 9, 8, 7 
10 – 11 74, 74, 73 232 67, 68, 68 1012, 1011, 1009 9, 8, 7 
11 – 12 74, 74, 73 244 67, 68, 69 1017, 1019, 1017 9, 8, 7 
12 – 13 75, 75, 75 248 65, 66, 66 920, 922, 922 9, 8, 8 
13 – 14 72, 71, 70 247 64, 65, 66 909, 909, 910 9, 8, 7 
14 – 15 75, 74, 73 243 66, 67, 68 1011, 1011, 1010 9, 8, 8 
15 – 16 74, 74, 74 269 68, 69, 69 1018, 1019, 1020 9, 8, 8 
16 – 17 76, 76, 75 242 68, 69, 69 1019, 1019, 1019 9, 8, 8 
17 – 18 76, 75, 74 243 68, 68, 68 987, 987, 987 9, 8, 8 
18 – 19 76, 75, 75 244 69, 69, 69 974, 974, 975 9, 9, 8 
19 – 20 76, 75, 74 184 67, 68, 68 746, 746, 757 9, 9, 8 
20 – 21 75, 74, 73 136 67, 67, 67 573, 573, 573 9, 8, 8 
21 – 22 73, 73, 72 159 66, 66, 66 586, 586, 585 9, 9, 8 
22 – 23 73, 74, 73 83 64, 65, 65 377, 377, 377 10, 9, 9 
23 – 24 74, 76, 73 37 60, 61, 62 331, 331, 331 9, 9, 8 

 
4.2.3 Speed Profile Outlier Detection 
The previous two subsections present the radar data in aggregated forms. One major advantage 
of radar data is its high level of detail. It provides the trajectories of individual vehicles. Artificial 
Intelligence (AI) algorithms and other heuristic methods can be developed to analyze radar 
trajectory data and automatically identify risky behavior and dangerous interactions among 
vehicles (i.e., developing surrogate safety measures such as speed variance). Without such 
algorithms, DOTs would have to review the vast amount (e.g., several weeks or months) of 
trajectory data manually. If before-and-after data are collected from the same site, the 
effectiveness of the safety treatments can be evaluated based on vehicle trajectories as well. In 
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addition, surrogate safety measures derived from trajectories can be compared with historical 
crash data to see whether they demonstrate consistent trends. For example, they may both show 
high crash risks during certain time periods or in a specific section of horizontal curves. 
 
As mentioned in Section 4.1, in this study the radar sensor was mounted on roadside. This setup 
was not ideal and limited the accuracy of lateral position measurements, making it difficult to 
differentiate vehicles in adjacent lanes. Therefore, the analysis in this subsection focuses on 
longitudinal trajectories. 
 
One thing we noticed was that radar was good at reliably detecting and tracking small-sized 
vehicles. For large trucks, the radar sometimes generated phantom objects surrounding the true 
objects (i.e., heavy trucks). This was likely due to the suboptimal radar setup. Mounting the radar 
directly above traffic will give a top-down view, which can avoid the signals reflected by the two 
sides of a large truck.  
 
We first cleaned the radar trajectory data by removing short and fragmented trajectories. After 
the data cleaning step, both AI and heuristic methods were used to detect outliers. For the AI 
method, we experimented with the Autoencoder (AE) [13] and Variational Autoencoder (VAE) 
[14] models.  
 
The AE model is an unsupervised neural network model. Its main idea is to encode and reduce 
data dimensionality, generate intermediate data (referred to as Embedding), and then reconstruct 
an output that closely resembles the original data from this Embedding. The AE component 
responsible for encoding and dimensionality reduction is called the Encoder, while the Decoder 
is responsible for data reconstruction. As a variation of the AE model, the VAE model still 
consists of an Encoder and a Decoder. During the encoding process, VAE maps the data into a 
probability distribution beyond simply encoding it. Similarly, during the decoding process, it 
draws samples from the generated probability distribution. The introduction of this probability 
distribution allows VAE to better capture data diversity and enhance data generation richness. 
 
Both AE and VAE models required users to define what a "speed profile outlier" is. We assumed 
that most vehicles follow a similar pattern of movement. Therefore, if a particular vehicle’s 
behavior deviates significantly from this pattern, that vehicle is likely an outlier. Different types 
of deviations can be categorized as follows: 
 

• A vehicle's speed consistently remains significantly higher or lower than the average 
speed for that period. 

• A vehicle's speed continuously decreases or increases during its movement. 
• A vehicle experiences a significant speed drop within a short time frame (e.g., harsh 

braking). 
 
Although both AI and heuristic methods have been applied to outlier detection, we found the 
heuristic methods to be more intuitive, straightforward to implement, and robust for the problem 
under investigation. Therefore, only the results based on the heuristic methods are presented 
here. The AE and VAE algorithms need to be further investigated to improve their performance. 
Other AI models will also be explored in our future research. 
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Figure 4-6. Speed Reduction Outliers in Nashua, NH 

 
First, we focused on situations involving a sudden decrease in speed or harsh braking. Such 
situations were further categorized into four scenarios: a vehicle reduces its speed by 10 mph in 2 
seconds, 5 mph in 2 seconds, 10 mph in 1 second, or 5 mph in 1 second. These four types of 
events can be easily identified based on the trajectories collected by the radar. We counted the 
number of such events and plotted the hourly results in Figure 4-6, which suggests that harsh 
braking events seem to occur mostly during the day around rush hours. 
 
The radar data can show very detailed results. Vehicle "6570" decreased its speed by 10 mph in 1 
second at 08:45 am on April 15, 2023 in Nashua. Its trajectory and the trajectories of surrounding 
vehicles are plotted in Figure 4-7, in which  
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• The red line represents the trajectory of the "risky vehicle" (ID: 6570). 
• The green line represents other vehicles that were traveling at normal speeds within the 

same time window. These vehicles were in different lanes. 
• Additionally, if there is another risky vehicle, occurring within a 3-second interval after 

vehicle marked as red one, we will mark it as blue. But in this study, we did not find 2 
risky vehicles in the same time window.  

 

 
Figure 4-7. Trajectories of Vehicle 6570 and its surrounding vehicles 

 
Out of the six subfigures in Figure 4-7, 
 

• (a) shows a 3D visualization of the x and y coordinates of each vehicle at different 
timestamps. This subfigure probably is the most informative one. 

• (b) shows the speeds of each vehicle at different timestamps. Since this subfigure misses 
the location (x and y coordinates) information, interpreting it is a little challenging. It 
shows the sharp deceleration in speed for the red vehicles. 

• (c) displays vehicle distance to the radar sensor vs timestamp. 
• (d) shows the x and y coordinates for all vehicles.  
• (e) shows the speed vs distance relationship. 
• (f) is a 3D visualization of the x and y coordinates of each vehicle and the corresponding 

speeds, showing that the red vehicles significantly decelerate as it approaches the radar 
sensor. 
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Figure 4-8. Distribution of Excessive Speeding Activities at the Nashua Site 

 
In addition to harsh braking events, excessive speeding activities were also investigated. 
Vehicles exceeding 90, 100, 110, and 120 mph were counted, and their distributions are 
presented in Figure 4-8.  For instance, several vehicles traversed the Nashua NH segment at a 
speed greater than 110 or 120 mph, one at 19:16 on April 11, 2023 and the other one at 23:03 on 
April 13, 2023. The corresponding thermal video footages for these two events were extracted 
and screenshots are provided in Figure 4-9 and Figure 4-10. Specifically, the 23:03 event was 
due to a speeding motorcycle. 
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Figure 4-9. Speeding at 19:16 on April 11, 2023 

 

 
Figure 4-10. Speeding at 23:03 on April 13, 2023 

 
4.3 Video Data Analysis 
 
For video data analysis, we utilized the YOLOv8 L (large) model, specifically trained on our 
custom dataset of thermal images. YOLO, short for "You Only Look Once," is a widely 
recognized and efficient family of deep learning models designed for object detection. These 
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models come in varying sizes, offering a tradeoff between speed and accuracy. In our case, the 
YOLOv8 L model was chosen, prioritizing the accuracy of vehicle detection over the speed at 
which detections occur.  
 
One of the key advantages of using YOLOv8 and similar off-the-shelf deep-learning solutions 
lies in their ready-made architectures. By employing established models, we eliminate the need 
to invest resources in designing and testing new architectures. This not only saves time but also 
ensures that the model benefits from the collective knowledge of the broader deep learning 
community. Additionally, the use of off-the-shelf solutions facilitates faster deployment. With 
models like YOLOv8, the implementation process is streamlined, allowing us to quickly 
integrate the model with other modules. Furthermore, the replicability and portability of these 
models enhance their appeal. Once trained, they can be effortlessly replicated and applied to 
similar tasks, whether for remote analysis or in the field. 
 
To derive vehicle trajectories and conduct related analyses, we employed the ByteTrack tracking 
algorithm to process the results obtained from YOLOv8. This integrated approach ensured a 
seamless and precise analysis process. 
 
Our video data analysis comprised of the following four primary components: 
 

• Camera view change detection 
• Volume and time headway analysis 
• Risky behavior detection 
• Merging point distribution analysis 

 
4.3.1 Camera View Change Detection 
Upon analyzing the acquired video data, we observed frequent changes in the camera view 
across all locations. Figure 4-11 illustrates an instance of this occurrence. Using the trees on the 
left edge of the video frames as references, we can clearly observe the change in camera view 
from 11:59:13 AM to 11:59:14 AM on June 8, 2023, at the Tilton North site. This was because 
the camera and radar sensors were mounted on a trailer instead of a fixed structure. The trailer 
mast, being less stable, exhibited frequent movements, adversely impacting the quality of both 
camera and radar data. To address this challenge, we developed a computer vision algorithm 
specifically designed to detect camera view changes. This algorithm can be beneficial, especially 
when the camera is remotely connected to a control center. It can generate alerts in response to 
camera view changes, signaling instances such as strong winds or the movement of the trailer. 
Such alerts are valuable in maintaining situational awareness and responding promptly to 
potential issues.  
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(a) Normal camera view. (b) Camera view change detected. 

Figure 4-11. Camera view change detection at Tilton North. 
 
Video stabilization is crucial for accurate vehicle tracking and subsequent analysis, as it 
establishes a foundation for consistent and stable video footage. This stability is essential for 
precise object recognition and motion analysis, particularly in dynamic environments. 
Traditionally, achieving video stabilization involved meticulously tracking specific salient 
features, requiring prior knowledge of their positions in the initial video frame. However, our 
approach eliminates the necessity for such prior information, human input, and involvement, 
providing a more streamlined and efficient process. 
 
Our method focused on the automatic detection of points of interest in a video frame. 
Subsequently, we mapped these points in successive frames and computed affine image 
transformations between adjacent frames, all accomplished without the use of deep learning 
techniques. Frames shown in Figure 4-12 are from the Nashua site, and they highlight the 
substantial view change in a one-second interval. The yellow lines in Figure 4-12(c) show the 
changes between two video frames. The distances between the points of interest across frames 
allow us to measure how much the camera moved during a given interval. 
 

  
 

(a) Frame at time 9:01:41 
AM: Points of interest 

(indicated by Os) identified in 
the initial frame. 

(b) Frame at time 9:01:42 
AM: Points of interest 

(marked with Xs) detected in 
the subsequent frame. 

(c) Mapping Points of 
Interest: Yellow lines show 

the correspondence 
between Os and Xs. 

Figure 4-12. Frame-to-frame mapping of points of interest to detect camera movement. 
 
In certain locations, we annotated segmentation for roadways, merge lanes, and gore areas. In 
such instances, we chose to train a deep learning model. By utilizing the annotated roadway 
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segmentation results, we could seamlessly integrate the road context into our system. This 
integration proved invaluable for making precise adjustments to vehicle positions based on the 
road layout. This approach not only streamlined the tracking process but also significantly 
improved its accuracy. 
 
Illustrating this concept with data from the Tilton North site, Figure 4-13 demonstrates how we 
were able to identify and keep track of various regions even when the camera moves or shakes. 
This information was used to refine subsequent analysis, ensuring the integrity of our analytical 
procedures. 
 

 
Figure 4-13. Segmentation mask illustrating detected roadway, gore, and merging lane areas. 

 
4.3.2 Volume and Time Headway Analysis 
Volume analysis examines the number of vehicles in specific sections, identifying peak activity 
periods. Time headway analysis explores temporal gaps between vehicles, providing insights 
into traffic safety and arrival patterns. Examining these metrics provides valuable insights into 
traffic behavior, guiding the development of effective traffic management strategies. 
 
The incorporation of advanced technologies, notably deep learning for vehicle detection and 
tracking, transforms the methodology for volume and time headway analysis. Our system 
operates with minimal human intervention, significantly streamlining the data analysis process. 
By employing deep learning techniques, specifically YOLOv8 in our case, we achieved precise 
vehicle detection and tracking, eliminating the necessity for manual input and human 
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supervision. This automated approach not only accelerates the analysis but also guarantees a high 
level of accuracy by minimizing the potential for human errors.  
 
Figure 4-14 visually represents the hourly vehicle volumes at the Littleton South site. Additional 
visualization and charts for other locations are in Appendix D.  
 

 
Figure 4-14 Hourly vehicle counts for Littleton South. 

 
We conducted an analysis of hourly volume variations between weekends and weekdays. Figure 
4-15 illustrates these variations for the Littleton South location, and for a more detailed 
understanding, hourly volumes are presented as a heatmap in Figure 4-16. This heatmap offers a 
comprehensive overview of traffic dynamics throughout different hours. This analysis was done 
for all other locations, and the remaining charts are presented in Appendix D. In some figures 
within Appendix D, such as Figure 9-89 an Figure 9-93, certain cells appear blank due to 
corruption in the corresponding thermal videos. Each thermal video has a duration of one hour. 
 
In our time headway analysis, we define a specific line segment on the road surface. When a 
vehicle crosses this designated line, our algorithm records the exact time. The time headway is 
then computed by measuring the time gap between this vehicle and the one preceding it, which 
had previously crossed the same line. This method allows us to accurately assess the time 
intervals between vehicles in each lane, providing us with valuable insights into traffic dynamics 
and vehicle arrival patterns. The pseudocode for this approach is given below. 
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Figure 4-15. Hourly Vehicle Counts on Weekends and Weekdays at Littleton South. 

 

 
Figure 4-16. Heatmap depicting the hourly volume of vehicles at Littleton South. 
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1. Initialize empty dictionaries to store crossing times for each lane: 
   - lane1_times = {} 
   - ... 
   - laneN_times = {} 
 (keys of the dictionaries will be trackID of the vehicle.) 
 
2. Define a line segments [LO, L1 ,..., LN]on the road surface for each 
lane. 
  
3. While monitoring the traffic: 
    a. When a vehicle is detected in lane i: 
        i. Record the time of crossing Li as crossing_time. 
        ii. Check the dictionary for lane i: 
            - If it's the first vehicle in this lane: 
                - Store crossing_time as initialization time. 
            - If it's not the first vehicle: 
                - Calculate time headway as crossing_time - 
lanei_times[last_vehicle_in_lanei]. 
                - Store the time headway data for analysis. 
                - Update lanei_times dictionary with the current 
vehicle's crossing_time. 
   
4. End monitoring when video/live feed ends. 

 
Figure 4-17 illustrates the results of the time headway analysis presented as a line chart. The 
analysis is for the Tilton South site on data recorded on June 8, 2023, from 6 PM to 7 PM. The 
chart provides a detailed breakdown of the time headway gap frequencies observed at this site, 
categorized by individual lanes. Note that we excluded time headway gaps longer than 30 
seconds from this calculation.  This detailed breakdown by lane aids in understanding the traffic 
behavior in specific areas of the roadway, providing essential data for traffic management, safety 
assessments, and future road infrastructure planning. 
 

 
Figure 4-17. Time headway gap frequencies by lane and category for the Tilton South site. 
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4.3.3 Risky Behavior Detection Using AI Algorithms 
The application of deep learning techniques has revolutionized our ability to detect and analyze 
risky behaviors among drivers. One notable instance is the detection of vehicles straying into 
restricted areas, such as gore regions during merging, a behavior that poses a significant threat to 
road safety. Employing cutting-edge deep learning models, we can accurately identify these 
violations and record crucial data for further analysis. 
 
At the Tilton North location, we utilized an approach to monitor vehicles merging onto the 
highway. Employing a combination of vehicle and road segmentation results, we developed a 
pseudocode-based system to identify instances where vehicles crossed into the gore region, a 
prohibited area during merging. By assessing the overlap between vehicle segmentation masks 
and the designated gore region in each frame, we recorded the frame numbers, corresponding 
track IDs, and timestamps of these events. Such techniques allowed us to precisely pinpoint and 
analyze instances of risky behavior, enabling a deeper understanding of the factors contributing 
to hazardous driving practices in merging scenarios. Figure 4-18 shows two such instances. The 
pseudocode for this method is given below. 
 
Initialize an empty list to store vehicles that drive over the gore region 
  
For each frame in the video: 
    # Extract segmentation masks for vehicles and road/gore/merging ramp 
    vehicle_mask = get_vehicle_segmentation_mask(frame)  # Returns binary mask 
of vehicles 
    road_mask = get_road_segmentation_mask(frame)  # Returns binary mask of 
road, gore, merging ramp 
     
    # Use track IDs to identify individual vehicles in the vehicle mask 
    vehicle_track_ids = extract_track_ids(vehicle_mask)  # Extract track IDs 
from vehicle mask 
     
    # Iterate through each identified vehicle 
    For each vehicle_track_id in vehicle_track_ids: 
        # Get the segmentation mask for the specific vehicle 
        specific_vehicle_mask = extract_specific_vehicle_mask(vehicle_mask, 
vehicle_track_id) 
         
        # Check if the vehicle mask overlaps with the gore region in the road 
mask 
        if mask_overlap(specific_vehicle_mask, road_mask, gore_threshold): 
            # Record the frame number, vehicle track ID, and timestamp 
            record_event(frame_number, vehicle_track_id, timestamp) 
             
# Function to check mask overlap using a threshold 
Function mask_overlap(mask1, mask2, threshold): 
    Intersection = Count overlapping pixels between mask1 and mask2 
    Union = Count total pixels in mask1 + mask2 - Intersection 
    OverlapRatio = Intersection / Union 
    return OverlapRatio > threshold 
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Figure 4-18. Detecting Vehicles Going Over Gore Region in Tilton North Location. 

 
Figure 4-19 and Figure 4-20 are the heatmaps visualizing the percentage and volume of vehicles 
travelling over the gore region. This gives us a better understanding of the pattern of occurrence 
of such events. The percentage is calculated with respect to the ramp volume in that hour. The 
data shows that travelling over the gore region happened quite frequently at the Tilton North site. 
 

 
Figure 4-19. Heatmap showing percentage of vehicles going over the gore area. 
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Figure 4-20. Heatmap showing number of vehicles going over the gore area. 

 
4.3.4 Merging Point Analysis Using AI Algorithms 
Merging point analysis is for investigating merging behavior and safety at highway ramps. Our 
analysis was based on 24 hours of videos captured on June 22, 2023 at Littleton South. It utilized 
object segmentation and tracking algorithms to gain insights into vehicle merging patterns. 
 
We initiated our analysis by segmenting the merging lane, a process vital for isolating the 
specific area under investigation. This segmentation delineated the boundaries of the merging 
lane, providing a visual reference for our subsequent assessments. Within the segmented merging 
lane, we further categorized specific regions. As shown in Figure 4-21, our classification 
includes: 
 

• Risky Area (Over the Gore) (RED): This zone is identified as particularly hazardous, 
representing instances where vehicles breach the gore area. Detection of vehicles in this 
area signifies risky behavior. 

• Far Region (BLUE): The 'far' region refers to a section of the merging lane that is farther 
from the gore area, indicating a relatively safer position for vehicles merging onto the 
main highway. 

• Farthest Region (GREEN): Positioned at the outermost edge of the merging lane, the 
'farthest' region represents the safest area for vehicles attempting to merge. 
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Figure 4-21. Merging region classification for merging point analysis at Littleton South. 

 
In Figure 4-22, we present a visualization of the percentage of vehicles merging onto the main 
highway at various times of the day. Figure 4-23 compares the merging ramp volume and the 
number of vehicles merging in different regions, and Figure 4-24 compares freeway traffic 
volume and the merging pattern. 
 
Given the limited time, we did not conduct a before-and-after study to investigate how different 
pavement markings may affect the merging pattern. Another interesting direction is to further 
look into the gaps between ramp merging vehicles and highway mainline vehicles. With the AI 
tools developed in this research, such studies can be made possible. 
 

 
Figure 4-22. Percentage of vehicles merging at Littleton South location. 
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Figure 4-23. Comparison of merging ramp volume and merging pattern at Littleton South. 

 

 
Figure 4-24. Comparison of freeway volume and merging pattern at Littleton South.
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5.0 Case Study on Speed and Lane Changing 
Behavior Prior to Highway Work Zone 

 
 
Besides horizontal curves, highway work zones are another hot spot for crashes. Understanding 
how drivers behave and react to different control strategies when they approach highway work 
zones is important. This pilot study focused on a highway zone on I-93 Southbound in Campton, 
NH. The exact location of this work zone is shown in Figure 5-1.  
 

  
(a) Trailer and field view (b) Satellite site view (Red dot 

indicates trailer location) 
Figure 5-1. Work Zone on I-93 in Campton, NH 

 
For this southbound work zone, the left passing lane was closed from August 17 to August 31 in 
2023. The Southbound I-93 left lane merge taper started at mile marker 86.2. Two flashing & 
flanking speed limit signs were located at mile marker 86.4 on the two sides of the highway. The 
right-side sign coordinate was 43.84554167, -71.64636944, and the left-side sign coordinate was 
43.84548611, -71.64611667. A portable changeable message sign (PCMS) was located in the 
median cross-over at mile marker 88.2, and the coordinate was 43.86655556, -71.66287778. The 
PCMS sign was two miles upstream of where the left lane merge taper started. Table 5-1 shows 
how the flashing speed limit signs and the PCMS were controlled from 08/17/2023 to 
08/31/2023. 
 
At this work zone, we collected radar data from 08/17/2023 to 08/23/2023 and thermal video 
data from 08/17/2023 to 08/31/2023. The radar sensor stopped working on 08/23/2023, causing 
the radar data to be shorter than the thermal video data. The exact reason for the radar sensor to 
stop working is unknown. It was likely due to the power supply. Based on the historical weather 
data on wunderground.com, it was cloudy for most of the time from 08/17/2023 to 08/23/2023 in 
Campton, NH. This could have caused the power voltage to be unstable, and the radar sensor 
was sensitive to this issue. After the power voltage was restored to the normal level, the radar 
data logger couldn’t reestablish connection to the radar sensor and retrieve the data.  
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Table 5-1. Work Zone Control Strategies 

Date  

Flashing 
Speed 
Limit 
Signs 

 PCMS 
Messages  

    
LEFT 
LANE 

CLOSED 

POSSIBLE 
SLOW OR 
STOPPED 

 UP/ON UP/OFF DOWN/OFF 
MM 86.4 
MERGE 
EARLY 

TRAFFIC 
AHEAD 

BE AWARE 
8/17/2023 0600 1330 NO ALL DAY NO 
8/18/2023 0600 NO 

 

0900 UNTIL 1230 1230 
8/19/2023 NO NO ALL DAY NO ALL DAY 
8/20/2023 NO NO ALL DAY NO ALL DAY 
8/21/2023 0600 1330 UNTIL 0600 1300 UNTIL 1300 
8/22/2023 0600 1330 NO ALL DAY NO 
8/23/2023 0600 1330 NO ALL DAY NO 
8/24/2023 0600 1330 NO ALL DAY NO 
8/25/2023 0600 NO 1300 UNTIL 1500 1500 
8/26/2023 NO NO ALL DAY NO ALL DAY 
8/27/2023 NO NO ALL DAY NO ALL DAY 
8/28/2023 0600 1400 UNTIL 0600 NO ALL DAY 
8/29/2023 0600 1300 NO NO ALL DAY 
8/30/2023 0600 1300 NO NO ALL DAY 
8/31/2023 0600 1730 NO NO ALL DAY 

 
This pilot study aims to demonstrate how the radar and camera sensors can be used to investigate 
two important aspects of work zone traffic operations: (1) vehicle approaching speed, and (2) 
vehicle merging behavior. The first aspect is to find out how vehicles adjust their speeds when 
approaching a work zone. For the second one, the purpose is to count last-minute lane changes 
and compare them with upstream traffic control strategies. 
 
5.1 Camera and Radar Data Collection 
 
Both the radar and camera sensors were mounted on a trailer (see Figure 5-1(a)), which was 
different from the trailer used in Chapter 4. This new trailer also moved slightly during the data 
collection, which could be seen from the collected thermal videos and were also reflected in the 
collected radar data. The trailer was deployed in the median cross-over (see Figure 5-1(b)), not in 
the closed lane. This location caused some issues during radar and camera data analysis, making 
it difficult to differentiate between the two lanes. Although we managed to separate vehicles by 
lane during camera and radar data processing, the accuracy could be significantly improved if the 
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radar and camera sensors had been mounted closer to the highway. Ideally, these sensors should 
be mounted directly above the traffic. 
 
 
5.2 Approaching Speed Analysis Based on Radar Data 
 
To address the issue of sensor mount vibrations, we separated vehicle trajectories into 30-ft 
segments and calculated the centerlines for the left and right lanes. Based on the centerlines, 
trajectories were categorized into the left and right lanes. The average speeds for the two lanes 
were also calculated. This process was repeated for each 30-ft segment and each hour. Doing this 
for different hours separately is to further reduce the impacts of sensor mount vibrations, with the 
assumption that the sensor mount did not move much within an hour. 
 
Although we could conduct the approaching speed analysis for all 24 hours, that may generate 
too much information. Instead, we chose the following periods to perform the speed analysis, 
and the results are shown in Figure 9-73 through Figure 9-79. 
 

• 4-5am 
• 7-8am 
• 10-11am 
• 2-3pm 
• 6-7pm 
• 10-11pm 

 
The approaching speed data should be compared with the work zone control strategies in Table 
5-1 as well as the traffic volume data obtained from the thermal videos (see Section 5.3 below). 
Some observations are: 
 

• Vehicles in both lanes clearly decelerated as they were approaching the work zone lane 
closure taper. 

• When the traffic was congested, the approaching speed decreased to as low as 40 mph. In 
this case, the right lane had a lower speed than the left lane. A possible reason is that the 
left lane was about to be closed, and vehicles in the left lane tried to maintain a higher 
speed to facilitate merging into the right lane. 

• The approaching speeds from 10-11PM were lower than those during other periods 
except for those congested ones (e.g., 10-11AM and 6-7PM on August 20, 2323) 

• Except for some very congested periods, the average vehicle speeds at the beginning of 
the lane closure taper were around 65 mph before 7PM. From 10-11PM, the 
corresponding average speeds were lower and were close to 60 mph. 

 
5.3 Merging Point Analysis Based on Video Data and AI 
 
Another important and interesting aspect of work zone traffic operations is how vehicles merge. 
Thermal cameras can “see” well during the night, which makes it very convenient to monitor 
how vehicles merge prior to a work zone and how they may behave differently during daytime 
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and nighttime. Although sensor vibrations made it challenging to analyze the collected thermal 
videos, we developed a clustering algorithm to categorize the extracted vehicle trajectories into 
four groups as shown in Figure 5-2. The boundary between the red and yellow zones is at the 
first traffic barrel. The four types of trajectories illustrated in Figure 5-2 are defined as: 
 

• If a vehicle stays consistently in the right lane prior reaching the green detection zone, its 
trajectory is in the green group. 

• If a vehicle starts in the left lane and shifts into the right lane during the yellow zone, its 
trajectory is in the yellow group. 

• If a vehicle starts in the left lane and shifts into the right lane during the red zone, its 
trajectory is in the Red 1 group. 

• If a vehicle starts in the left lane and remains in the left lane by the time it exits the red 
zone, its trajectory is in the Red 2 group. 

 
Given the resolution of the thermal camera used in this study, we cannot recognize objects 
beyond the beginning of the green zone. Higher-resolution thermal cameras can be helpful. 
However, they are much more expensive. Another alternative is to utilize regular cameras if 
capturing video data during nighttime work zone operations is not a priority.   
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Figure 5-2. Work Zone Vehicle Trajectory Classification 
 
Utilizing trajectory data to analyze driver behavior is a nuanced and intricate process. By plotting 
these trajectories, we gained valuable insights into the subtleties of driver behavior, allowing us 
to discern patterns, anticipate responses, and uncover the underlying dynamics of traffic flow. 
Additionally, we computed the Kernel Density Estimation (KDE) which provided us with 
distribution and density of traffic. Figure 5-3 shows the vehicle trajectories from 08/17/2023, 5 
PM to 6 PM along with the KDE of trajectory points. 
 

  

Figure 5-3. Vehicle trajectories and KDE from video recorded at Campton. 
 
Figure 5-4 visualizes the reconstructed trajectories of vehicles. Vehicle 527 in the left subfigure 
merged earlier in the Yellow region, whereas vehicle 3117 in the right subfigure did not merge 
even when it was in the Red zone.  
 

  
Figure 5-4. Samples of trajectory analysis showing vehicles merging in different regions. 

 
Figure 5-5 shows the aggregated hourly trajectory analysis results for the entire 14 days at the 
Campton site in NH. A few sample results are included in this section. Among them, Figure 5-6 
shows the detected safe and risky events on August 23, 2023. Figure 5-7 and Figure 5-8 present 
the hourly traffic volumes for the two weeks from August 17 to August 31, 2023. The analysis of 
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data from the Campton site has resulted in numerous charts and figures, all of which are 
presented in Appendix D. The heatmaps depicted in Figure 9-104, Figure 9-105, and Figure 
9-106 contain two blank cells each, resulting from corruption in two thermal videos. 
Additionally, line charts in Figure 9-115, Figure 9-116, Figure 9-119, and Figure 9-120 exhibit 
gaps in the lines, which are due to factors such as excessive camera movement caused by high 
winds, adverse weather conditions, or other unavoidable issues. 
 

 
Figure 5-5. Work Zone Vehicle Trajectory Classification Results 

 

 
Figure 5-6. Visualization of merging pattern at Campton on Aug 23, 2023. 
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Figure 5-7. Hourly volume at Campton for the first week of data collection. 

 

 
Figure 5-8. volume at Campton for the second week of data collection. 

 
5.4 Summary of Work Zone Pilot Study 
 
Overall, the speed and merging point analysis results suggest that: 
 

• The flashing speed limit signs are helpful in reducing the speeds of vehicles approaching 
the work zone. 

• The flashing speed limit signs and the PCMS seem to be helpful in prompting drivers in 
the left lane to merge into the right lane earlier.  

• Quite a few vehicles traverse the red zone without merging into the right lane. This 
generate significant safety hazards to both vehicles and workers. 
 

 



76 
 



77 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

This page left blank intentionally. 
  



78 
 

6.0 Case Study on Network-Wide Speeding Activity 
Analysis Using Probe Vehicle Data 

 
 
Lane departure collisions account for many roadway fatalities across the United States. Many of 
these crashes occur on horizontal curves or ramps and are due to speeding. This research 
investigates factors that impact speeding on Interstate horizontal curves and ramps. We collected 
and combined two unique sources of data. The first database involves comprehensive curve and 
ramp characteristics collected by an automatic road analyzer (ARAN) vehicle; the second 
database includes volume, average speed, and speed distribution gathered from probe data 
provided by StreetLight Insight®. We evaluated the impacts of level of service (LOS), which 
reflects traffic density or level of congestion, time of the day (morning, evening, and off-peak 
hours), time of the week (weekdays and weekends), and month of the year (Jan-Dec), and 
various geometric characteristics such as curve radius, arc angle, and superelevation on speeding. 
The results show that the odds of speeding increase at horizontal curves with improved levels of 
service, as well as at those with larger radii and superelevation. The odds of speeding decrease 
on curves with larger arc angles, as well as during the winter months of the year. Similar results 
were also observed in models developed for ramps, except for the ramp radius, which was found 
to be an insignificant factor. The results show the importance of using speed enforcement and 
other countermeasures to reduce speeding on curves and ramps with low traffic volumes, high 
speed limits, and large radius and superelevation, especially those located in rural areas. The 
results could be used to prioritize locations for installation of speed countermeasures or signage 
such as advisory speed signs, as well as dispatching enforcement resources to high-priority 
locations and times. 
 
6.1 Background 
 
Lane departure crashes constitute the majority of severe and fatal collisions in the United States 
(U.S.) [15,16,17]. A significant portion of these crashes occur on horizontal curves and ramps. 
This is particularly due to the impact of centrifugal force and challenges in negotiating these 
roadway elements [18]. Several other factors, however, also impact the disproportionate rate of 
severe and fatal crashes on these road elements, including but not limited to weather and 
environmental factors, driver behavior, and roadway familiarity [Error! Bookmark not 
defined.,19,20]. Speeding stands as an additional factor that influences lane departure crashes on 
horizontal curves and ramps. While several research studies investigated the influence of driver 
behavior on lane departure crashes on horizontal curves or ramps [Error! Bookmark not 
defined.,21,22,23], limited research has been devoted to understanding the factors that influence 
speeding on these roadway elements. This research addresses this gap by exploring the 
relationship between different factors, such as (1) time of the day (morning, evening or off-peak 
hours), time of the week (weekdays and weekends), and month (Jan to Dec), (2) traffic density 
(or level of service), (3) area type (urban and rural) and (4) various curve geometric 
characteristics (e.g., arc angle, superelevation, curve radius, shoulder width, lane width, and 
curvature) and speeding on Interstate horizontal curves and ramps.  
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Located on the east coast of the United States, Maine is a state with a population of 
approximately 1.39 million. In summer, Maine attracts a significant number of tourists and 
visitors, especially in areas such as the Acadia National Park, as well as other recreational areas 
and landmarks. Maine has the highest road fatality rates across the New England region. Lane 
departure crashes account for over 70% of fatal crashes in the state; most of these crashes occur 
on horizontal curves [Error! Bookmark not defined.,24]. Several factors are associated with this 
disproportionate rate of crashes or fatalities, including but not limited to adverse and long winter 
seasons, aging infrastructure, and older population [25]. Speeding is another factor that 
influences the crashes in the state [26,27]. Given the severity of crashes on horizontal curves, 
and ramps coupled with the impact of speeding on these crashes, it is important to explore what 
factors impact the odds of speeding on horizontal curves and ramps to better design 
countermeasures, plan interventions, or dispatch enforcement to reduce speeding on these road 
elements. Furthermore, Maine is a rural state. Research studies showed increased lane departure 
crashes on horizontal curves located in rural areas compared to urban areas [Error! Bookmark 
not defined.,28]. We will investigate if speeding also occurs at higher rates in rural areas 
compared to urban regions. 
 
Naturalistic Driving Study (NDS) data have been used as a major data source to analyze driving 
behavior on horizontal curves [Error! Bookmark not defined.,Error! Bookmark not 
defined.,Error! Bookmark not defined.,Error! Bookmark not defined.,29,30,31,32,33,34]. 
Limited research, however, has been devoted to the application and use of probe or 
crowdsourced data to better understand driver behavior (e.g., speeding) on horizontal curves or 
ramps. StreetLight InSight®1 and other probe data providers use technologies like cell phones to 
extract positioning information of vehicles to compute speed and volume in the roadway network 
[35]. In this study, we leverage probe data provided by StreetLight InSight® to gather 
information about traffic volume, average speed, and speed distribution [36]. While the NDS 
data were useful to understand driver behavior on select curves where data are available, the 
probe data sources provide networkwide information to understand the impact of speeding or 
other driver behaviors and factors on all curves or ramps across the network. The availability of 
probe data sources on roadway segments also allows for the calculation of traffic density and 
computing the level-of-service (LOS) of roadway segments and understand the impact of 
congestion on speeding [Error! Bookmark not defined.Error! Bookmark not defined.]. 
 
In summary, this research contributes to the existing literature in multiple ways. First, as noted 
above, speeding is a major factor in lane departure crashes on curves and ramps, especially in 
Maine. We develop models to understand contributing factors on speeding at horizontal curves 
and ramps. Second, we will investigate the impact of congestion (reflected in LOS) on the odds 
of speeding for these road elements. Third, we demonstrate the application of probe data as a 
new data source to analyze speeding at horizontal curves and ramps. Fourth, due to the 
availability of probe data, and the complete curve and ramp database in Maine, we consider the 
entire inventory of Interstate ramps and horizontal curves in the state in our analysis. Fifth, we 

 
1 StreetLight applies proprietary big data processing resources and machine-learning algorithms 
to measure travel patterns of vehicles, bicycles, and pedestrians, and makes them available on-
demand via its SaaS platform, StreetLight InSight®. 
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compare the speeding occurrence in rural and urban areas. Finally, we provide recommendations 
to reduce speeding on these road elements. 
 
6.2 Data Description 
 
Two major data sources were collected and combined to create a uniform dataset for analysis. The 
first dataset includes the characteristics of Interstate horizontal curves and ramps in Maine. 
MaineDOT has spent significant time and resources collecting information about horizontal curves 
and ramps across the Maine network using the automatic road analyzer (ARAN) vehicle over the 
past few years. The database includes a comprehensive inventory for characteristics of the 
horizontal curves and ramps across the state. The variables in the database include but are not 
limited to speed limit, curve radius (R), superelevation (SUP), arc angle (ARC), curvature, lane 
width, left and right shoulder widths, and the area type (i.e., urban, or rural). Table 6-1 shows the 
summary statistics of variables collected on Interstate horizontal curves and ramps. The speed limit 
for Interstate horizontal curves varies from 50 mph to 70 mph, and for Interstate ramps from 55 
mph to 65 mph in 5 mph increments. However, there is only one Interstate ramp with a speed limit 
of 60 mph in the database. Therefore, this ramp was excluded from the analysis. 
 

Table 6-1. Geometric Characteristics for the Selected Interstate Horizontal Curves and Ramps. 
Variable Horizontal 

Curves 
Horizontal 
Curves 

Horizontal 
Curves 

Horizontal 
Curves 

Ramps Ramps Ramps Ramps 

 Mean S.D.  Min Max Mean S.D.  Min Max 
Speed Limit (mph) 63.61 5.39 50 70 59.05 4.91 55 65 
Curve/Ramp 
Radius (R) (ft.) 

5061.04 1877.09 508.74 9441.88 2686.45 2408.18 116.03 9317.96 

Superelevation 
(SUP) (%) 

-0.34 3.12 -8.36 6.88 1.19 3.11 -9.95 8.42 

Arc Angle (ARC) 
(degree) 

19.29 11.39 2.07 70.62 23.28 26.76 2.08 255.36 

Curvature (degree) 1.39 0.82 0.61 11.26 6.13 7.27 0.61 49.38 
Lane Width (LW) 
(ft.) 

12.00 0.00 12 12 14.01 1.97 8 16 

Right Shoulder 
Width (SW) (ft.) 

9.94 0.77 2 16 7.00 2.87 0 11 

Left Shoulder 
Width (SW) (ft.) 

4.00 0.09 4 6 5.15 2.90 0 11 

 
The geometrics characteristics data was combined with probe volume (𝑉𝑉), average operational 
speed (or space mean speed) (¯𝑆𝑆), and speed distribution data collected from the StreetLight 
InSight® platform. For this purpose, GIS maps are generated for Interstate roadway segments 
with homogenous characteristics. Then, the horizontal curve and ramp segments were separated 
from tangents and used for data collection. The information was collected for every hour in three 
years from 2017 to 2019. We excluded data from 2020 and beyond to avoid the effects of the 
COVID-19 pandemic. Table 6-2 and Table 6-3 show the summary statistics of the collected 
volume and operational speed data for different months of the year after removing LOS F data.  
To increase data accuracy, we ensured there were at least 15 observed vehicles in every hour of 
data collection. 
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LOS is used instead of traffic volume. LOS is determined based on density, which is a more 
accurate measure than volume for characterizing traffic conditions. For example, under free-flow 
and heavily congested conditions, the traffic volumes are similarly low, but their densities/LOS 
are very different. Using the information from traffic volume and operational speed (i.e., 
segment average speed), the traffic density (K) (vehicle/mile/lane) was estimated as shown in 
Eq. (1). 
 
 
 
 
Table 6-2. Summary Statistics of Volume-Per-Lane on Interstate Horizontal Curves and Ramps. 

Month    Speed 
Limit 

   

 Horizontal 
Curves 

Horizontal 
Curves 

Horizontal 
Curves 

Horizontal 
Curves 

Horizontal 
Curves Ramps Ramps 

 50 mph 55 mph 60 mph 65 mph 70 mph 55 mph 65 mph 

January 723.5 
(396.1) 

616.9 
(328.8) 

492.4 
(252.4) 

495.2 
(262.1) 

381.6 
(146.4) 

759.8 
(453.5) 

737.8 
(433.9) 

February 713.8 
(391.8) 

620.6 
(330.9) 

507.2 
(268.0) 

498.6 
(261.8) 

396.0 
(149.4) 

774.4 
(457.7) 

750.1 
(437.7) 

March 734.7 
(397.9) 

642.3 
(339.3) 

537.1 
(267.6) 

517.5 
(263.0) 

416.8 
(162.1) 

810.0 
(463.5) 

792.6 
(448.9) 

April 762.8 
(402.8) 

651.0 
(326.9) 

538.5 
(272.9) 

522.3 
(262.9) 

413.6 
(156.8) 

790.5 
(462.9) 

771.0 
(448.8) 

May 856.1 
(429.2) 

723.8 
(356.0) 

584.5 
(282.2) 

604.2 
(311.6) 

468.0 
(176.9) 

833.9 
(477.0) 

838.9 
(463.0) 

June 865.6 
(447.7) 

723.6 
(359.6) 

570.7 
(278.6) 

601.2 
(317.5) 

466.6 
(183.2) 

787.4 
(466.5) 

782.5 
(450.0) 

July 906.2 
(454.1) 

755.4 
(352.2) 

572.6 
(274.5) 

650.5 
(332.9) 

509.3 
(205.7) 

784.5 
(472.1) 

782.0 
(451.3) 

August 941.6 
(460.1) 

790.2 
(366.6) 

600.0 
(290.5) 

686.3 
(350.0) 

548.4 
(223.1) 

811.7 
(475.4) 

800.7 
(446.4) 

September 881.1 
(450.6) 

714.1 
(355.1) 

588.7 
(299.1) 

598.1 
(305.2) 

467.4 
(183.0) 

809.5 
(476.4) 

775.1 
(454.3) 

October 829.2 
(423.4) 

695.5 
(339.2) 

596.9 
(288.3) 

596.4 
(294.0) 

491.2 
(187.5) 

861.8 
(483.1) 

830.8 
(457.5) 

November 785.9 
(407.5) 

669.0 
(333.6) 

579.9 
(287.0) 

564.8 
(283.1) 

472.6 
(183.3) 

858.9 
(478.5) 

835.3 
(457.8) 

December 760.0 
(402.6) 

643.9 
(326.4) 

559.2 
(292.7) 

530.0 
(270.6) 

442.3 
(175.2) 

824.7 
(469.7) 

777.5 
(440.8) 

 
Table 6-3. Summary Statistics of Operational Speed on Interstate Horizontal Curves and Ramps. 

Month    Speed 
Limit 

   

 Horizontal 
Curves 

Horizontal 
Curves 

Horizontal 
Curves 

Horizontal 
Curves 

Horizontal 
Curves Ramps Ramps 

 50 mph 55 mph 60 mph 65 mph 70 mph 55 mph 65 mph 

January 50.21  
(6.637) 

55.41  
(5.903) 

50.17 
(6.021) 

62.52  
(6.716) 

63.93  
(6.848) 

44.03 
(10.22) 

52.82 
(11.45) 

February 50.35  
(6.513) 

55.67 
(5.903) 

50.38  
(5.926) 

62.89  
(6.422) 

64.79  
(6.378) 

44.24 
(10.36) 

53.42 
(11.48) 

March 50.81  
(5.975) 

56.28  
(5.407) 

51.56  
(5.514) 

63.89  
(6.202) 

65.93  
(5.931) 

44.80 
(10.47) 

53.97 
(11.79) 
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April 50.76  
(5.826) 

55.36 
(5.210) 

51.69  
(5.562) 

63.54  
(6.251) 

65.94  
(5.990) 

44.44 
(10.44) 

53.25 
(11.78) 

May 50.54  
(5.807) 

55.74  
(5.386) 

52.12  
(5.407) 

63.89  
(6.209) 

66.53 
(5.436) 

44.91 
(10.74) 

53.71 
(12.05) 

June 50.63  
(6.426) 

55.91  
(5.739) 

52.59 
(5.347) 

64.27 
(6.040) 

67.08  
(5.298) 

44.59 
(10.60) 

52.93 
(12.08) 

July 51.37 
(6.536) 

56.46  
(6.142) 

53.49  
(5.295) 

65.11  
(6.186) 

68.31  
(5.075) 

44.78 
(10.75) 

52.33 
(12.73) 

August 51.208 
(6.744) 

56.59  
(6.065) 

53.81  
(5.287) 

65.22  
(6.310) 

68.64 
(5.005) 

44.93 
(10.80) 

52.14 
(13.00) 

September 51.12  
(6.147) 

56.49 
(5.361) 

53.39  
(5.300) 

64.73 
(5.991) 

67.72 
(5.108) 

45.06 
(10.47) 

52.37 
(12.34) 

October 51.06  
(6.282) 

56.58  
(5.126) 

53.52 
(5.295) 

64.65 
(5.954) 

67.83 
(5.244) 

45.51 
(10.75) 

53.58 
(12.40) 

November 51.37 
(6.695) 

56.35  
(5.886) 

52.84 
(5.714) 

64.23 
(6.153) 

66.82  
(6.064) 

44.88 
(10.77) 

53.58 
(12.16) 

December 50.52 
(7.170) 

55.22 
(6.487) 

52.22 
(6.132) 

62.96  
(6.857) 

66.42  
(6.255) 

43.98 
(10.58) 

51.81 
(12.33) 

 
𝐾𝐾 = 𝑉𝑉/(𝑛𝑛 × ¯𝑆𝑆) (1) 

where, 
𝑉𝑉=Traffic volume (vehicle/hour). 
¯𝑆𝑆= segment average speed (mph). 
n= number of lanes. 

 
Then, using the information from traffic density, the LOS of the horizontal curves and ramps was 
computed using the boundaries described in the Highway Capacity Manual (HCM) as follows 
[Error! Bookmark not defined.]: 
 

LOS A: 0 < K ≤11 vehicles/mile/lane  
LOS B: 11 < K ≤ 18 vehicles/mile/lane 
LOS C: 18 < K ≤ 26 vehicles/mile/lane  
LOS D: 26 < K ≤ 35 vehicles/mile/lane  
LOS E: 35 < K ≤ 45 vehicles/mile/lane  
LOS F, K > 45 vehicles/mile/lane 

 
As noted earlier, data that represents LOS F was removed from the analysis as they represent a 
forced driving condition in which speeding rarely if at all occurs. Next, using the speed 
distribution, and speed limit, the percentage of the vehicles that drive by more than 10, 15, and 
20 mph above the speed limit was computed. Data from these two data sources (i.e., ARAN data, 
and Streetlight Insight), along with computed traffic density, level of service, and speeding 
information were combined with dummy variables denoting the time of the day (e.g., morning, 
evening, and off-peak hours), time of the week (weekdays and weekends), and month of the year 
(January to December). Correlations and multicollinearity among variables were investigated. It 
was determined that arc angle and curvature are correlated. We also found that left and right 
shoulders, and lane width are also correlated. After careful consideration and testing various 
models, we found that models with arc angle, and lane width variables generally produce better 
results. Therefore, these variables were used in the final model.  
 
To facilitate the modeling and interpretation of results, dummy variables were also created for 
various variables such as speed limit, curve radius, superelevation, arc angle, and lane widths. 
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Table 6-4 shows the final dummy variables and data used for modeling. The area type variable 
includes two alternatives, urban and rural. Rural was considered as a base (or reference) dummy 
variable. The congestion (or LOS) indicators include LOS A, B, C, D, and E. The LOS E was 
considered a base dummy variable. The time-of-the-day variable includes morning, evening, and 
off-peak hours. The off-peak hours were considered as a base dummy variable. Two alternatives 
(i.e., weekdays, and weekends) were considered for the time-of-the-week variable. The 
weekdays were considered as a base dummy variable. Dummy variables were created for each 
two months of the year from January to December. The months of July and August (summer 
months) were considered as a base variable. Speed limit dummy variables were created for speed 
limits of 50 to 70 mph, with speed limits of 50 and 55 being considered as a base dummy 
variable. Curve radius (R) was divided into four categories of 100 < R ≤ 2500, 2500 < R ≤ 5000, 
5000 < R ≤ 7500, and 7500 < R, with the range of 100 < R ≤ 2500 being a base dummy variable.  

Table 6-4. Data Description. 

Variables Classes Definition of Dummy Variables 

Area type Rural/Urban Rural (=0) Dummy variable denoting rural areas (base) 
Area type Rural/Urban Urban Dummy variable denoting urban areas 

LOS 
Indicators 

Traffic Density (K) 
(or LOS) 

0 < K ≤ 11 (LOS=A) Density of 0 - 11 vehicle/mile/lane (LOS=A) 

LOS 
Indicators 

Traffic Density (K) 
(or LOS) 

11 < K ≤18 (LOS=B) Density of 11 -18 vehicle/mile/lane (LOS=B) 

LOS 
Indicators 

Traffic Density (K) 
(or LOS) 

18 < K ≤ 26 (LOS=C) Density of 18 -26 vehicle/mile/lane (LOS=C)  

LOS 
Indicators 

Traffic Density (K) 
(or LOS) 

26 < K ≤ 35 (LOS=D) Density of 26 - 35 vehicle/mile/lane (LOS=D) 

LOS 
Indicators 

Traffic Density (K) 
(or LOS) 

35 < K ≤45 (LOS=E) (=0) Density of 35 -45 vehicle/mile/lane  (LOS=E) (base) 

Time 
Indicators Time of the Day Off Peak (=0) Off peak hours (10 am to 3 pm and 7 pm to 6 am) (base) 

Time 
Indicators 

Time of the Day Morning Peak Period Morning Peak hours (6 am to 10 am) 

Time 
Indicators 

Time of the Day Evening Peak Period Evening peak hours (3 pm to 7 pm) 

Time 
Indicators Time of the Week Weekday (=0) Weekdays (Monday to Friday) (base) 

Time 
Indicators Time of the week Weekend Weekends (Saturday and Sunday) 

Time 
Indicators 

Time of the Year 
(Month) 

Jan. – Feb.   Months of January and February 

Time 
Indicators 

Time of the Year 
(Month) 

Mar. – Apr.  Months of March and April 

Time 
Indicators 

Time of the Year 
(Month) May – Jun. Months of May and June 

Time 
Indicators 

Time of the Year 
(Month) Jul. – Aug. (=0) Months of July and August (base) 

Time 
Indicators 

Time of the Year 
(Month) 

Sep. – Oct. Months of September and October 

Time 
Indicators 

Time of the Year 
(Month) Nov. – Dec. Months of November and December 
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Curve or 
Ramp 

Variables1 
Speed Limit (mph) Speed Limit =50/55 (=0) Segments with speed limit less than or equal to 50 or 55 mph (base) 

Curve or 
Ramp 
Variables1 

Speed Limit (mph Speed Limit = 60 mph Segments with a speed limit of 60 mph 

Curve or 
Ramp 
Variables1 

Speed Limit (mph Speed Limit = 65 mph Segments with a speed limit of 65 mph 

Curve or 
Ramp 
Variables1 

Speed Limit (mph Speed Limit = 70 mph Segments with a speed limit of 70 mph 

Curve or 
Ramp 
Variables1 

Radius (ft.) (R) 100 < R ≤ 2500 (=0) Radius of the curve/ramp is from 100 to 2500 feet (base) 

Curve or 
Ramp 
Variables1 

Radius (ft.) (R) 2500 < R ≤ 5000 Radius of the curve/ramp is from 2500 to 5000 feet 

Curve or 
Ramp 
Variables1 

Radius (ft.) (R) 5000 < R ≤ 7500 Radius of the curve/ramp is from 5000 to 7500 feet 

Curve or 
Ramp 
Variables1 

Radius (ft.) (R) 7500 < R Radius of the curve/ramp is above 7500 feet 

Curve or 
Ramp 
Variables1 

Superelevation (%) 
(SUP) 

SUP ≤ -6 Superelevation of the curve is less than -6 % 

Curve or 
Ramp 
Variables1 

Superelevation (%) 
(SUP) 

-6 < SUP ≤ -3 Superelevation of the curve is from -6 to -3 % 

Curve or 
Ramp 
Variables1 

Superelevation (%) 
(SUP) 

-3 < SUP ≤ 3 (=0) Superelevation of the curve is from -3 to 3 % (base) 

Curve or 
Ramp 
Variables1 

Superelevation (%) 
(SUP) 

3 < SUP ≤ 6 Superelevation of the curve is from 3 to 6 %  

Curve or 
Ramp 
Variables1 

Superelevation (%) 
(SUP) 

6 < SUP Superelevation of the curve is above 6 % 

Curve or 
Ramp 
Variables1 

Arc Angle (ARC) 
(degree) 

(For Curves)1 
0 < ARC ≤ 15 (=0) Arc angle of the curve is below 15 degrees (base) 

Curve or 
Ramp 
Variables1 

Arc Angle (ARC) 
(degree) 

(For Curves)1 
15 < ARC ≤ 30 Arc angle of the curve is from 15 to 30 degrees 

Curve or 
Ramp 
Variables1 

Arc Angle (ARC) 
(degree) 

(For Curves)1 
30 < ARC Arc angle of the curve is above 30 degrees 

Curve or 
Ramp 
Variables1 

Arc Angle (degree) 
(ARC) 

(For Ramps)1 
0 < ARC ≤ 10 (=0) Arc angle of the ramp is below 10 degrees (base) 
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Curve or 
Ramp 
Variables1 

Arc Angle (degree) 
(ARC) 

(For Ramps)1 
10 < ARC ≤ 20 Arc angle of the ramp is from 10 to 20 degrees 

Curve or 
Ramp 
Variables1 

Arc Angle (degree) 
(ARC) 

(For Ramps)1 
20 < ARC ≤ 30 Arc angle of the ramp is from 20 to 30 degrees 

Curve or 
Ramp 
Variables1 

Arc Angle (degree) 
(ARC) 

(For Ramps)1 
30 < ARC Arc angle of the ramp is above 30 degrees 

Curve or 
Ramp 
Variables1 

Lane Width (ft.) 
(SW) (for Ramps)2  Wide Lane Lane width ≥ 12 feet (base) 

Curve or 
Ramp 
Variables1 

Lane Width (ft.) 
(SW) (for Ramps)2  

Narrow lane width Lane width < 12 feet 

1Arc angle and curvature were correlated; since models with the arc angle variable provided a better fit., only the arc angle variable 
(for horizontal curves and ramps) included in the model and reported in the table. 

2For horizontal curves, the left shoulder, right shoulder, and lane width variables were insignificant. Therefore, they were not 
reported in this table. For ramps, these variables were correlated, but the models with the lane width variable provided a better fit. 
Therefore, only the information about the lane width dummy was included in this table.  

 
Superelevation (SUP) was divided into four categories of -6 < SUP ≤ -3, -3 < SUP ≤ 3, 3 < SUP 
≤ 6, and 6 < SUP, with the common superelevation of -3 < SUP ≤ 3 considered as a base dummy 
variable. For horizontal curves, the arc angle (ARC) variable was divided into three groups of 0 
< ARC ≤ 15, 15 < ARC ≤ 30, and 30 < ARC, with 0 < ARC ≤ 15 being the base dummy 
variable. For Interstate ramps, the arc angle variable was divided into four groups of 0 < ARC ≤ 
10, 10 < ARC ≤ 20, 20 < ARC ≤ 30, and 30 < ARC, with 0 < ARC ≤ 10 being the base dummy 
variable. The lane width indicator (for ramps) represents two categories: a narrow lane width of 
less than 12ft., and a wide lane width of 12 ft. and above. The variable indicating the wide lane 
width of 12 ft. and above was considered a base dummy variable. 
 
6.3 Methodology  
 
A mixed effect binomial model was used to model speeding [Error! Bookmark not 
defined.,Error! Bookmark not defined.,37]. The mixed effect model was used to account for the 
location heterogeneity, and repeated measures for each segment. In this model, it is assumed that 
in every hour, 𝑉𝑉_𝑖𝑖𝑖𝑖 vehicles pass the i-th curve or ramp segment. From those, with a probability of 
p_i, y_ij out of V_ij vehicles speed, and (V_ij-y_ij) out of V_ij vehicles do not speed. Therefore, for 
each j-th time step, the binomial model can be written as follows [38]. 
 

y_ij  ~ Binomial(P_ij, V_ij )
≡ (█(V_ij@y_ij )) 〖P_ij〗^(y_ij ) 〖(1 − P_ij)〗^(〖V_ij − y〗_ij ) (2) 

Using a mixed effect logit link function, we correlated the log odds of speeding, i.e., Ln(P_ij/(1 −
P_ij )), with a set of dummy variables as follows: 
 

Logit (P_ij ) = Ln(P_ij/(1 − P_ij )          )~ π + K_ij + D_j + W_j + M_j + Area_i  , R_i
+ Sup_i + Arc_i + SL_i 〖 +  LW_i + ε〗_i (3) 

where, 
π: intercept (constant). 
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K_ij: dummy variable denoting density (level of service) on the i-th element and the j-th time.  
D_j: dummy variable denoting time of the day for the j-th time (morning, evening, or off-peak). 
W_j: dummy variable denoting time of the week for the j-th time (weekdays, or weekends). 
M_j: dummy variable denoting the month of the year for the j-th time (Jan.-Feb. to Nov.-Dec.). 
Area_i: dummy variable denoting the area of i-th element (urban=1, and rural=0). 
R_i: dummy variable denoting the radius range for the i-th element.  
Sup_i: dummy variable denoting the superelevation range for the i-th element. 
Arc_i: dummy variable denoting the arc angle range for the i-th element. 
SL_i: dummy variable denoting the speed limit on the i-th element. 
LW_i: dummy variable denoting a narrow lane width (< 12 ft.) for the i-th element. 
ε_i: the random error component for the i-th element. 
 

6.4 Modeling Results 
 
 

Table 6-5. Modeling Results for Interstate Horizontal Curves. 
Category  Variable +10 mph Speeding +15 mph Speeding +20 mph Speeding 

  Mean 
(S.E.) 

Odds 
Ratio 

Mean 
(S.E.) 

Odds 
Ratio 

Mean 
(S.E.) 

Odds 
Ratio 

Constant Constant Intercept -3.114 
(0.01788) - -4.108 

(0.10750) - -5.875 
(0.19393) - 

Area Area Type1 Urban -0.448 
(0.02503) 0.64 -0.454 

(0.07355) 0.63 -0.255 
(0.10192) 0.77 

Time Variables Time of Year 
(Month)2 Jan. – Feb. -0.304 

(0.00015) 0.74 -0.244 
(0.00018) 0.78 -0.199 

(0.00029) 0.82 

Time Variables Time of Year 
(Month)2 Mar. – Apr. -0.136 

(0.00014) 0.87 -0.079 
(0.00017) 0.92 -0.049 

(0.00026) 0.95 

Time Variables Time of Year 
(Month)2 May – Jun. -0.204 

(0.00013) 0.82 -0.135 
(0.00015) 0.87 -0.072 

(0.00024) 0.93 

Time Variables Time of Year 
(Month)2 Sep. – Oct. -0.093 

(0.00013) 0.91 -0.067 
(0.00015) 0.93 -0.052 

(0.00023) 0.95 

Time Variables Time of Year 
(Month)2 Nov. – Dec. -0.234 

(0.00014) 0.79 -0.184 
(0.00017) 0.83 -0.159 

(0.00026) 0.85 

Time Variables Time of the 
Day3 Morning Peak 0.070 

(0.00011) 1.07 0.115 
(0.00013) 1.12 0.125 

(0.00020) 1.13 

Time Variables Time of the 
Day3 Evening Peak 0.062 

(0.00010) 1.06 0.108 
(0.00012) 1.11 0.118 

(0.00018) 1.12 

Time Variables Time of the 
Week4 Weekend 0.315 

(0.00010) 1.37 0.294 
(0.00012) 1.34 0.283 

(0.00019) 1.33 

LOS 
Variables 

Level of 
Service5 LOS=A 1.060 

(0.00080) 2.89 0.940 
(0.00116) 2.56 0.723 

(0.00184) 2.06 

LOS 
Variables 

Level of 
Service5 LOS=B 0.999 

(0.00079) 2.72 0.883 
(0.00116) 2.42 0.641 

(0.00184) 1.90 

LOS 
Variables 

Level of 
Service5 LOS=C 0.742 

(0.00079) 2.10 0.596 
(0.00116) 1.82 0.355 

(0.00184) 1.43 

LOS 
Variables 

Level of 
Service5 LOS=D 0.379 

(0.00083) 1.46 0.314 
(0.00121) 1.37 0.221 

(0.00192) 1.25 

Curve 
Characteristics 

Speed Limit 
(mph)6 Speed Limit = 60 Insig. - Insig. - 0.812 

(0.18996) 2.25 

Curve 
Characteristics 

Speed Limit 
(mph)6 Speed Limit = 65 1.522 

(0.02508) 4.58 1.416 
(0.08284) 4.12 1.812 

(0.17296) 6.12 

Curve 
Characteristics 

Speed Limit 
(mph)6 Speed Limit = 70 1.951 

(0.03005) 7.04 1.896 
(0.10560) 6.66 2.454 

(0.19799) 11.63 

Curve 
Characteristics 

Curve Radii 
(ft) 
(R)7 

2500 < R ≤ 5000 0.255 
(0.02670) 1.29 0.322 

(0.08957) 1.38 0.500 
(0.12568) 1.65 
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Curve 
Characteristics 

Curve Radii 
(ft) 
(R)7 

5000 < R ≤ 7500 0.596 
(0.02226) 1.81 0.657 

(0.08802) 1.93 0.673 
(0.12228) 1.96 

Curve 
Characteristics 

Curve Radii 
(ft) 
(R)7 

7500 < R Insig. - Insig. - Insig. - 

Curve 
Characteristics 

Superelevation 
(%) (SUP)8 SUP < - 3 Insig. - Insig. - Insig. - 

Curve 
Characteristics 

Superelevation 
(%) (SUP)8 3 < SUP ≤ 6 0.235 

(0.03532) 1.27 0.256 
(0.10960) 1.29 Insig. - 

Curve 
Characteristics 

Superelevation 
(%) (SUP)8 6 < SUP 0.851 

(0.08228) 2.34 Insig - Insig. - 

Curve 
Characteristics 

Arc Angle 
(degree) 
(ARC)9 

30 < ARC -0.248 
(0.03123) 0.78 -0.265 

(0.09182) 0.77 -0.225 
(0.12778) 0.80 

1rural area was considered as a base dummy variable. 
2months of July and August were considered as a base variable.  
3off-peak hours were considered as a base variable. 
4weekdays was considered as a base variable. 
5LOS of E was considered as a base dummy variable. 
6speed limits of 50 and 55 mph were considered as a base dummy variable. 
7 curve radii of 100 < R ≤ 2500 was considered as a base dummy variable. 
8supperelavation of -3 to 3, i.e., -3 < SUP ≤ 3, was considered as a base dummy variable. 
9arc angle between 0 and 15 (ARC ≤ 15), was considered as a base dummy variable. 
This section presents the modeling results and is divided into two parts. In the first part, the 
modeling results for Interstate horizontal curves are documented. In the second part, the 
modeling results for Interstate ramps are presented. Metrics such as Akaike Information 
Criterion (AIC) and Bayesian Information Criterion (BIC) are used to find the best models. 
Significant variables at the 90% confidence interval are reported in the tables. 
 
6.4.1 Horizontal Curve Models  
Table 6-5 shows the modeling results for Interstate horizontal curves; the modeling results show 
that speeding in rural areas occurs at higher rates compared to urban areas. This is presumably 
due to factors such as reduced speed enforcement in rural areas, as well as encountering 
unexpected or unfamiliar curves when driving on rural compared to urban roads. Previous 
studies have shown that crash rates are higher on rural horizontal curves compared to urban 
curves [39,40]. The higher rate of speeding in rural areas could be one of the reasons for 
observing higher crash rates in rural areas. Our results particularly show that the odds of 
speeding by 10, 15, and 20 mph decreases by 36%, 37%, and 23%, respectively, on urban 
Interstate horizontal curves compared to those on rural roads. 
 
As noted earlier, Maine experiences long winter seasons, often starting in October and ending in  
April. To investigate the impact of the month of the year on speeding behavior on Interstate 
horizontal curves, we created dummy variables for every two months, starting with January and 
February (Jan. – Feb.), and ending with November and December (Nov.- Dec.) and included 
them in the model. The two months of July-August (Jul.-Aug.) were considered as the base 
dummy variable. The modeling results show decreased odds of speeding in all month periods 
compared to Jul.-Aug., with the most significant effects observed in Jan.- Feb., and then Nov.-
Dec. with frequent snowfall and cold winters. Particularly, the odds of speeding by more than 10, 
15, 20 mph decreases by around 26%, 22%, 18% in Jan.- Feb., and by 21%, 17%, and 15% in 
Nov.-Dec., respectively, compared to Jul.-Aug. Modeling results show increased odds of 
speeding during morning and evening peak hours and during the weekends on Interstate 
horizontal curves.  
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To account for congestion on horizontal curves, we calculated the level of service (LOS) and 
used it to represent the level of congestion or a surrogate measure of traffic density. LOS E was 
considered as the baseline in the model. As shown in Table 6-2, LOS impacts speeding on 
horizontal curves. LOSs C and D are commonly observed on Interstates including curves and 
ramps. The models show increased odds of 46%, 37%, and 25% for speeding by more than 10, 
15, and 20 mph for LOS D compared to LOS E. Similarly for LOS C, the odds of speeding by 
more than 10, 15, and 20 mph increases by 110%, 82%, and 43% respectively. The odds of 
speeding increases significantly for LOSs A and B. Particularly, the odds of speeding by more 
than 10 mph are 2.89 and 2.72 times more when the roadway operates at LOSs A and B 
compared to LOS E. These results show the importance of implementing appropriate 
countermeasures or installing signage such as advisory speed signs on low-volume horizontal 
curves. 
 
The results show significant increases in odds of speeding on horizontal curves with higher speed 
limits. This finding is interesting but is different from patterns identified in relevant previous 
studies [Error! Bookmark not defined.,Error! Bookmark not defined.Error! Bookmark not 
defined.Error! Bookmark not defined.,41]. Particularly, compared to speed limits of 50 and 55 
mph, the odds of speeding by more than 10, 15, and 20 mph increases by 4.58, 4.12 and 6.12 
times when the speed limit is 65 mph, and by 7.04, 6.66, and 11.63 times when the speed limit is 
70 mph. While these results could partially be due to higher design standards on high-speed 
horizontal curves, the modeling results show the importance of speed enforcement and proper 
countermeasures to reduce speeding on horizontal curves with higher speed limits. 
 
The modeling results show that as the curve radius increases, the odds of speeding on Interstate 
horizontal curves increase as well. Particularly, the odds of speeding by more than 10, 15, and 20 
mph increase by 29%, 38%, and 65% on Interstate horizontal curves with a radius of 2,500 < R ≤ 
5,000 and by 81%, 93% and 96% on curves with a radius of 5,000 < R ≤ 7,500 compared to the 
lower radius of 0 < R ≤ 2,500. These results are interesting from the fact that on curves with 
smaller radii, lane departure is more likely to happen because of increased centrifugal forces. 
Therefore, curves with larger radii are often considered safer in terms of lane departure risk; 
however, our results show that curves with larger radii are more prone to speeding. As noted 
above, speeding is a surrogate measure of safety, and often results in severe or fatal lane 
departure crashes on horizontal curves. These results show that speeding activities probably are 
associated with drivers’ perceived risk. Curves with large radii give drivers the impression of 
being safe. Therefore, they are more likely to speed on such curves than on sharper curves with 
smaller radii. 
 
Table 6-5 shows that the odds of speeding do not change for curves with superelevation less than 
-3% compared to the baseline superelevation of -3% to 3%. Speeding, however, could increase 
on horizontal curves with higher superelevation. Particularly, the odds of speeding by more than 
10 mph increases by 27% when superelevation is between 3% and 6% and by 134% when 
superelevation is greater than 3% compared to the baseline superelevation of -3% to 3%. With 
appropriate superelevation, drivers on sharp curves can feel more comfortable and are able to 
better overcome the impact of the centrifugal force. Therefore, speeding could occur at higher 
rates compared to when the superelevation is insufficient. The impact of larger superelevation on 
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speeding by more than 20 mph was insignificant. The odds of speeding decrease when the arc 
angle is above 30 degrees. These results are expected, since shaper curves have larger arc angles. 
Finally, the impact of lane width on speeding was found to be insignificant for Interstate 
horizontal curves given that they were all 12ft lanes.  
 
6.4.2 Ramp Models 
Table 6-6 shows the speeding models for the Interstate ramps. Like horizontal curves, the odds 
of speeding decrease on urban ramps compared to rural ramps. This observation, presumably, is 
for the same reason as the one noted for Interstate horizontal curves. As noted above, speed 
enforcement as well as roadway familiarity (especially curve expectation) are often lower in 
rural areas compared to urban areas. Likewise, the odds of speeding on ramps decrease 
significantly during the months of Nov. through Feb. This is mainly due to the peak of the winter 
season during these months of the year in Maine, which often involves frequent snowfall, and icy 
and frozen roads. Specifically, the odds of speeding by more than 10, 15, and 20 mph decrease 
by 22%, 21%, and 22% during the Nov.- Dec. duration and by 20%, 18% and 15% during the 
Jan.- Feb. duration compared to the Jul.-Aug. duration.  
 
 

Table 6-6. Modeling Results for Interstate Ramps. 

Category Variable +10 mph Speeding +15 mph Speeding +20 mph Speeding 

   Mean 
(S.E.) 

Odds 
Ratio 

Mean 
(S.E.) 

Odds 
Ratio 

Mean 
(S.E.) 

Odds 
Ratio 

Constant Constant Intercept -2.941 
(0.06299) - -4.616 

(0.58484) - -8.356 
(0.07796) - 

Area Area Type1 Urban -0.842 
(0.06781) 0.43 -1.035 

(0.46075) 0.36 Insig. - 

Time Variables Time of Year 
(Month)2 Jan. Feb. -0.219 

(0.00050) 0.80 -0.200 
(0.00061) 0.82 -0.168 

(0.00084) 0.85 

Time Variables Time of Year 
(Month)2 Mar. – Apr. -0.100 

(0.00047) 0.90 -0.091 
(0.00057) 0.91 -0.072 

(0.00078) 0.93 

Time Variables Time of Year 
(Month)2 May – Jun. -0.099 

(0.00044) 0.91 -0.086 
(0.00053) 0.92 -0.063 

(0.00073) 0.94 

Time Variables Time of Year 
(Month)2 Sep. – Oct. -0.078 

(0.00043) 0.93 -0.082 
(0.00052) 0.92 -0.091 

(0.00072) 0.91 

Time Variables Time of Year 
(Month)2 Nov. - Dec. -0.251 

(0.00047) 0.78 -0.242 
(0.00057) 0.79 -0.247 

(0.00080) 0.78 

Time Variables Time of the 
Day3 Morning Peak 0.135 

(0.00037) 1.14 0.135 
(0.00045) 1.14 0.117 

(0.00063) 1.12 

Time Variables Time of the 
Day3 Evening Peak 0.040 

(0.00034) 1.04 0.072 
(0.00041) 1.07 0.080 

(0.00057) 1.08 

Time Variables Time of the 
Week4 Weekend 0.241 

(0.00037) 1.27 0.235 
(0.00044) 1.26 0.205 

(0.00061) 1.23 

LOS 
Variables 

Level of 
Service5 LOS=A 0.387 

(0.00077) 1.47 0.410 
(0.00100) 1.51 0.471 

(0.00147) 1.60 

LOS 
Variables 

Level of 
Service5 LOS=B 0.285 

(0.00067) 1.33 0.322 
(0.00090) 1.38 0.362 

(0.00135) 1.44 

LOS 
Variables 

Level of 
Service5 LOS=C 0.266 

(0.00063) 1.31 0.310 
(0.00086) 1.36 0.322 

(0.00130) 1.38 

LOS 
Variables 

Level of 
Service5 LOS=D 0.202 

(0.00062) 1.22 0.238 
(0.00085) 1.27 0.239 

(0.00129) 1.27 

Ramp 
Characteristics 

Speed Limit 
(mph)6 Speed Limit = 65 0.916 

(0.09732) 2.50 1.297 
(0.41143) 3.66 1.506 

(0.13674) 4.51 
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Ramp 
Characteristics 

Curve Radii 
(ft) (R)7 2500 < R ≤ 5000 Insig. - Insig. - Insig - 

Ramp 
Characteristics 

Curve Radii 
(ft) (R)7 5000 < R ≤ 7500 Insig. - Insig. - Insig - 

Ramp 
Characteristics 

Curve Radii 
(ft) (R)7 7500 < R Insig. - Insig - Insig - 

Ramp 
Characteristics 

Superelevation 
(%) (SUP)8 SUP < - 3 Insig. - Insig - Insig - 

Ramp 
Characteristics 

Superelevation 
(%) (SUP)8 3 < SUP ≤ 6 0.959 

(0.11643) 2.61 1.750 
(0.41834) 5.75 1.630 

(0.13608) 5.10 

Ramp 
Characteristics 

Superelevation 
(%) (SUP)8 6 < SUP 1.614 

(0.75383) 5.02 1.631 
(0.85125) 5.11 Insig - 

Ramp 
Characteristics 

Arc Angle 
(degree)(ARC)9 10 < ARC ≤ 20 -1.735 

(0.12069) 0.18 -2.411 
(0.57432) 0.09 -2.232 

(0.16803) 0.11 

Ramp 
Characteristics 

Arc Angle 
(degree)(ARC)9 20 < ARC ≤ 30 -1.820 

(0.25356) 0.16 -3.003 
(0.58499) 0.05 -3.363 

(0.24915) 0.03 

Ramp 
Characteristics 

Arc Angle 
(degree)(ARC)9 30 < ARC -1.138 

(0.09288) 0.32 -1.523 
(0.48606) 0.22 Insig. - 

Ramp 
Characteristics 

Narrow Lane 
(ft.)  (LW)10 LW < 12 ft. -1.742 

(0.14519) 0.18 -1.801 
(0.75017) 0.17 -3.192 

(0.25396) 0.04 
1rural area was considered as a base dummy variable. 
2months of July and August were considered as a base variable.  
3off-peak hours were considered as a base variable. 
4weekdays were considered as a base variable. 
5LOS of E was considered as a base dummy variable. 
6speed limits of 50 and 55 mph were considered as a base dummy variable. 
7 curve radii of 100 < R ≤ 2500 was considered as a base dummy variable. 
8supperelavation of -3 to 3, i.e., -3 < SUP ≤ 3, was considered as a base dummy variable. 
9arc angle between 0 and 10 (ARC ≤ 10), was considered as a base dummy variable. 
10wider lane width (≥12) was considered as a base dummy variable. 
Regarding LOS, as expected, the odds of speeding increase as the LOS improves. However, the 
increase in odds of speeding is not as high as the rates observed in models developed for 
Interstate horizontal curves. This observation could presumably be due to the driver’s discomfort 
and challenges to negotiate Interstate ramps regardless of the congestion range. Specifically, the 
odds of speeding by more than 10 15, and 20 mph, at LOS D increases by 22%, 27%, and 27%, 
and at LOS C by 31%, 36%, and 38% compared to LOS E. Like horizontal curve results, models 
show the importance of speed enforcement, or use of advisory speed signage on low-volume 
ramps. The odds of speeding on ramps increase during morning and evening peak hours 
compared to off-peak hours, and during the weekends compared to weekdays. 
 
 
Like horizontal curves, the odds of speeding increase at Interstate ramps with a higher speed 
limit of 65 mph. The odds of speeding by more than 10, 15, and 20 mph increases by 2.50, 3.66, 
and 4.51 times compared to when the speed limit is 55 mph. The impact of ramp radius is 
insignificant for all Interstate ramp models. This could again be due to the driver’s discomfort 
and challenges to drive on ramps even when the radius is large. The impact of superelevation 
was insignificant for superelevation of smaller than -3%; however, the impact of larger 
superelevation was significant. Particularly the odds of speeding by more than 10, 15 and 20 
mph increase by 2.61, 5.75 and 5.1 times when superelevation is between 3% and 6% compared 
to the baseline superelevation of -3% to 3%. Similarly, the odds of speeding by 10, and 15 mph 
increases by 5.02 and 5.11 times when superelevation is greater than 6% compared to the 
baseline superelevation of -3% to 3%.  
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The arc angle variable was significant for most Interstate ramp models. The results show a 
significant decrease in odds of speeding as the arc angle variable increases. These results are 
expected as speeding on sharp ramps could be challenging. This particularly showed in speeding 
at ramps with an arc angle of 20 to 30 degrees compared to those with arc angle of less than 10 
degrees. As indicated in Table 6-6, the odds of speeding by more than 10, 15, and 20 mph 
decreases by 87%, 96%, and 95% at these ramps. Finally, the effect of narrow lane width was 
found to be significant and negatively associated with speeding on Interstate ramps potentially 
due to the inherent difficulties and the driver’s discomfort to drive or speed on ramps with 
smaller lane width. 
 
6.5 Summary and Conclusions 
 
Lane departure crashes account for over 70% of roadway fatalities in Maine. Speeding is a main 
contributing factor in many of these collisions, especially on horizontal curves. This research 
examined the impact of various curve and ramp geometric characteristics, level of service, area 
type, and time factors on speeding at Interstate horizontal curves and ramps. Mixed-effect 
binomial regression models were developed, and the odds of speeding were computed and 
discussed. The results show increased odds of speeding on curves and ramps located in rural 
compared to urban areas presumably due to reduced speed enforcement and decreased roadway 
familiarity (or curve expectation) on rural roads. The odds of speeding on these road elements 
increase during the morning and evening peak hours, and weekends. In contrast, as expected, 
speeding decreases significantly during the peak of winter seasons with frequent snowfall, cold 
weather, and icy and frozen roads. Regarding congestion, speeding occurs at higher rates on less 
congested Interstate horizontal curves and ramps. These results suggest the importance of using 
enforcement or advisory speed signs (e.g., dynamic signs) on low-volume horizontal curves or 
ramps. For both horizontal curves and ramps, superelevation greater than 3% results in increased 
odds of speeding compared to the common superelevation of -3 to 3%. Curve radius was also 
found to be a significant factor. Higher odds of speeding observed as curve radius increases. The 
odds of speeding decrease at both horizontal curves and ramps when the arc angle variable 
increases. These results provide useful information to allocate speed enforcement resources to 
critical curve and ramps segments during times when speeding occurs at higher rates. It could 
also help to develop and prioritize safety countermeasures to reduce speeding.  
 
 
6.6 Practical Applications 
 
Speeding is an important contributing factor in many lane departure collisions on horizontal 
curves and ramps. It is crucial to allocate limited resources, such as funding or law enforcement, 
to high-priority locations and time windows prone to speeding activities. This research 
investigated locations and time windows that experience high rates of speeding activities on 
Interstate horizontal curves and ramps. It was found that the odds of speeding are higher in rural 
compared to urban areas, and at curves with larger radii and superelevation, and smaller arc 
angles. For ramps, the odds of speeding are higher on sites with larger superelevation and lane 
widths and smaller arc angles. These results show the importance of implementing advisory 
speed signs or other speed management countermeasures at locations with the above geometric 
characteristics. The results also show a significant increase in odds of speeding for less 
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congested horizontal curves and ramps. This suggests the importance of speed enforcement on 
low-volume horizontal curves and ramps or during off-peak periods. Finally, the odds of 
speeding increase during the morning and evening peak hours and the weekends, indicating the 
need for more intensive enforcement during these time windows.  
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7.0 Summary and 
Conclusions 

 
 
Data is becoming increasingly important to state DOTs for strategic and day-to-day decision-
making. This project aims to (1) provide DOTs with a clear and comprehensive picture of their 
data assets, needs, data analytics, and other data practices related to Transportation Systems 
Management and Operations (TSMO); (2) offer strategic and practical recommendations to 
prepare DOTs for future transportation data analytics; and (3) demonstrate the potential of 
Artificial Intelligence (AI) techniques and emerging data sources through three case studies to 
improve TSMO. 
 
This research begins with a comprehensive review of data and data sources, presented in Section 
2.1. The discussed data sources are further summarized in Table 2-1, indicating a substantial 
change in the landscape of traffic data collection over the past two decades. Mobile devices and 
emerging connected vehicles have significantly expanded the coverage of traditional sensors, 
such as loop detectors and cameras, providing a maintenance-free approach for transportation 
agencies to collect detailed data elements, such as vehicle trajectories. Another significant aspect 
is the widespread application of AI technologies in sensor data processing and modeling, 
generating valuable traffic measurements for data-driven decision-making. 
 
The review is followed by interviews with domain experts. Overall, respondents recognize the 
need to  
 

• Share data across divisions,  
• Integrate data from different sources,  
• Protect data privacy and security, 
• Invest in data analytics using advanced tools and workforce development, and 
• Introduce and develop innovative data analysis methods.  

 
In general, they express satisfaction with the quality of probe and crowdsourced data. However, 
they acknowledge that such data may be less reliable in rural areas or during off-peak periods 
due to low sample size issues. All respondents rely on both private data vendors and their own 
infrastructure for data collection. Maintenance is a critical factor in making data infrastructure 
investment decisions. DOTs often find it challenging to keep up with technological evolution, 
posing challenges to maintaining and upgrading data collection infrastructure on their own. This 
may also lead to some technologies becoming obsolete quickly. Therefore, DOTs sometimes 
prefer to let private companies bear this risk and purchase data products from them. All 
respondents express interest in AI applications in TSMO, although most DOTs hire consultants 
for their existing AI-related work. 
 
Based on the review and interviews, Chapter 3 provides recommendations to DOTs regarding 
transportation data analytics. DOTs are encouraged to continue exploring data from sources such 
as mobile devices, probe vehicles, and connected vehicles, which offer extensive coverage. 
Additionally, they should consider implementing AI and edge computing-powered roadside 
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sensors at strategic locations or on a portable platform. While these sensors may have limited 
coverage compared to data generated by mobile devices or crowdsourcing, they capture rich 
information from all vehicles rather than a small sample, providing ground truth data. DOTs are 
also advised to invest in workforce development focused on data analytics and to restructure 
their organizations to facilitate both data sharing and synergistic data analysis. 
 
Three case studies were conducted to demonstrate how AI and data from advanced radar and 
thermal camera sensors, along with emerging sources, can help DOTs understand driver speed 
and lane-changing behavior on horizontal curves and prior to a highway work zone. Specifically, 
the first case study focused on speed behavior on highway horizontal curves. Ultra-high-
definition radar and thermal cameras were used to collect traffic data at five sites along I-93 in 
New Hampshire. AI models were developed to analyze the data, generating vehicle counts, 
headways, and speed distributions and profiles. AI models also performed camera view change 
detection, risky behavior detection, and vehicle merging point analysis. The data suggested that 
drivers do not change speed significantly when approaching a horizontal curve, probably because 
of the high geometric design standards of I-93. The camera view change detection algorithm can 
be useful for future AI + edge computing deployments for sensor self-calibration or generating 
sensor recalibration warnings. 
 
The second case study investigated how drivers adjust speed and where they change lanes when 
approaching a work zone, which was equipped with two flashing speed limit signs on the two 
sides of the highway and a portable changeable message sign (PCMS). The speed data from 
radar and the data on vehicle lane-changing behavior, generated by AI models, suggested that 
both the flashing speed limit signs and the PCMS were effective in prompting vehicles to reduce 
speed and change lanes. 
 
The final case study integrated probe data and road inventory data to model speeding activities 
on horizontal curves and ramps at a network level. The results showed that speeding occurs more 
frequently (1) in rural compared to urban areas, (2) at curves with larger radii and superelevation, 
smaller arc angles, (3) on less congested curves and ramps, and (4) during the morning and 
evening peak hours and on weekends. 
 
The review and interview results, along with the recommendations, are directly usable by state 
DOTs for making informed decisions related to transportation data analytics. These case studies 
illustrate the benefits of utilizing detailed vehicle trajectories collected by a portable platform 
and how datasets from various sources can complement each other, providing a comprehensive 
view of driver behavior to improve highway traffic operations and safety. The results of the three 
case studies can assist DOTs in developing improved work zone temporary traffic control plans 
and strategies to address speeding on curves and ramps. 
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9.0 Appendices 
 
9.1 Appendix A. Speed Distributions and Profiles for the Five Horizontal 

Curves 

 
Figure 9-1. Speed Distribution for Nashua between 0 AM and 4 AM 

 
Figure 9-2. Speed Distribution for Nashua between 6 AM and 8 AM 
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Figure 9-3. Speed Distribution for Nashua between 10 AM and 2 PM 

 
 

 
Figure 9-4. Speed Distribution for Nashua between 4 PM and 6 PM 
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Figure 9-5. Average Segment Speed Profile at Nashua 

 

 
Figure 9-6. Average Spot Speed Profile at Nashua 
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Figure 9-7. Average Speed vs. Frequency: Small vs. Large Vehicles at Tilton North main road 

 0 AM to 4 AM 
 

 
Figure 9-8. Average Speed vs. Frequency: Small vs. Large Vehicles at Tilton North main road  

6 AM to 8 AM 
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Figure 9-9. Average Speed vs. Frequency: Small vs. Large Vehicles at Tilton North main road 

 10 AM to 2 PM 
 

 
Figure 9-10. Average Speed vs. Frequency: Small vs. Large Vehicles at Tilton North main road 

 4 PM to 6 PM 



105 
 

 
Figure 9-11. Average Segment Speed Profile at Tilton North Main Road 

 
 

 
Figure 9-12. Time vs. Average Speed at Tilton North main road 
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Figure 9-13. Average Speed vs. Frequency: Small vs. Large Vehicles at Tilton North main road 

 0 AM to 4 AM 
 
 

 
Figure 9-14. Average Speed vs. Frequency: Small vs. Large Vehicles at Tilton North main road 

 6 AM to 8 AM 
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Figure 9-15. Average Speed vs. Frequency: Small vs. Large Vehicles at Tilton North main road 

10 AM to 2 PM 
 

 
Figure 9-16. Average Speed vs. Frequency: Small vs. Large Vehicles at Tilton North main road 

 4 PM to 6 PM 
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Figure 9-17. Average Segment Speed Profile at Tilton North main road 

 

 
Figure 9-18. Time vs. Average Speed at Tilton North main road 
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Figure 9-19. Average Speed vs. Frequency: Small vs. Large Vehicles at Tilton South 

 0 AM to 4 AM 
 
 

 
Figure 9-20. Average Speed vs. Frequency: Small vs. Large Vehicles at Tilton South 

 6 AM to 8 AM 
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Figure 9-21. Average Speed vs. Frequency: Small vs. Large Vehicles at Tilton South 

 10 AM to 2 PM 
 

 
Figure 9-22. Average Speed vs. Frequency: Small vs. Large Vehicles at Tilton South 

 4 PM to 6 PM 
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Figure 9-23. Average Segment Speed Profile at Tilton South 

 

 
Figure 9-24. Time vs. Average Speed at Tilton South 
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Figure 9-25. Average Speed vs. Frequency: Small vs. Large Vehicles at Tilton South 

 0 AM to 4 AM 
 

 
Figure 9-26. Average Speed vs. Frequency: Small vs. Large Vehicles at Tilton South 

 6 AM to 8 AM 
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Figure 9-27. Average Speed vs. Frequency: Small vs. Large Vehicles at Tilton South  

10 AM to 2 PM 
 

 
Figure 9-28. Average Speed vs. Frequency: Small vs. Large Vehicles at Tilton South 

 4 PM to 6 PM 
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Figure 9-29. Observed Distance vs. Average Speed at Tilton South 

 
 

 
Figure 9-30. Time vs. Average Speed at Tilton South 
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Figure 9-31. Average Speed vs. Frequency: Small vs. Large Vehicles at Littleton South 

 0 AM to 4 AM 
 

 
Figure 9-32. Average Speed vs. Frequency: Small vs. Large Vehicles at Littleton North 

 6 AM to 8 AM 
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Figure 9-33. Average Speed vs. Frequency: Small vs. Large Vehicles at Littleton North 

 10 AM to 2 AM 
 

 
Figure 9-34. Average Speed vs. Frequency: Small vs. Large Vehicles at Littleton North 

 4 PM to 6 PM 
 



117 
 

 
Figure 9-35. Observed Distance vs. Average Speed at Littleton North 

 
 

 
Figure 9-36. Time vs. Average Speed at Littleton North 
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Figure 9-37. Average Speed vs. Frequency: Small vs. Large Vehicles at Littleton South 

 0 AM to 4 AM 
 
 

 
Figure 9-38. Average Speed vs. Frequency: Small vs. Large Vehicles at Littleton South 

 6 AM to 8 AM 
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Figure 9-39. Average Speed vs. Frequency: Small vs. Large Vehicles at Littleton South 

 10 AM to 2 PM 
 

 
Figure 9-40. Average Speed vs. Frequency: Small vs. Large Vehicles at Littleton South 

 4 PM to 6 PM 
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Figure 9-41. Observed Distance vs. Average Speed at Littleton South 

 

 
Figure 9-42. Time vs. Average Speed at Littleton South 
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Figure 9-43. Average Speed vs. Frequency: Small vs. Large Vehicles at Campton 

 0 AM to 4 AM 
 

 
Figure 9-44. Average Speed vs. Frequency: Small vs. Large Vehicles at Campton  

6 AM to 8 AM 
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Figure 9-45. Average Speed vs. Frequency: Small vs. Large Vehicles at Campton 

 10 AM to 2 PM 
 

 
Figure 9-46. Average Speed vs. Frequency: Small vs. Large Vehicles at Campton  

4 PM to 6 PM 
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Figure 9-47. Observed Distance vs. Average Speed at Campton  

 
 

 
Figure 9-48. Time vs. Average Speed at Campton  
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9.2 Appendix B. Comparison of Collected Radar Speed Data and TomTom Speed Data 

 
Figure 9-49. TomTom vs. Radar: Average Speed Comparison at Tilton (00:00-01:00) 

 

 
Figure 9-50. TomTom vs. Radar: Average Speed Comparison at Tilton (01:00-02:00) 
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Figure 9-51. TomTom vs. Radar: Average Speed Comparison at Tilton (02:00-03:00) 

 

 
Figure 9-52. TomTom vs. Radar: Average Speed Comparison at Tilton (03:00-04:00) 
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Figure 9-53. TomTom vs. Radar: Average Speed Comparison at Tilton (04:00-05:00) 

 

 
Figure 9-54. TomTom vs. Radar: Average Speed Comparison at Tilton (05:00-06:00) 
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Figure 9-55. TomTom vs. Radar: Average Speed Comparison at Tilton (06:00-07:00) 

 

 
Figure 9-56. TomTom vs. Radar: Average Speed Comparison at Tilton (07:00-08:00) 
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Figure 9-57. TomTom vs. Radar: Average Speed Comparison at Tilton (08:00-09:00) 

 

 
Figure 9-58. TomTom vs. Radar: Average Speed Comparison at Tilton (09:00-10:00) 
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Figure 9-59. TomTom vs. Radar: Average Speed Comparison at Tilton (10:00-11:00) 

 

 
Figure 9-60. TomTom vs. Radar: Average Speed Comparison at Tilton (11:00-12:00) 
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Figure 9-61. TomTom vs. Radar: Average Speed Comparison at Tilton (12:00-13:00) 

 

 
Figure 9-62. TomTom vs. Radar: Average Speed Comparison at Tilton (13:00-14:00) 
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Figure 9-63. TomTom vs. Radar: Average Speed Comparison at Tilton (14:00-15:00) 

 

 
Figure 9-64. TomTom vs. Radar: Average Speed Comparison at Tilton (15:00-16:00) 
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Figure 9-65. TomTom vs. Radar: Average Speed Comparison at Tilton (16:00-17:00) 

 

 
Figure 9-66. TomTom vs. Radar: Average Speed Comparison at Tilton (17:00-18:00) 
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Figure 9-67. TomTom vs. Radar: Average Speed Comparison at Tilton (18:00-19:00) 

 

 
Figure 9-68. TomTom vs. Radar: Average Speed Comparison at Tilton (19:00-20:00) 
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Figure 9-69. TomTom vs. Radar: Average Speed Comparison at Tilton (20:00-21:00) 

 

 
Figure 9-70. TomTom vs. Radar: Average Speed Comparison at Tilton (21:00-22:00) 
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Figure 9-71. TomTom vs. Radar: Average Speed Comparison at Tilton (22:00-23:00) 

 

 
Figure 9-72. TomTom vs. Radar: Average Speed Comparison at Tilton (23:00-24:00) 
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9.3 Appendix C. Campton Speed Profiles 
 

 
Figure 9-73. Average Speed Comparison between Left and Right Lane across Dates 
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Figure 9-74. Average Speed Comparison between Left and Right Lane across Dates 
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Figure 9-75. Average Speed Comparison between Left and Right Lane across Dates 
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Figure 9-76. Average Speed Comparison between Left and Right Lane across Dates 
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Figure 9-77. Average Speed Comparison between Left and Right Lane across Dates 
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Figure 9-78. Average Speed Comparison between Left and Right Lane across Dates 



142 
 

 
Figure 9-79. Average Speed Comparison between Left and Right Lane across Dates 
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9.4 Appendix D. Traffic Volume Data 
 
Littleton North 

 
Figure 9-80. Hourly vehicle volume at Littleton North for all days. 

 

 
Figure 9-81. Heatmap illustrating hourly vehicle volume at Littleton North. 

 

 
Figure 9-82. Average hourly volume of vehicles on weekdays at Littleton North. 
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Figure 9-83. Average hourly volume of vehicles on weekends at Littleton North 

 
 

Littleton South 

 
Figure 9-84.  Hourly vehicle volume at Littleton South for all days. 

 

 
Figure 9-85.  Heatmap illustrating hourly vehicle volume at Littleton South. 
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Figure 9-86. Average hourly volume of vehicles on weekdays at Littleton South. 

 

 
Figure 9-87. Average hourly volume of vehicles on weekends at Littleton South. 

 
 

Tilton North 

 
Figure 9-88.  Hourly vehicle volume at Tilton North for all days. 
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Figure 9-89.  Heatmap illustrating hourly vehicle volume at Tilton North. 

 

 
Figure 9-90.  Average hourly volume of vehicles on weekdays at Tilton North. 
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Figure 9-91.  Average hourly volume of vehicles on weekends at Tilton North. 

 
 
 

Tilton South 

 
Figure 9-92.  Hourly vehicle volume at Tilton South for all days. 
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Figure 9-93.  Heatmap illustrating hourly vehicle volume at Tilton South. 

 

 
Figure 9-94.  Average hourly volume of vehicles on weekdays at Tilton South. 
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Figure 9-95.  Average hourly volume of vehicles on weekends at Tilton South. 

 
 
 
Nashua 

 
Figure 9-96.  Hourly vehicle volume at Nashua for all days. 
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Figure 9-97.  Heatmap illustrating hourly vehicle volume at Nashua. 

 
 

 
Figure 9-98.  Average hourly volume of vehicles on weekdays at Nashua. 
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Figure 9-99.  Average hourly volume of vehicles on weekends at Nashua. 

 
 
 
Campton 

 

 
Figure 9-100.  Hourly vehicle volume at Campton for all days. 
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Figure 9-101.  Heatmap illustrating hourly vehicle volume at Campton. 

 

 
Figure 9-102.  Average hourly volume of vehicles on weekdays at Campton. 
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Figure 9-103.  Average hourly volume of vehicles on weekends at Campton. 

 
 
Analysis of merging vehicles at Campton 
 
Two cells in the heatmap are blank because of corruption in two thermal videos. Four out of the 
15 line-charts show gaps in the lines. Those gaps are due to factors like excessive camera 
movement due to high wind, adverse weather conditions, or other issues. 

 

 
Figure 9-104.  Heatmap illustrating hourly vehicle volume merging in “somewhat risky” 

manner (YELLOW). 
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Figure 9-105.  Heatmap illustrating hourly vehicle volume merging in “risky” manner (RED1). 
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Figure 9-106.  Heatmap illustrating hourly vehicle volume merging in “extremely risky” 

manner (RED2). 
 
 

 
Figure 9-107. Daily traffic volume and vehicle merging pattern on 8-17-2023 in Campton NH 
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Figure 9-108. Daily traffic volume and vehicle merging pattern on 8-18-2023 in Campton NH 

 
 

 
Figure 9-109. Daily traffic volume and vehicle merging pattern on 8-19-2023 in Campton NH 

 
 

 
Figure 9-110. Daily traffic volume and vehicle merging pattern on 8-20-2023 in Campton NH 

 
 



157 
 

 
Figure 9-111. Daily traffic volume and vehicle merging pattern on 8-21-2023 in Campton NH 

 
 

 
Figure 9-112. Daily traffic volume and vehicle merging pattern on 8-22-2023 in Campton NH 

 
 

 
Figure 9-113. Daily traffic volume and vehicle merging pattern on 8-23-2023 in Campton NH 
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Figure 9-114. Daily traffic volume and vehicle merging pattern on 8-24-2023 in Campton NH 

 
 

 
Figure 9-115. Daily traffic volume and vehicle merging pattern on 8-25-2023 in Campton NH 

 
 

 
Figure 9-116. Daily traffic volume and vehicle merging pattern on 8-26-2023 in Campton NH 
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Figure 9-117. Daily traffic volume and vehicle merging pattern on 8-27-2023 in Campton NH 

 
 

 
Figure 9-118. Daily traffic volume and vehicle merging pattern on 8-28-2023 in Campton NH 

 
 

 
Figure 9-119. Daily traffic volume and vehicle merging pattern on 8-29-2023 in Campton NH 
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Figure 9-120. Daily traffic volume and vehicle merging pattern on 8-30-2023 in Campton NH 

 
 

 
Figure 9-121. Daily traffic volume and vehicle merging pattern on 8-31-2023 in Campton NH 
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Table 9-1 Hourly volume of vehicles merging into single lane at the Campton location. 
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8/17/23 14 844 23 7 43 917 21 7 41 2 0 2 0 0 0 
8/17/23 15 940 34 10 54 1038 32 9 53 2 1 1 0 0 0 
8/17/23 16 918 26 8 42 994 26 8 41 0 0 1 0 0 0 
8/17/23 17 768 17 10 32 827 15 10 32 1 0 0 1 0 0 
8/17/23 18 507 11 6 14 538 11 5 14 0 1 0 0 0 0 
8/17/23 19 281 2 4 5 292 2 4 5 0 0 0 0 0 0 
8/17/23 20 218 5 2 5 230 5 2 5 0 0 0 0 0 0 
8/17/23 21 132 2 0 3 137 2 0 3 0 0 0 0 0 0 
8/17/23 22 75 0 0 0 75 0 0 0 0 0 0 0 0 0 
8/17/23 23 33 0 0 0 33 0 0 0 0 0 0 0 0 0 
8/18/23 0 23 1 1 0 25 1 1 0 0 0 0 0 0 0 
8/18/23 1 13 0 0 0 13 0 0 0 0 0 0 0 0 0 
8/18/23 2 13 0 0 0 13 0 0 0 0 0 0 0 0 0 
8/18/23 3 37 0 0 0 37 0 0 0 0 0 0 0 0 0 
8/18/23 4 65 0 1 0 66 0 1 0 0 0 0 0 0 0 
8/18/23 5 166 0 1 2 169 0 1 2 0 0 0 0 0 0 
8/18/23 6 327 2 2 6 337 2 2 6 0 0 0 0 0 0 
8/18/23 7 501 7 0 7 515 7 0 7 0 0 0 0 0 0 
8/18/23 8 607 22 2 14 645 22 2 14 0 0 0 0 0 0 
8/18/23 9 709 53 6 34 802 53 6 34 0 0 0 0 0 0 
8/18/23 10 846 98 11 38 993 98 11 38 0 0 0 0 0 0 
8/18/23 11 798 73 15 54 940 70 15 53 0 0 1 3 0 0 
8/18/23 12 754 27 11 33 825 25 11 31 2 0 2 0 0 0 
8/18/23 13 757 47 14 38 856 43 12 38 2 2 0 2 0 0 
8/18/23 14 768 21 3 44 836 18 3 43 3 0 1 0 0 0 
8/18/23 15 760 28 6 39 833 27 5 39 1 1 0 0 0 0 
8/18/23 16 635 24 8 28 695 24 7 28 0 1 0 0 0 0 
8/18/23 17 620 26 11 20 677 26 10 20 0 1 0 0 0 0 
8/18/23 18 399 13 5 12 429 11 4 12 2 1 0 0 0 0 
8/18/23 19 299 6 3 7 315 6 3 7 0 0 0 0 0 0 
8/18/23 20 206 5 2 2 215 5 2 2 0 0 0 0 0 0 
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8/18/23 21 183 2 0 1 186 2 0 1 0 0 0 0 0 0 

8/18/23 22 153 2 1 6 162 2 1 5 0 0 1 0 0 0 
8/18/23 23 127 1 1 2 131 1 1 2 0 0 0 0 0 0 
8/19/23 0 33 0 0 1 34 0 0 1 0 0 0 0 0 0 
8/19/23 1 25 0 0 0 25 0 0 0 0 0 0 0 0 0 
8/19/23 2 11 0 0 0 11 0 0 0 0 0 0 0 0 0 
8/19/23 3 22 0 0 0 22 0 0 0 0 0 0 0 0 0 
8/19/23 4 31 1 0 0 32 1 0 0 0 0 0 0 0 0 
8/19/23 5 75 1 0 0 76 1 0 0 0 0 0 0 0 0 
8/19/23 6 174 0 0 2 176 0 0 2 0 0 0 0 0 0 
8/19/23 7 334 2 3 9 348 2 3 9 0 0 0 0 0 0 
8/19/23 8 523 24 6 16 569 23 6 16 1 0 0 0 0 0 
8/19/23 9 800 28 8 33 869 27 8 31 1 0 2 0 0 0 
8/19/23 10 887 46 16 59 1008 43 16 59 2 0 0 1 0 0 
8/19/23 11 893 47 12 69 1021 46 12 67 1 0 2 0 0 0 
8/19/23 12 811 40 13 59 923 40 13 58 0 0 1 0 0 0 
8/19/23 13 837 46 12 46 941 46 12 46 0 0 0 0 0 0 
8/19/23 14 892 44 16 71 1023 43 16 70 0 0 1 1 0 0 
8/19/23 15 831 61 17 77 986 59 17 77 2 0 0 0 0 0 
8/19/23 16 795 47 14 64 920 45 14 64 2 0 0 0 0 0 
8/19/23 17 751 39 29 66 885 39 29 66 0 0 0 0 0 0 
8/19/23 18 581 30 13 38 662 29 13 37 1 0 1 0 0 0 
8/19/23 19 450 13 10 26 499 13 10 26 0 0 0 0 0 0 
8/19/23 20 361 11 4 7 383 11 4 7 0 0 0 0 0 0 
8/19/23 21 314 7 0 13 334 7 0 12 0 0 1 0 0 0 
8/19/23 22 216 2 2 4 224 1 2 4 0 0 0 1 0 0 
8/19/23 23 161 2 0 5 168 2 0 5 0 0 0 0 0 0 
8/20/23 0 67 0 1 0 68 0 1 0 0 0 0 0 0 0 
8/20/23 1 26 1 0 0 27 1 0 0 0 0 0 0 0 0 
8/20/23 2 13 1 0 0 14 1 0 0 0 0 0 0 0 0 
8/20/23 3 23 0 0 0 23 0 0 0 0 0 0 0 0 0 
8/20/23 4 41 0 0 1 42 0 0 1 0 0 0 0 0 0 
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8/20/23 5 68 1 0 0 69 1 0 0 0 0 0 0 0 0 
8/20/23 6 144 1 0 1 146 1 0 1 0 0 0 0 0 0 
8/20/23 7 341 5 2 15 363 5 2 15 0 0 0 0 0 0 
8/20/23 8 590 14 11 36 651 13 11 36 1 0 0 0 0 0 
8/20/23 9 988 57 36 100 1181 55 35 97 2 1 3 0 0 0 
8/20/23 10 1155 120 43 137 1455 113 40 130 7 3 7 0 0 0 
8/20/23 11 1132 125 34 100 1391 112 30 91 10 3 8 3 1 1 
8/20/23 12 1108 87 24 83 1302 79 23 81 5 1 2 3 0 0 
8/20/23 13 1124 85 24 90 1323 81 23 84 4 1 4 0 0 2 
8/20/23 14 1134 84 33 89 1340 80 33 87 3 0 1 1 0 1 
8/20/23 15 1170 168 47 184 1569 157 45 179 10 1 3 1 1 2 
8/20/23 16 1172 138 35 207 1552 127 34 201 9 1 6 2 0 0 
8/20/23 17 1169 147 35 170 1521 142 35 168 1 0 1 4 0 1 
8/20/23 18 1022 66 32 103 1223 62 31 103 2 1 0 2 0 0 
8/20/23 19 727 49 20 65 861 48 19 63 1 1 1 0 0 1 
8/20/23 20 476 19 10 18 523 19 9 18 0 1 0 0 0 0 
8/20/23 21 284 4 2 8 298 4 2 8 0 0 0 0 0 0 
8/20/23 22 108 1 1 2 112 1 1 2 0 0 0 0 0 0 
8/20/23 23 75 1 0 0 76 1 0 0 0 0 0 0 0 0 
8/21/23 0 40 0 0 1 41 0 0 1 0 0 0 0 0 0 
8/21/23 1 19 0 0 0 19 0 0 0 0 0 0 0 0 0 
8/21/23 2 13 0 0 0 13 0 0 0 0 0 0 0 0 0 
8/21/23 3 52 1 0 0 53 1 0 0 0 0 0 0 0 0 
8/21/23 4 112 2 0 0 114 2 0 0 0 0 0 0 0 0 
8/21/23 5 214 3 2 1 220 3 2 1 0 0 0 0 0 0 
8/21/23 6 389 6 0 10 405 6 0 8 0 0 1 0 0 1 
8/21/23 7 576 12 3 7 598 11 3 7 1 0 0 0 0 0 
8/21/23 8 708 15 6 15 744 15 6 15 0 0 0 0 0 0 
8/21/23 9 847 23 14 50 934 21 13 49 1 0 1 1 1 0 
8/21/23 10 997 53 14 54 1118 49 13 51 2 1 3 2 0 0 
8/21/23 11 1032 34 18 42 1126 30 17 38 3 1 3 1 0 1 
8/21/23 12 869 30 8 56 963 29 8 54 1 0 2 0 0 0 
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8/21/23 13 854 45 10 73 982 44 10 72 1 0 1 0 0 0 
8/21/23 14 855 32 10 56 953 32 10 55 0 0 0 0 0 1 
8/21/23 15 892 35 15 63 1005 35 15 63 0 0 0 0 0 0 
8/21/23 16 831 39 17 43 930 39 17 43 0 0 0 0 0 0 
8/21/23 17 745 47 11 48 851 46 11 48 1 0 0 0 0 0 
8/21/23 18 513 20 11 17 561 18 11 17 2 0 0 0 0 0 
8/21/23 19 319 13 2 10 344 11 2 10 2 0 0 0 0 0 
8/21/23 20 175 6 2 3 186 6 2 3 0 0 0 0 0 0 
8/21/23 21 107 3 0 0 110 3 0 0 0 0 0 0 0 0 
8/21/23 22 75 1 0 1 77 1 0 1 0 0 0 0 0 0 
8/21/23 23 48 2 0 1 51 2 0 1 0 0 0 0 0 0 
8/22/23 0 16 1 0 0 17 1 0 0 0 0 0 0 0 0 
8/22/23 1 10 1 0 1 12 1 0 1 0 0 0 0 0 0 
8/22/23 2 19 0 0 0 19 0 0 0 0 0 0 0 0 0 
8/22/23 3 40 0 0 0 40 0 0 0 0 0 0 0 0 0 
8/22/23 4 71 1 1 0 73 1 1 0 0 0 0 0 0 0 
8/22/23 5 191 4 1 0 196 3 1 0 0 0 0 1 0 0 
8/22/23 6 378 7 2 5 392 6 2 5 1 0 0 0 0 0 
8/22/23 7 505 52 6 12 575 50 6 12 2 0 0 0 0 0 
8/22/23 8 432 89 8 8 537 89 8 8 0 0 0 0 0 0 
8/22/23 9 634 25 11 23 693 25 11 22 0 0 1 0 0 0 
8/22/23 10 704 23 3 22 752 22 3 22 1 0 0 0 0 0 
8/22/23 11 676 9 8 23 716 8 8 23 1 0 0 0 0 0 
8/22/23 12 692 19 4 13 728 17 4 13 1 0 0 1 0 0 
8/22/23 13 704 19 4 28 755 19 4 28 0 0 0 0 0 0 
8/22/23 14 793 26 6 28 853 26 6 28 0 0 0 0 0 0 
8/22/23 15 927 28 16 40 1011 26 16 40 2 0 0 0 0 0 
8/22/23 16 920 26 12 34 992 25 12 34 1 0 0 0 0 0 
8/22/23 17 732 21 3 22 778 20 3 22 1 0 0 0 0 0 
8/22/23 18 531 7 10 16 564 7 10 16 0 0 0 0 0 0 
8/22/23 19 345 5 2 7 359 5 2 7 0 0 0 0 0 0 
8/22/23 20 211 2 1 2 216 1 1 2 1 0 0 0 0 0 
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8/22/23 21 106 0 0 2 108 0 0 2 0 0 0 0 0 0 
8/22/23 22 64 0 0 1 65 0 0 1 0 0 0 0 0 0 
8/22/23 23 30 0 0 0 30 0 0 0 0 0 0 0 0 0 
8/23/23 0 28 0 0 1 29 0 0 1 0 0 0 0 0 0 
8/23/23 1 20 0 0 0 20 0 0 0 0 0 0 0 0 0 
8/23/23 2 18 0 0 0 18 0 0 0 0 0 0 0 0 0 
8/23/23 3 41 0 0 0 41 0 0 0 0 0 0 0 0 0 
8/23/23 4 65 1 0 2 68 1 0 2 0 0 0 0 0 0 
8/23/23 5 185 1 0 3 189 1 0 2 0 0 0 0 0 1 
8/23/23 6 366 6 1 3 376 6 1 3 0 0 0 0 0 0 
8/23/23 7 539 22 0 11 572 21 0 11 1 0 0 0 0 0 
8/23/23 8 545 21 8 14 588 21 7 14 0 1 0 0 0 0 
8/23/23 9 643 13 6 22 684 13 6 21 0 0 0 0 0 1 
8/23/23 10 745 18 6 30 799 17 6 30 1 0 0 0 0 0 
8/23/23 11 707 24 3 33 767 23 3 32 1 0 0 0 0 1 
8/23/23 12 703 16 7 18 744 16 6 17 0 1 1 0 0 0 
8/23/23 13 734 16 11 29 790 16 11 29 0 0 0 0 0 0 
8/23/23 14 838 30 10 41 919 30 10 41 0 0 0 0 0 0 
8/23/23 15 958 32 7 55 1052 32 7 54 0 0 1 0 0 0 
8/23/23 16 914 36 9 54 1013 36 9 53 0 0 0 0 0 1 
8/23/23 17 782 25 12 37 856 25 12 36 0 0 0 0 0 1 
8/23/23 18 516 19 6 24 565 19 6 24 0 0 0 0 0 0 
8/23/23 19 346 11 3 11 371 10 3 10 1 0 1 0 0 0 
8/23/23 20 208 5 1 8 222 5 1 8 0 0 0 0 0 0 
8/23/23 21 119 0 1 1 121 0 1 1 0 0 0 0 0 0 
8/23/23 22 61 1 1 1 64 1 1 1 0 0 0 0 0 0 
8/23/23 23 46 0 0 0 46 0 0 0 0 0 0 0 0 0 
8/24/23 0 17 0 0 0 17 0 0 0 0 0 0 0 0 0 
8/24/23 1 12 0 0 0 12 0 0 0 0 0 0 0 0 0 
8/24/23 2 22 0 0 0 22 0 0 0 0 0 0 0 0 0 
8/24/23 3 45 0 0 1 46 0 0 1 0 0 0 0 0 0 
8/24/23 4 89 1 0 1 91 1 0 1 0 0 0 0 0 0 
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8/24/23 5 168 2 0 3 173 2 0 3 0 0 0 0 0 0 
8/24/23 6 349 1 1 2 353 1 1 2 0 0 0 0 0 0 
8/24/23 7 523 8 2 14 547 8 2 13 0 0 1 0 0 0 
8/24/23 8 516 17 6 8 547 16 6 8 1 0 0 0 0 0 
8/24/23 9 676 16 7 16 715 16 6 14 0 1 2 0 0 0 
8/24/23 10 710 18 10 33 771 18 9 33 0 1 0 0 0 0 
8/24/23 11 717 26 8 25 776 25 8 24 1 0 0 0 0 1 
8/24/23 12 721 18 14 26 779 17 12 25 1 2 1 0 0 0 
8/24/23 13 773 32 8 26 839 32 7 26 0 1 0 0 0 0 
8/24/23 14 855 20 7 46 928 20 7 45 0 0 1 0 0 0 
8/24/23 15 952 36 13 40 1041 36 12 39 0 1 0 0 0 1 
8/24/23 16 882 35 14 54 985 34 14 53 1 0 1 0 0 0 
8/24/23 17 738 34 9 33 814 34 9 33 0 0 0 0 0 0 
8/24/23 18 548 21 10 18 597 20 10 18 1 0 0 0 0 0 
8/24/23 19 351 9 2 5 367 9 2 5 0 0 0 0 0 0 
8/24/23 20 247 6 3 5 261 5 3 4 0 0 0 1 0 1 
8/24/23 21 125 4 0 7 136 4 0 7 0 0 0 0 0 0 
8/24/23 22 82 1 0 0 83 1 0 0 0 0 0 0 0 0 
8/24/23 23 49 0 0 1 50 0 0 1 0 0 0 0 0 0 
8/25/23 0 17 0 0 0 17 0 0 0 0 0 0 0 0 0 
8/25/23 1 17 1 0 0 18 1 0 0 0 0 0 0 0 0 
8/25/23 2 17 0 0 0 17 0 0 0 0 0 0 0 0 0 
8/25/23 3 37 0 0 0 37 0 0 0 0 0 0 0 0 0 
8/25/23 4 73 2 0 1 76 2 0 1 0 0 0 0 0 0 
8/25/23 5 146 4 0 0 150 4 0 0 0 0 0 0 0 0 
8/25/23 6 284 9 0 1 294 9 0 1 0 0 0 0 0 0 
8/25/23 7 461 6 1 4 472 6 1 4 0 0 0 0 0 0 
8/25/23 8 557 21 4 11 593 21 4 11 0 0 0 0 0 0 
8/25/23 9 785 25 7 15 832 24 6 15 1 0 0 0 1 0 
8/25/23 10 907 26 14 44 991 23 13 43 3 0 1 0 1 0 
8/25/23 11 798 65 9 24 896 65 9 24 0 0 0 0 0 0 
8/25/23 12 793 27 7 26 853 26 6 26 1 1 0 0 0 0 
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8/25/23 13 712 29 9 32 782 29 8 29 0 1 2 0 0 1 
8/25/23 14 704 43 7 30 784 43 7 30 0 0 0 0 0 0 
8/25/23 15 668 31 1 28 728 27 1 28 4 0 0 0 0 0 
8/25/23 16 670 28 6 27 731 28 5 26 0 1 1 0 0 0 
8/25/23 17 550 15 7 30 602 15 7 30 0 0 0 0 0 0 
8/25/23 18 340 7 4 6 357 6 4 6 1 0 0 0 0 0 
8/25/23 19 244 14 6 7 271 14 6 7 0 0 0 0 0 0 
8/25/23 20 156 12 4 3 175 12 4 3 0 0 0 0 0 0 
8/25/23 21 110 14 2 0 126 14 2 0 0 0 0 0 0 0 
8/25/23 22 85 17 2 1 105 17 2 1 0 0 0 0 0 0 
8/25/23 23 48 7 1 0 56 7 1 0 0 0 0 0 0 0 
8/26/23 0 23 8 0 0 31 8 0 0 0 0 0 0 0 0 
8/26/23 1 7 1 0 0 8 1 0 0 0 0 0 0 0 0 
8/26/23 2 11 3 0 0 14 3 0 0 0 0 0 0 0 0 
8/26/23 3 17 1 0 1 19 1 0 1 0 0 0 0 0 0 
8/26/23 4 34 4 0 1 39 4 0 1 0 0 0 0 0 0 
8/26/23 5 57 6 1 0 64 6 1 0 0 0 0 0 0 0 
8/26/23 6 122 5 1 0 128 5 1 0 0 0 0 0 0 0 
8/26/23 7 122 16 0 3 141 16 0 3 0 0 0 0 0 0 
8/26/23 8 435 62 5 17 519 62 5 17 0 0 0 0 0 0 
8/26/23 9 703 43 11 36 793 43 11 34 0 0 1 0 0 1 
8/26/23 10 841 41 12 64 958 40 12 62 1 0 2 0 0 0 
8/26/23 11 876 43 9 62 990 42 9 62 1 0 0 0 0 0 
8/26/23 12 778 30 12 46 866 29 12 46 1 0 0 0 0 0 
8/26/23 13 754 47 13 49 863 47 13 49 0 0 0 0 0 0 
8/26/23 14 787 34 12 48 881 33 12 48 1 0 0 0 0 0 
8/26/23 15 691 28 14 58 791 28 13 58 0 1 0 0 0 0 
8/26/23 16 684 42 16 49 791 41 16 49 1 0 0 0 0 0 
8/26/23 17 630 23 17 34 704 23 17 34 0 0 0 0 0 0 
8/26/23 18 483 22 11 23 539 22 11 23 0 0 0 0 0 0 
8/26/23 19 317 12 7 21 357 11 7 21 1 0 0 0 0 0 
8/26/23 20 291 7 4 9 311 7 4 9 0 0 0 0 0 0 
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8/26/23 21 197 3 1 5 206 3 1 5 0 0 0 0 0 0 
8/26/23 22 145 1 2 6 154 1 2 6 0 0 0 0 0 0 
8/26/23 23 88 1 0 1 90 1 0 1 0 0 0 0 0 0 
8/27/23 0 43 1 0 1 45 1 0 1 0 0 0 0 0 0 
8/27/23 1 21 1 0 1 23 1 0 1 0 0 0 0 0 0 
8/27/23 2 19 0 0 1 20 0 0 1 0 0 0 0 0 0 
8/27/23 3 21 0 0 0 21 0 0 0 0 0 0 0 0 0 
8/27/23 4 27 1 0 0 28 1 0 0 0 0 0 0 0 0 
8/27/23 5 56 0 2 0 58 0 2 0 0 0 0 0 0 0 
8/27/23 7 293 3 3 12 311 3 3 12 0 0 0 0 0 0 
8/27/23 9 961 74 19 88 1142 72 19 84 2 0 4 0 0 0 
8/27/23 10 1115 212 50 126 1503 192 42 112 19 5 14 1 3 0 
8/27/23 11 1037 254 53 119 1463 225 47 104 27 5 15 2 1 0 
8/27/23 12 1034 186 38 109 1367 175 35 99 10 2 9 1 1 1 
8/27/23 13 1093 76 28 121 1318 75 27 118 0 1 3 1 0 0 
8/27/23 14 1018 58 32 134 1242 58 32 134 0 0 0 0 0 0 
8/27/23 15 985 70 22 131 1208 69 22 129 1 0 2 0 0 0 
8/27/23 16 974 73 30 121 1198 73 30 120 0 0 1 0 0 0 
8/27/23 17 848 50 31 91 1020 48 29 90 1 2 1 1 0 0 
8/27/23 18 650 36 17 63 766 33 17 62 3 0 1 0 0 0 
8/27/23 19 463 24 10 29 526 23 10 29 1 0 0 0 0 0 
8/27/23 20 306 11 5 11 333 11 5 11 0 0 0 0 0 0 
8/27/23 21 180 1 1 6 188 1 0 6 0 1 0 0 0 0 
8/27/23 22 72 2 0 0 74 2 0 0 0 0 0 0 0 0 
8/27/23 23 47 0 0 0 47 0 0 0 0 0 0 0 0 0 
8/28/23 0 25 0 0 0 25 0 0 0 0 0 0 0 0 0 
8/28/23 1 13 0 0 0 13 0 0 0 0 0 0 0 0 0 
8/28/23 2 21 1 0 1 23 1 0 1 0 0 0 0 0 0 
8/28/23 3 60 0 1 0 61 0 1 0 0 0 0 0 0 0 
8/28/23 4 67 5 0 1 73 5 0 0 0 0 0 0 0 1 
8/28/23 5 220 2 1 1 224 2 0 1 0 1 0 0 0 0 
8/28/23 6 442 6 3 6 457 6 3 6 0 0 0 0 0 0 
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8/28/23 7 628 5 3 11 647 5 3 11 0 0 0 0 0 0 
8/28/23 8 556 38 6 14 614 38 6 13 0 0 1 0 0 0 
8/28/23 9 632 44 7 26 709 43 7 25 0 0 1 1 0 0 
8/28/23 10 710 37 12 35 794 36 12 35 1 0 0 0 0 0 
8/28/23 11 677 18 8 31 734 18 7 31 0 1 0 0 0 0 
8/28/23 12 738 27 4 25 794 26 4 24 0 0 1 1 0 0 
8/28/23 13 708 17 8 28 761 17 8 28 0 0 0 0 0 0 
8/28/23 14 824 19 12 38 893 18 11 36 1 1 2 0 0 0 
8/28/23 15 872 43 15 41 971 42 14 40 1 0 1 0 1 0 
8/28/23 16 790 35 13 55 893 34 13 55 1 0 0 0 0 0 
8/28/23 17 671 33 21 39 764 32 21 38 1 0 1 0 0 0 
8/28/23 18 509 16 5 29 559 14 5 28 2 0 1 0 0 0 
8/28/23 19 302 8 5 6 321 8 5 5 0 0 1 0 0 0 
8/28/23 20 137 1 0 1 139 1 0 1 0 0 0 0 0 0 
8/28/23 21 98 4 1 2 105 4 1 2 0 0 0 0 0 0 
8/28/23 22 44 5 2 0 51 5 2 0 0 0 0 0 0 0 
8/28/23 23 27 0 0 0 27 0 0 0 0 0 0 0 0 0 
8/29/23 0 16 2 0 0 18 2 0 0 0 0 0 0 0 0 
8/29/23 1 12 0 0 0 12 0 0 0 0 0 0 0 0 0 
8/29/23 2 20 1 0 0 21 1 0 0 0 0 0 0 0 0 
8/29/23 3 45 2 0 0 47 2 0 0 0 0 0 0 0 0 
8/29/23 4 90 6 1 0 97 6 1 0 0 0 0 0 0 0 
8/29/23 5 173 7 0 1 181 7 0 1 0 0 0 0 0 0 
8/29/23 6 433 16 0 9 458 16 0 9 0 0 0 0 0 0 
8/29/23 7 506 38 5 7 556 38 5 7 0 0 0 0 0 0 
8/29/23 8 471 93 4 14 582 90 4 14 2 0 0 1 0 0 
8/29/23 9 567 11 3 13 594 10 3 13 1 0 0 0 0 0 
8/29/23 10 660 28 5 37 730 26 5 37 1 0 0 1 0 0 
8/29/23 11 623 17 4 25 669 17 4 23 0 0 2 0 0 0 
8/29/23 12 600 7 5 22 634 7 5 22 0 0 0 0 0 0 
8/29/23 13 653 23 6 19 701 21 6 19 2 0 0 0 0 0 
8/29/23 14 702 29 10 35 776 28 10 34 1 0 1 0 0 0 
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8/29/23 15 775 30 9 30 844 27 9 30 2 0 0 1 0 0 
8/29/23 16 712 40 9 29 790 40 9 29 0 0 0 0 0 0 
8/29/23 17 511 24 7 16 558 23 7 16 1 0 0 0 0 0 
8/29/23 18 353 22 5 24 404 22 5 24 0 0 0 0 0 0 
8/29/23 19 258 13 2 2 275 13 2 2 0 0 0 0 0 0 
8/29/23 20 159 4 2 2 167 4 2 2 0 0 0 0 0 0 
8/29/23 21 84 1 0 1 86 1 0 1 0 0 0 0 0 0 
8/29/23 22 64 1 0 0 65 0 0 0 0 0 0 1 0 0 
8/29/23 23 27 0 0 0 27 0 0 0 0 0 0 0 0 0 
8/30/23 0 19 0 0 0 19 0 0 0 0 0 0 0 0 0 
8/30/23 1 12 0 0 0 12 0 0 0 0 0 0 0 0 0 
8/30/23 2 16 2 0 0 18 1 0 0 0 0 0 1 0 0 
8/30/23 3 35 2 0 0 37 2 0 0 0 0 0 0 0 0 
8/30/23 4 66 5 2 0 73 5 2 0 0 0 0 0 0 0 
8/30/23 5 160 4 0 4 168 4 0 4 0 0 0 0 0 0 
8/30/23 6 394 16 3 5 418 16 3 5 0 0 0 0 0 0 
8/30/23 7 518 34 5 7 564 34 5 6 0 0 1 0 0 0 
8/30/23 8 326 174 34 19 553 173 34 19 1 0 0 0 0 0 
8/30/23 9 250 235 66 23 574 230 66 23 4 0 0 1 0 0 
8/30/23 10 529 92 12 28 661 85 12 28 7 0 0 0 0 0 
8/30/23 11 559 71 10 14 654 66 9 13 5 1 1 0 0 0 
8/30/23 12 540 60 7 19 626 56 7 19 4 0 0 0 0 0 
8/30/23 13 568 16 6 13 603 16 6 11 0 0 1 0 0 1 
8/30/23 14 586 33 6 20 645 32 6 19 1 0 0 0 0 1 
8/30/23 15 587 21 6 30 644 20 6 30 0 0 0 1 0 0 
8/30/23 16 542 16 7 25 590 16 7 25 0 0 0 0 0 0 
8/30/23 17 454 13 4 21 492 13 4 21 0 0 0 0 0 0 
8/30/23 18 281 6 4 9 300 6 4 9 0 0 0 0 0 0 
8/30/23 19 210 3 1 6 220 3 1 6 0 0 0 0 0 0 
8/30/23 20 137 4 0 2 143 4 0 2 0 0 0 0 0 0 
8/30/23 21 92 3 0 0 95 3 0 0 0 0 0 0 0 0 
8/30/23 22 59 1 0 0 60 1 0 0 0 0 0 0 0 0 
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8/30/23 23 40 2 0 0 42 1 0 0 0 0 0 1 0 0 
8/31/23 0 19 2 0 0 21 1 0 0 0 0 0 1 0 0 
8/31/23 1 20 0 0 0 20 0 0 0 0 0 0 0 0 0 
8/31/23 2 16 0 0 0 16 0 0 0 0 0 0 0 0 0 
8/31/23 3 33 2 1 0 36 2 1 0 0 0 0 0 0 0 
8/31/23 4 76 3 0 1 80 3 0 1 0 0 0 0 0 0 
8/31/23 5 163 6 1 1 171 6 1 1 0 0 0 0 0 0 
8/31/23 6 411 22 4 5 442 21 4 4 1 0 1 0 0 0 
8/31/23 7 529 57 5 15 606 56 5 15 1 0 0 0 0 0 
8/31/23 8 517 39 12 15 583 39 12 14 0 0 0 0 0 1 
8/31/23 9 567 20 8 12 607 19 8 11 1 0 0 0 0 1 
8/31/23 10 548 19 2 15 584 17 2 15 2 0 0 0 0 0 
8/31/23 11 599 15 2 17 633 12 2 17 3 0 0 0 0 0 
8/31/23 12 648 24 6 14 692 23 6 14 0 0 0 1 0 0 
8/31/23 13 725 8 9 23 765 7 8 23 1 1 0 0 0 0 
8/31/23 14 741 19 8 24 792 16 8 24 2 0 0 1 0 0 
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