Development of MASH Computer Simulated Steel Bridge Rail and Transition Details - Appendices to Final Report

APPENDIX A: MAINE DOT STANDARD BRIDGE RAIL DRAWINGS

~ CURB WITH BITUMINOUS WEARING SURFACE ~

* $3^{\prime \prime}$ Hot Mix Asphalt $+1 / 4^{\prime \prime}$ (nom.) High Performance Waterproofing Membrane

$\underset{\substack{\text { SO2.2 } \\ \mathrm{A}-24)}}{\text { CONCRETE }}$ CURB

-- CURB WITH CONCRETE WEARING SURFACE --

-- CURB WITH INTEGRAL WEARING SURFACE --

CONCRETE 502(05) CURB

CONCRETE SIDEWALK ON BRIDGES 502(06)

~ 4-BAR TRAFFIC / PEDESTRIAN RAILING ~

* Including Rail Bar Cap (Typ.)

$$
\text { STEEL BRIDGE } \underset{\substack{507(02) \\ A-6}}{\text { BAILING }}
$$

STEEL BRIDGE $\underset{\substack{507(03) \\ \text { A.7 }}}{\text { RAILING }}$

Rail Bars:
TS $8 \times 4 \times 5 / 16$ (1)
TS $4 \times 4 x^{1 / 4}$ (1)

STEEL BRIDGE $\underset{\substack{507(04) \\ A-8}}{\text { RAILING }}$

Rail Bars:
TS $8 \times 4 \times 5 / 16$ (1)
TS $4 x 4 x^{\prime} / 4$ (2)

STEEL BRIDGE RAILING 507(05)

Rail Bars:
$\begin{array}{ll}\text { TS } & 8 \times 4 \times 5 / 16 \\ \text { TS } & 4 \times 4 x^{\prime} / 4\end{array}$
in Rail Bar (Typ.) Alt. Curb Projection

Rail Bar (Typ.)

Rail Bars:
$\begin{array}{ll}\text { TS } & 8 \times 4 \times 5 / 16 \\ \text { TS } & 4 \times 4 x^{1} / 4\end{array}$

STEEL BRIDGE $\underset{\substack{\text { } 507(07) \\ A-11}}{\text { RAILING }}$

~ POST \& BASE PLATE PLAN ~

STEEL BRIDGE RAILING

~ RAIL BAR CAP ~
Note: Match corner radius of rail bar

STEEL BRIDGE RAILING 507(09)

~ RAIL BAR SPLICE SECTION ~

* Weld nuts to plate before assembling splice tube

~ RAIL BAR EXPANSION JOINT SECTION ~
For details not shown, see "Rail Bar Splice Section"

$$
\text { STEEL } \underset{\substack{507(10) \\ A-14}}{B R I D G E} \quad \text { RAILING }
$$

Account for weld flash when positioning splice
$3 / 4 " \phi \times 1 / 2 "$ Sch. 40 pipe spacer at expansion splice only

ERail Bor

\& $5 / 8^{\prime \prime} \phi$ tapped hole in splice bar for $5 / 8^{\prime \prime} \phi \times 13 / 4$ " cap screw with plain hardened washer

\$ $13 / 16^{\prime \prime} \phi$ hole in rail bar (Typical Splice)
 (Expansion Splice)

STEEL BRIDGE RAILING

\& Rail Bar Splice or Exp. Joint

~ RAIL BAR SPLICE \& EXPANSION JOINT DETAIL ~ (Bottom View)

SPLICE	TUBE DIMENSIONS	
	TS 8×4	TS 4×4
Top \& Bot. Plates	$21 / 2 \times 3 / 8 \times{ }^{\prime \prime} L^{\prime \prime}$	$25 / 8 \times 3 / 8 \times{ }^{\prime \prime} L^{\prime \prime}$
Side Plates	$63 / 4 \times 3 / 8 \times{ }^{\prime \prime} L^{\prime \prime}$	$27 / 8 \times 3 / 8 \times{ }^{\prime \prime} L^{\prime \prime}$

SPLICE \& EXPANSION JOINT TABLE					
"T"	" ${ }^{\text {a }}$	"B"	"C"	"L"	" ${ }^{\prime \prime}$
Splice	$4^{\prime \prime}$	$2 "$	--	$1^{\prime \prime}-8^{\prime \prime}$	$3 / 4 "$
$\leq 4^{\prime \prime}$	$4^{\prime \prime}$	$2^{\prime \prime}$	21/2"	$1{ }^{\prime \prime}-8^{\prime \prime}$	21/2"
$>4^{\prime \prime} \leq 61 / 2^{\prime \prime}$	51/2"	21/2"	31/2"	$2^{\prime}-0^{\prime \prime}$	$33 / 4{ }^{\prime \prime}$
$>6^{\prime} / 2^{\prime \prime} \leq 9^{\prime \prime}$	61/2"	31/2"	$9^{\prime \prime} \times$	$2^{\prime}-4^{\prime \prime}$	5"
$>9^{\prime \prime} \leq 13^{\prime \prime}$	81/2"	4/2"	//" ${ }^{\text {* }}$	$2^{\prime}-10^{\prime \prime}$	7"

MATERIALS:
Rail bars \qquad ASTM A 500, Grade B Rail posts, shapes \& plates .-..................AASHTO M 270M/M 270, Grade 50 Anchor studs, washers \& heavy hex nuts...............AASHTO M 314. Grade 105 All other bolts \& nuts (unless noted)AASHTO A 307, Grade C

STEEL BRIDGE RAILING

~ CURB REINFORCING PLAN ~

~ SIDEWALK REINFORCING PLAN ~

NOTES:

1. All work and materials shall conform to the provisions of Section 507 Railings of the Standard Specifications.
2. Tubing shall meet the longitudinal CVN minimum requirements of 15 ft -lb at $0^{\circ} F$ or proportional values of sub - size specimens. Testing shall be done in accordance with ASTM A 673. The H frequency shall be used and the material shall be as - rolled.
3. Twenty - five percent of the post - to - base welds in a production lot shall be tested by the Magnetic Particle Method. If rejectable discontinuities are found, another twenty - five percent of that production lot shall be tested. If rejectable discontinuities are found in the second twenty - five percent, all post - to - base welds in that lot shall be tested. Acceptance criteria shall be in accordance with the latest edition of the AWS Dl. 5 Bridge Welding Code.

STEEL BRIDGE RAILING
 507(13)

4. All exposed cut or sheared edges shall be broken and free of burrs. The inside weld flash of tubing shall be removed at splices and expansion joints.
5. Rail posts shall be set normal to grade unless otherwise shown.
6. Lengths of rail bar shall be attached to a minimum of 2 rail posts and to at least 4 posts whenever possible.
7. Rail bar expansion joints shall be provided in any rail bay spanning a superstructure expansion joint. Expansion joint width shall be "X" at $45^{\circ} \mathrm{F}$ and will be adjusted in the field as directed by the Resident. Refer to detail and table on page 507(I2) for dimension "X".
8. All parts shall be galvanized after fabrication in accordance with ASTM A 123, except that hardware shall meet the requirements of either ASTM A 153 or ASTM B 695, Class 50, Type I. Parts except hardware shall be blast cleaned prior to galvanizing in accordance with SSPC - SP6.
9. Anchor bolts shall be set with a template. Nuts securing the post base plate shall be tightened to a snug fit and given an additional 1/8 turn.
10. Rail bars shall be attached to posts using $3 / 4 " \phi \sim$ ASTM A 307 bolts ($5 / 8^{\prime \prime} \phi \sim$ ASTM A 325 bolts may be substituted) inserted through the face of the rail bar. Bolts shall be round or dome head and may be rib neck, slotted, wrench head or tension control (TC or twist-off). Holes in posts shall be $1 / 16^{\prime \prime}$ larger than the diameter of the bolt. Holes in rail bars shall be drilled to size as follows:

Slotted, wrench head or TC bolts: $1 / 16^{" 1}$ larger than bolt diameter Rib neck bolts: Size appropriate to accomodate an interference fit

All bolts for fastening the rail bars to the posts shall be 6 inches in length and shall include a flat washer under the nut.
ll. Holes in rail bars shall be field - drilled and shall be coated with an approved zinc - rich paint prior to erection.
12. Bolts in expansion joints shall be tightened only to a point that will allow rail movement.
13. The alternate curb projection shown for the curb - mounted railings is intended for use with granite bridge curb.
14. If there is a conflict between these Standard Details and the Design Drawings, the Contractor shall notify the Resident immediately.

STEEL BRIDGE RAILING
 507(14)

~ CONCRETE TRANSITION BARRIER ~ (4 - Bar Traffic / Pedestrian Railing)

CONCRETE TRANSITION BARRIER

CONCRETE $\underset{\substack{526(25) \\ \mathrm{A}-22}}{\text { TRANSITION BARRIER }}$

CONCRETE TRANSITION BARRIER

CONCRETE TRANSITION BARRIER 526(27)

TRANSITION BARRIER ELEVATION～
（3－Bar Traffic／Bicycle Railing）
CONCRETE TRANSITION BARRIER

CONCRETE $\underset{\substack{526(29) \\ \mathrm{A}-26}}{\text { TRANSITION BARRIER }}$

CONCRETE TRANSITION BARRIER 526(30)
（ㄱㅋヨ 乙）0099」～ャ

$$
\text { CONCRETE } \underset{\substack{526(31) \\ \mathrm{A}-28}}{\text { TRANSITION BARRIER }}
$$

CONCRETE $\underset{\substack{526(32) \\ \mathrm{A}-29}}{\text { TRANSITION BARRIER }}$

[^0]（゚」゚ヨ 乙）00991～t
$$
\text { CONCRETE } \underset{\substack{\text { TRANSITIT } \\ \mathrm{A} \cdot 31}}{\text { TRA) }}
$$

[^1]

[^2]| REINFORCING STEEL SCHEDULE | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | 2 - Bar Traffic | | 3 - Bar Bike | | 4 - Bar Bike | | 4 - Bar Ped. | |
| | Qty. | Length | Qty. | Length | Qty. | Length | Qty. | Length |
| TB500 | 10 | $4^{\prime}-6^{\prime \prime}$ | 10 | $4^{\prime}-6^{\prime \prime}$ | 12 | $4^{\prime}-6{ }^{\prime \prime}$ | 12 | $4^{\prime}-6^{\prime \prime}$ |
| TB501 | 2 | $1 \times-8{ }^{\prime \prime}$ | 2 | $2^{\prime}-2^{\prime \prime}$ | 2 | $3^{\prime}-2^{\prime \prime}$ | 2 | $2^{\prime}-1 / 11$ |
| TB502 | 2 | 1 '-7" | 2 | $2^{\prime}-0^{\prime \prime}$ | 2 | $2^{\prime}-10^{\prime \prime}$ | 2 | $2^{\prime}-9^{\prime \prime}$ |
| TB503 | 2 | $1{ }^{\prime}-7{ }^{\prime \prime}$ | 2 | $1-10^{\prime \prime}$ | 2 | $2^{\prime}-6{ }^{\prime \prime}$ | 2 | $2^{\prime}-7{ }^{\prime \prime}$ |
| TB504 | 2 | $1 '-6 "$ | 2 | 1 '-8" | 2 | $2^{\prime}-2^{\prime \prime}$ | 2 | $2^{\prime}-5{ }^{\prime \prime}$ |
| TB505 | 2 | $1^{\prime \prime}-6^{\prime \prime}$ | 2 | $1^{\prime \prime}-6^{\prime \prime}$ | 2 | $1{ }^{\prime}-10^{\prime \prime}$ | 2 | $2^{\prime}-3^{\prime \prime}$ |
| TB506 | -- | -- | 2 | $4^{\prime}-8^{\prime \prime}$ | 2 | 5'-1" | 2 | $4^{\prime}-8^{\prime \prime}$ |
| TB550 | 5 | $10^{\prime}-2 \times$ | 6 | $10^{\prime}-2^{\prime \prime}$ | 7 | $10^{\prime}-2^{\prime \prime}$ | 7 | $10^{\prime}-2^{\prime \prime}$ |
| TB600 | -- | -- | 4 | $2^{\prime}-7^{\prime \prime}$ | 4 | $3^{\prime}-7{ }^{\prime \prime}$ | 4 | $3^{\prime}-4^{\prime \prime}$ |
| TB650 | -- | -- | 5 | $5^{\prime}-10^{\prime \prime}$ | 5 | $7^{\prime}-10^{\prime \prime}$ | 5 | $7^{\prime}-4^{\prime \prime}$ |
| TB65/ | 2 | 7'-/1" | 2 | $7^{\prime}-1 / 1{ }^{\prime \prime}$ | 2 | $7{ }^{\prime}$ - 111 | 2 | 7'-1/" |
| TB652 | 5 | $8^{\prime}-9^{\prime \prime}$ |

Notes:
The first digit following the letters of the mark indicate the size of the reinforcing bar. (TB500 = bar size \#5.) All dimensions are out - to out of bar.

Quantities given are for one Transition Barrier.

CONCRETE TRANSITION BARRIER

NOTES:

1. All work and materials shall conform to the provisions of Standard Specifications Section 526 - Concrete Barrier.
2. The Contractor is responsible for ensuring that vertical reinforcing bars TB65I and TB652 are installed prior to placement of the curb or sidewalk concrete. Payment for these bars will be considered incicdental to Item No. 526.34, Permanent Concrete Transition Barrier.
3. Reinforcing steel shall have a minimum concrete cover of 2 inches.
4. Quantities of reinforcing bars shown are for one transition barrier only.
5. When the Concrete Transition Barrier is cantilevered over an expansion joint, the nose shall be blocked out as shown.
6. Payment for guardrail anchorage will be considered incidental to the transition barrier pay item. Class 8.8.3 bolts shall be used when corrosion resistant steel guardrail is specified on the approach roadway
7. Precast Concrete Transition Curb shall meet the requirements of Standard Specifications Section 609 - Curb. The bridge end of the curb shall be saw cut in the field to fit flush against the backwall, as dictated by the bridge skew angle and the profile grade. Where curbing is specified on the adjacent highway, the transition shall be modified accordingly. Payment for transition curb will be considered incidental to the Concrete Transition Barrier pay item.
8. Concrete Transition Barrier is designed for attachment of Bridge Transition Type "l" unless otherwise indicated on the Design Drowings. Refer to Section 606 for details.
9. After installation of the guardrail is complete, upset the threads on the anchor bolts in three (3) places around each bolt, at the junction of the nut and the exposed thread, with a center punch or similar tool.
10. If there is a conflict between these Standard Details and the Design Drowings, the requirements of the Design Drawings shall be followed.

MATERIALS:
Concrete

$$
\begin{array}{lll}
\text { Bridge Transition Type " } \mu^{\prime \prime} \\
\text { Thrie Beam } \\
\text { Terminal Connector }
\end{array}
$$

STANDARD BRIDGE $\underset{\text { GO6(21) }}{\text { TRANSITION - TYPE "/" }}$

~ BRIDGE TRANSITION TYPE "IA"~
NOTE: Part designations are shown in "A Guide to Standardized Highway Barrier Hardware" as

APPENDIX B: NEW HAMPSHIRE DOT STANDARD BRIDGE RAIL DRAWINGS

APPENDIX C: VERMONT DOT STANDARD BRIDGE RAIL DRAWINGS

SECTION B-B

POST TABLE
notes:

1. THRIE-BEAM TERMINAL CONNECTOR SHALL BE INCLUDED in the UNIT BID PRICE FOR GUARDRAIL APPROACH SECTION TO CONCRETE COMBINATION BRIDGE RAILING, TL-3.
2. UNLESS OTHERWISE DIRECTED BY THE ENGINEER, A COMPOSITE MATERIAL BLOCKOUT FROM THE APPROVED PRODUCTS LIST MAY BE SUBSTITUTED FOR A BLOCKOUT OF SIMILAR DIMENSIONS.
3. this railing meets the requirements for a nchrp report 350 tL-3 SERVICE Level.

DATE	DESCRIPTION	
0	AUCUST 22, 2012	ORRINL APPROVAL
I	FEBRUARY 2, 2017	REVISED POST DIMENSIONS AND CURB LAYOUT

GUARDRAIL APPROACH SECTION TO CONCRETE COMBINATION BRIDGE RAILING, TL-3

VTRANS AND FHWA APPROVAL ON FILE WITH CONTRACT ADMINTSTRATION

$\frac{\text { DECK EXPANSION }}{\text { JOINT }}$

bRidge railing elevation

TYPICAL SECTION

ELEVATION
dia hole for attachment

RAIL POST ANCHORAGE

$\frac{\text { EXPANSION JOINT DETAIL }}{\text { (BOTTOM VIEW) }}$
(BOTTOM VIEW)

POST BASE PLATE
6. holes in rails for rail tube attachment may be fielo-drilled. holes
Shall be coated with an approved zinc-rich paint prior to installatio
7. rail post anchoring nuts shall be tightened to a snug fit and given an ADDITIONAL ONE-EIGHTH TURN.
8. Rail tubes shall be attached using $3 / 4$ " full diameter boor astm a 449 (TYPE I) ROUND head bolts inserted throuch the face of the tube. holes in POSTS SHALL BE $1 / 6$ " LARGER THAN THE BOLT SIZE.
9. any bending of rail shall be done at a fabrication plant according to a PRocedure provided by the fabricator.
10. THE MINIMUM DISTANCE FROM THE POST TO AN EXPANSION JOINT SHALL BE DETERM INED BY THE MINIMUM EDCE DISTANCE OF 5 " FROM ANY ANCHOR STUD TO THE END OF
ONE IS USED.
11. See standard drawing g-i for details of delineators. a delineator SHALL BE INSTALLED AT 30 FOOT SPACING OR THE NEAREST POST. WHITE
IS TO BE INSTALED ON THE DRIVER'S RIGHT. FOR ONE WAY BRIDGES, YELLO IS to be installed on the driver's richt. for one way brioges, yello
IS to be installed on the driver's left. parment shall be inciontal TO OTHER ITEMS.
12. this railing meets the requirements for a tl-4 service level.

THRIE BEAM GUARDRAIL ASSEMBLY (SEE STD S-360B)

DEFLECTOR PLATE DETAIL

ASYMMETRICAL THRIE-BEAM TO STANDARD STEEL BEAM TRANSITION SECTION

THRIE-BEAM TO STANDARD $\frac{\text { STEEL BEAM TRANSITION SECTION }}{\text { (ARTBA RwToIa-b) }}$

1. THE ASYMMETRICAL THRIE-BEAM TO STANDARD STEEL BEAM TRANSITION SECTION IS
TO BE USED WITH THE G-1 STANDARD STEEL BEAM WHEN THE RAIL HEIGHT IS 32 ".

RAILING POST ANCHORAGE
elevation view RAILING ANGLE DETAILS

$\frac{\text { ROUND HEAD BOLT DETAIL }}{7 /{ }^{\prime \prime} \text { DIA ROUND HEAD BOLT }}$
(A449 TYPE 1), W/ HEX NUT, WASHER AND SPRING LOCK WASHER

RAILING SECTION

NOTES:

1. ALL Work and materials shall conform to section 525.
2. Prior to galvanizing, grind all edges to a minimum radius of $1 / \lg ^{\prime \prime}$.
3. ALL POSTS SHALL BE SET NORMal to GRade. the maximum Center to center spacing of
4. SECTIONS OF RAIL TUBE SHALL BE ATACHED to a minimum of two bridge posts and
5. RAIL TUBE EXPANSION JOINTS SHALL BE PROVIDED IN ANY RAIL BAY SPANNING THE END OF AN
INTEGRAL ABUTMENT BRIDGE AND AT ALL SUPERSTRUCTURE EXPANSION JOINTS. EXPANSION JOINT WIDTH SHAL
TEMPERATURES
6. holes in rails for tube attachment may be field-drilled. holes shall be coated with
an approved Zinc-rich paint prior to installation.
7. bolts shall be torqued snug tight (approximately loo ft-lb).
8. SEE STANDARD DRAWING G-I FOR DETAILS OF DELINEATORS. A DEL INEATOR SHALL BE INSTALLED

9. ANY BENDing of rail shall be done at the fabrication plant according to a procedure
PROVIDED BY the fabricator.
10. THE MINIMUM DISTANCE FROM THE POST TO AN EXPANS ION JOINT SHALL BE DETERMINED BY THE
MINIMUM EDCE DISTANCE OF SH FROM ANY ANCHOR STUD TO THE END OF THE SLAB OR TO THE EXPANSION JOINT RECESS POUR IF ONE IS USED.
II. this railing meets the requirements for a tl-4 Service level.

NOTES:

- BoX beam tube and steel post materials, dimension sizes and
Notes shall be the same as those or the bridge rail, unless NOTES SHALL BE THE
OTHERWISE NOTED.
. S3×5.7 POSTS Shall meet the requirements of 728.01 (c)

REV.	DATE	DESCRIPTION
0	AUGUST 9, 2010	ORIGINAL APPROVAL
1	APRIL 23, 2012	GENERAL UPDATE 2012
2	FEBRUARY 10, 2014	CLARIF Y TRANSITION POST REOUIREMENTS
3	FEBRUARY 2, 2017	BORDER UPDATE, MISC. REVIIIONS

notes:

1. PAYMENT FOR POST \#1, HSS8×4×3/16 OFFSET BLOCKS AND TUBULAR BACKUP RAIL EXTENDING TO POST \#l OFF THE BRIDGE SHALL BE MADE UNDE

BLOCKOUTS SHALL BE RECESSED WOOD ONLY. STEEL OR PLASTIC BLOCKOUTS are not permitied.
3. guardrail is not attached to post numbers $2-4,6$ and 8 . there shall BE NO GAP BETWEEN THE POSTS THAT ARE NOT ATTACHED AND THE RAIL.
OFFSET BLOCKS SHALL BE ATTACHED TO POST WITH STANDARD POST BOLT.
4. posts may be set in drilled holes or driven to grade.
5. THIS RAILING MEETS THE REQUIREMENTS FOR A NCHRP REPORT 350

BRIDGE RAILING ELEVATION

RAIL POST ANCHORAGE

$19(3 / 4$ " $)$ DIA MIG4 (TYPE 1)
ROUND HEAD BOLT
(WTH WASHER AND PREVALING TOROUE TYPE LOCK NUT)
only full diameter boiy bolis wil be allowed.
$\begin{gathered}\text { tack weld } \\ \text { NUT }\end{gathered}$
$\frac{\text { ON } 19\left(3^{\prime \prime}\right) \text { DIA } \times 13\left(1 / /^{\prime \prime}\right) \text { LONG }}{\text { SCHEDULE } 40 \text { STEEL }}$
PIPE SPACER

16(5/8") DIA TAPPED HOL

EXPANSION JOINT SECTION
FOR DETALLS NOT SHOWN,

TYPICAL SECTION
etric

NOTES

rallings an materials shall conform to the provisions of section 525
2. tubing and posts shall meet the reouirements of section 732.
3. ALL EXPOSED CUT OR SHeared edges shall be rounded to a $2 \mathrm{~mm}\left(1 / 6^{")}\right.$) RADIU
AND BE FREE OF burrs.
4. rail posts shall be set normal to Grade.
5. Sections of rail tube shall be attached to a minimum of two (2) rail posts and preferably to at least four (4) posts.
6. RAIL TUBE EXPANSION JOINTS SHALL BE PROVIDED IN ANY RAIL BAY SPANNING
SUPERSTRUCTURE EXPANS ION JOINT. EXPANS ION SUPERSTRUCTURE EXPANSION JOINT. EXPANSION JOINT WIDTH SHALL BE "X"AT
$7^{\circ} \mathrm{C}\left(45^{\circ} \mathrm{F}\right)$ AND WILL BE ADJUSTED IN THE FIELD BY THE ENG INEER FOR OTHER $7^{\circ} \mathrm{C}\left(45^{\circ} \mathrm{F}\right)$ AND
TEMPERATURES.
7. rail posts anchoring nuts shall be tightened to a snug fit and given an ADDITIONAL ONE-EIGHTH TURN.
8. RALL TUBES SHALL BE ATTACHED USING $75 \mathrm{~mm}\left(3^{\prime \prime}\right)$ fuLL DIAMETER BoDY AAShto MI64M (TYPE I) ROUND HEAD BOLTS INSERTED THROUCH THE FACE OF THE TUBE:
9. holes in rails for rail tube attachment may be fieldodrilled. holes
Shall be coated with an approved IINC-Rich paint prior to erection.
10. ANY bending of rail shall be done at a fabricator plant, according to
procedure provided by the fabricator.
II. the fabricator shall submit fabrication drawings including welding procedures to the structures section for approval in accordance

MATERIALS

$3 \mathrm{~mm}(1 / 8 \mathrm{~g})$ PAD SHALL COMPLY $W 1 T H$ SUBSECTION 731.01 OR 731.02.

SPLICE TAble					
\uparrow	A	B	c	L	x
N/A	100 (4")	50 (2")		508 (20")	$19\left(3 / 4{ }^{(1)}\right.$
EXPANSION Joint table					
<100 (4")	100 (4")	50 (2")	$64\left(21 / 2{ }^{\text {" }}\right.$)	508 (20")	$64\left(21 / 2{ }^{\prime \prime}\right)$
$>100\left(4^{\prime \prime}\right)$ < $165\left(61 / 2^{\prime \prime}\right)$	$140(51 / 2$ ")	60 (23/8")	89 (31/2")	603 (233/4)	$100\left(4{ }^{4}\right)$
>165 (61/2")<229(9")	163 (61/2")	86 (33/8")	229 (9")*	705 (273/4")	127 (5")
>229(9") <330(13")	216 (81/2")	$111\left(43 / 8{ }^{\text {" }}\right.$)	279(11")*	857 (333/4")	179 (7")
	t = total movement at rail expansion joint as shown on the contract plans. see note 6. * $=$ single slot				

ALL DETAILS NOT TO SCALE

PROJECT:	PROJECT NO.:
STOCKBRIDGE	BRF 022-। (20)
SIGN FILE NAME: 85e0	
IPARM FILE NAME: de039rai	Dt date: 08-APr-2010
designed by: h. I. Salls	Rawn by: h. I. Salls
Souad leader: c. p. williams	HECKED bY: R. S. YOUNG

PLAN VIEW - APPROACH RAIL
「

NOTES

REFER to sheet 78 for adoitional details, notes and Material spec ifications.
2. Payment for guard rail approach section, galvanized netc 4 RAIL SHALL INCLUDE THE TERMINAL CONNECTOR, THE
CONNECTION PLATE, RAIL, POSTS, BLOCKS AND ATTACHMEN CONNECTION
HAROWARE.
3. Retroreflective material shall meet requirements of SUBSECTION 750. 08 AND SHALL BE OF ENCAPSULATED LENS stiver installed on driver's right.
4. all approach rail splices shall be lapped in the
5. ALL bridge approach rail materials, dimens Ion sizes UNLES SHALL BE THE SAME
OTHERWISE NOTED.
6. approach rail bolts shall be astm a3ot grade a and nuts SHALL BE AASHTO M29IM (ASTM AS63 GRADE A OR BETTE Chlvanzed. Washers shall be astm roan.

- weld splice bars to fit bend. use complete penetration

8. THE CONCRETE CURB WILL BE PAID FOR AS TTEM 616.28 ,
"CAST-IN-PLACE CONCRETE CURB, TYPE B.

RAIL POST

$86\left(3 / 8{ }^{n}\right)$ TOP RAIL
$89\left(31 / 2{ }^{n \prime}\right)$ BOTTOM RAIL

END CAP DETAIL

* weld tabs to end cap plate in
tapered position so cap can be
JAMMED INTO END OF RAIL TUBE.
** ROUND CORNERS 13 ($1 / 2$ (T) RADIUS (TYP)

ALL DETAILS NOT TO SCALE

THRIE-BEAM TO HDSB TRANSITION SECTION

THRIE-BEAM TERMINAL CONNECTOR (HM-TF-13/RE-67)

ALL DETAILS NOT TO SCALE

PROJECT: STOCKBRIDGE	PROJECT No: BRF 022-। (20)
DESIGN FILE NAME: 85e039\Structures $\operatorname{de039rail.dgn~}$ IPARM FILE NAME: de039rail3m. i PLOT DATE: 08-APR-2010	
designed by: h. I. Salls	DRAWN BY: H. I. SALLS
Souad leader: c. p. williams	CHECKED BY: R. S. YOUNG
railing detail 3	

APPENDIX D: RHODE ISLAND DOT STANDARD BRIDGE RAIL DRAWINGS

$\frac{\text { POST ANCHOR ASSEMBLY }}{\text { SCALE: } 11 / 2^{\prime \prime}=1^{\prime}-0^{\prime \prime}}$
$\frac{\text { POST ANCHOR ASSEMBLY }}{\text { SCALE: } 11 / 2^{\prime \prime}=1^{\prime}-0^{\prime \prime}}$

$\frac{\text { POST BASE PLATE }}{\text { SCALE: } 11 / 2^{\prime \prime}=1^{\prime}-0^{n}}$
ANCHOR PLATE

RAL NOTES

FOUR BAR (CRASH-TESTED) STEEL BRIDE RALL SHALL INCLUDE POSTS, BAAE PLATES,
ANCHOR RODS, PREFORMED PADS, RAIG ASSEMLY BOLTS, NUTS, WASHERS STUASS

3. Ends of rall tube sections shall be sawed or mlled and shall be true and
SMOOTH.
ALL
CUT EDCES of ALL MATERAL SHALL be ground smooth.
4. EACH PIECE of rall tubing shall be attached to a minmum of three (3) posts.
5. BOLT HOLES SHALL BE DRLLED OR PUNCHED. FLAME CUTING MAY BE USED TO FINSH
6. AT NTERROR SPLLEES PIPE SPACERS SHALL BE USED ON ONLY ONE SIDE OF THE SPLICE SAME TREATMENT. AT END SPLICES AND AT NTEEROR EXPANSION SPLLCES PIPE SPACERS

MIL OR SHOP TRANSVERSE WELDS SHALL NOT BE PERMITTED ON ANY RALL ELEMENT.
RALL ELEEMENTS USED ON CUVES SHAL USE $3 / 8$ " WALL TUBES AND SHALL BE SHOP
RAA LEEMENS USED ON CUVVES SHALL
FORMED TO THE REQURED CURVATURE.

9. NUTS For 1 " ϕ THREADED ANCHOR RODS CONNECTING THE BASE PLATE TO THE
CONCRETE SHALL BE TIGHTENED TO A SNUG FIT AND GVEN AN ADITIONAL $1 / 8$ TUR

MATERAL NOTES:

 TUBES
12. RALL POSTS AND BASE PLATES SHALL CONFORM TO THE REQUIREMENTS OF ASTM A572
GR. 50 , EXCEPT ANCHOR PLATES MAY BE ASTM A36.
13. THREADED STUDS AND MATCHING NUTS FOR RALL-TO-POST ATTACHMENT (Detall A) Shall

14. ALL STEEL COMPonents (EXCEPT STAINLESS) SHALL BE METALIZED AFTER FABRICATION IN
 BRIDE CONSTRUCTION THE METALIING SHALL HAL
METALIZED MATERAL SHALL EE PROPERLY STORED.
15. detall "A" studs shall be welded before tubes are metalized.
16. PReformed bearing pads ($1 / 8^{\prime \prime}$ thick) Shall conform to aashto m251.

DESIGNER NOTE: PROVIDE PAINT COLOR FOR RAILING SYSTEM
THIS BRIDGE RALL SYSTEM WAS SUCCESSFULLY CRASH TESTED FOR AASHTO
TL4 IN 1997 BY THE NEW ENGLAND TRANSPORTATION CONSORTUMM.

	Evilows	
No.	DATE	RHODE ISLAND DEPARTMENT OF TRANSPORTATION
		BRIDGE STANDARDS
		FOUR BAR STEEL BRIDGE
		RAIL (CRASH-TESTED TL-4)
		SHEET 1
		DRAWING NUMBER: 10.22

see splice bar dimension table this sheet
(bottom View)
RAIL SPLICE

SPLICE BAR SECTION
RAIL SPLICE DETAILS

$\frac{\text { ROUND HEAD BOLT DETAIL }}{\text { NOT To SCAIE }}$

	EVISIONS	
No.	DATE	department of itansportation
		BRIDGE STANDARDS
		FOUR BAR STEEL BRIDGE
		RAIL (CRASH-TESTED TL-4)
		SHEET 2
		DRAWING NUMBER: 10.23

RALL NOTES

TWO AAR (CRASH-TESTED) STEEL RRIDGE RAL, SHALL INCLLDE POSTS, BASE PLATES, ANCHOR RODS,
PREFORMED PAOS RAII ASSEMIY ROIS AUTS PRFE SPACERS, RETRO REFLECTVE DELTNEATORS, ALL APPURTENANCES, METALZING, AND PAAITING (IF
2. BRIDGE RALL POSTS SHALL BE SET NORMAL (90 DEGRESS) TO THE PROFLLE GRADE, EXCEPT ON
GRADES OVER 1.5% WHERE POSTS SHALL BE SET VERTCAL.
3. ENDS OF RALL TUBE SECTIONS SHALL BE SAWED OR MLLED AND SHALL BE TRUE AND SMOOTH. ALL
CUT EDGES OF ALL MATERAL SHALL BE GROUND SMOOTH.
4. EACH PIECe of rall tubing shall be attached to a minmum of three (3) posts,
5. BOLT HOLES SHALL BE DRILLED OR PUNCHED. FLAME CUTTING MAY BE USED TO FINSH SLOTTED
HOLES IF MECHANICALLY GIIDED.
6. AT INTERIOR SPLICES, PIPE SPACERS SHAL BE USED ON ONLY ONE SIDE O THE SPLICE TO ALLOW

MILL OR SHOP TRANSVERSE WELDS SHALL NOT BE PERMITED ON ANY RALL ELEMENT. RALL ELLEMENTS
USED ON CURVES SHALU USE $3 / 8$ " WALL TUBES AND SHALL BE SHOP FORMED TO THE REQURED USED ONT
CURVATU
 DEAAL AA DAMAEED AREAS OF METALIIING SHALL BE REPARED IN STRICT CONFORMA
MATERAL SUPPLERR'S RECOMMENDATINS ANO SHALL BE APPRVVED BY THE ENGINEER.

 - Not be less than roor dameler of thread. THE RAL POST, BASE PLATE AND ANCHOR CAGE MUST BE INTALLED PRECISELY TO THE LOCATION
DIMENSIONED ON THESE PLANS. THE POSIIION OF THE (3)-\#S LONGITUDINAL REBARS MAY BE MATERIAL NOTES:
MATERRLL NOTES:

13. RALL Posts and gase plates shall conform to the requrements of astm astz gr. 50 ,
EXCEPT ANCHor plates Mar be ast ajb.
14. THREADED STUDS AND MATCHING NUTS FOR RAL-TO-POST ATACHMENT (DETAL A) SHALL
CONFORM TO ASTM A276 TYPE 304, STANLESS STEEL AND SHALM BE TOROUE TESTED PER

 TPPE A
B18.22.
15. ALL STEEL COMPNENTS (EXCEPT STAALLESS) SHALL BE MEEAALIZE AATER FABRICATION NT

16. detal "a" studs shall be welded before tubes are metalized.
17. PReformed bearing pads ($1 / 8^{\prime \prime}$ thick) Shall conform to aAshto m251
$\frac{\text { DESIGNER NOTE: }}{\text { PROVIDE PAINT COLOR FOR RAILING SYSTEM. }}$
THIS BRIDGE RALL SYSTEM WAS SUCCESSFULLY CRASH TESTED FOR AASHTO TL4 IN 1994 BY THE NEW ENGLAND TRANSPORTATION CONSORTIUM

	EVIIONS	
No.	DATE	department of transportation
		BRIDGE STANDARDS
		TWO BAR STEEL BRIDGE
		RAIL (CRASH-TESTED TL-4)
		SHEET 1
		DRAWING NUMBER. 10.30
		NUMBER. 10.30

Appendix E

Validation Forms for Yaris (1100C) Vehicle Model

Model Information

Connections

-BEAM CONNECTIONS 4685
-NODAL_RIGID_BODY 759
-EXTRA_NODES_SET 20
-JOINTS 44
RIGID BODIES 2
-SPOTWELD 2828

E-3

Material Testing

-Specimens were cut from actual components
-160 tensile tests

- Data converted
- 12 different materials generated based on test data
- Parts grouped into

Accelerometers

- Left Rear Seat (Node 4000390)
- Right Rear Seat (Node 4000398)
- Engine Top (Node 4000414)
- Engine Bottom (Node 4000422)
- Vehicle C.G. (Node 4000406)

E-5

Simulation Benchmark

LS-DYNA	
Platform	Linux RHEL 5.4
Version	mpp s R6.1.2
Revision	85139
Precision	Single precision (14R4)
Time to simulate 200 ms	1 hour 32 min.
Number of processors	16

Inertia Comparisons

	Actual Vehicle	FE Model
Weight, kg	1078	1101
Pitch inertia, kg-m^2	1498	1545
Yaw inertia, kg-m^2	1647	1718
Roll inertia, kg-m^2	388	396
Vehicle CG X, mm	1022	1025
Vehicle CG Y, mm	-8.3	557
Vehicle CG Z, mm	558	

Full-Scale Crash Tests

- Toyota Yaris (2006-2010)

Test Type	Test Number
Frontal Full Wall	NHTSA $5677(56.3 \mathrm{~km} / \mathrm{hr}), 6221(56.2 \mathrm{~km} / \mathrm{hr}), 6059(39.8 \mathrm{~km} / \mathrm{hr}), 6060(39.8 \mathrm{~km} / \mathrm{hr})$, $6069(39.8 \mathrm{~km} / \mathrm{hr})$
Frontal Offset	IIHS CEF0610 (64.7 km/hr)
Side Impact NHTSA	NHTSA $5679(62.1 \mathrm{~km} / \mathrm{hr}), 6220(62.3 \mathrm{~km} / \mathrm{hr}), 6558(61.9 \mathrm{~km} / \mathrm{h}), 6585(61.8 \mathrm{~km} / \mathrm{hr})$
Side Impact IIHS	IIHS CES50638 (50.2 km/hr), CES0639 (50.0 km/hr)
Rigid Pole Test	NHTSA $7145(7 \mathrm{deg}, 56 \mathrm{~km} / \mathrm{hr})$
Vehicle to Vehicle	NHTSA $7371(15 \mathrm{deg}, 112.7 \mathrm{~km} / \mathrm{hr}, 50 \%$ overlap), $7293(7 \mathrm{deg}, 112.7 \mathrm{~km} / \mathrm{hr}$, No frame overlap),
Roof Strength	IIHS SWR0920
Speed Bump	FOIL10002 (8 tests: varied speed bump configurations)
Sloped Terrain	FOIL 10003 (6 tests: $6 \mathrm{H}: 1 \mathrm{~V}$ slopes, 25 deg - 8, 16, and $24 \mathrm{~km} / \mathrm{hr})$

Yaris - Frontal Full Wall - 56 km/hr

- Two Full-scale Crash Tests @ 56 km/hr:
- NHTSA 5677 (56.3 km/hr) - 2007 Sedan
- NHTSA 6221 (56.2 km/hr) - 2008 Hatch Back

- 865 iń 2

Yaris - Frontal Full Wall - $56 \mathrm{~km} / \mathrm{hr}$

	FE Model	Test 5677	Test 6221
Weight (kg)	1263	1271	1245
Engine Type	1.5 L V4	1.5 L V4	1.5L V4
Tire size	P185/60R15	P185/60R15	P185/60R15
Attitude (mm) (As delivered)	F - 668	F - 673	F - 675
	$\mathrm{R}-673$	$\mathrm{R}-680$	$\mathrm{R}-673$
Wheelbase (mm)	2538	2551	2463
CG (mm) Rear of front wheel C/L	1035	999	976
Body Style	4 Door Sedan	4 Door Sedan	3 Door Liftback

Yaris - Frontal Full Wall - 56 km/h - Video

"unciosio

Yaris - Frontal Full Wall - 56 km/h - Video

"

Yaris - Frontal Full Wall - 56 km/hr - Energy Summary

Yaris - Frontal Full Wall - 56 km/hr - Acceleration

Yaris - Frontal Full Wall - 56 km/hr - Acceleration

Yaris - Frontal Full Wall - 56 km/hr - Velocity

E-16

Yaris - Frontal Full Wall - $56 \mathrm{~km} / \mathrm{hr}$ - Velocity

E-17

Yaris - Frontal Full Wall - $56 \mathrm{~km} / \mathrm{hr}$ - Wall Force

Yaris - Frontal Full Wall - 56 km/hr - Wall Force

"nebrsis

Yaris / NJ CMB

- MwRSF Test 2214NJ-1
- Impact Condition
- $62.6 \mathrm{mi} / \mathrm{hr}$
- 26.1 deg
- Vehicle
- 2002 Kia Rio

분NNO

Yaris / NJ CMB - Video

Yaris / NJ CMB - Video

Yaris / NJ CMB - Video

Yaris / NJ CMB - Energy Summary

Yaris / NJ CMB - Roll, Pitch, and Yaw

Yaris / NJ CMB - X - Acceleration

Yaris / NJ CMB - Y - Acceleration

=wfiv

Yaris / NJ CMB - Z - Acceleration

Yaris / NJ CMB - RSVVP Comparison Metrics

"

Yaris / NJ CMB - RSVVP Evaluation - X - Acceleration
 Comparison Metric value Whole time interval $[0,0.4489]$

Yaris / NJ CMB - RSVVP Evaluation - Y - Acceleration
 Comparison Metric values

Whole time interval $[0,0.4489]$

Yaris / NJ CMB - RSVVP Evaluation - Z - Acceleration
 Comparison Metric value Whole time interval $[0,0.4489]$

Yaris / NJ CMB - RSVVP Evaluation - Yaw Rate
 Comparison Metric values
 Whole time interval $[0,0.4489]$

Yaris / NJ CMB - RSVVP Evaluation - Roll Rate
 Comparison Metric values
 Whole time interval $[0,0.4489]$

Yaris / NJ CMB - RSVVP Evaluation - Pitch Rate
 Comparison Metric values
 Whole time interval $[0,0.4489]$

Summary

> Model verified in 56 km/hr and 40 km/hr full frontal impacts (NHTSA tests 5677, 6221, and 6069)
> Model verified in $64 \mathrm{~km} / \mathrm{hr}$ frontal offset impact (IIHS test CEFO610)
> Model verified in NHTSA and IIHS side impacts (NHTSA tests 5679, 6220, 6558, 6585 and IIHS tests CES50638 CES0639)
> Model Validated in NJ shape concrete barrier impact (MwRSF Test 2214NJ-1, Kia Rio vehicle)

Appendix F

Validation Forms for Silverado (2270P) Vehicle Model

Validation Reports

- Appendix F-1: NJ Concrete Barrier Impact with 2270P Vehicle
- Appendix F-2: G4(1S) Barrier Impact with 2270P Vehicle
- Appendix F-3: MGS Barrier Impact with 2270P Vehicle

Each of the Reports Includes:

- Table 1A - V\&V Summary Table
- Table 1B - V\&V Analysis Solution Verification Summary Table \& RSVVP Results
- Figure 1 - Energy Balance Diagram
- Figure 2A - RSVVP Multi-Channel Comparison
- Figure 2B-RSVVP Longitudinal Acceleration Comparison
- Figure 2C - RSVVP Lateral Acceleration Comparison
- Figure 2D - RSVVP Vertical Acceleration Comparison
- Figure 2E - RSVVP Roll Angle Comparison
- Figure 2F - RSVVP Pitch Angle Comparison
- Figure 2G- RSVVP Yaw Angle Comparison
- Figure 3 - Comparison of Changes in Vehicle Velocities
- Figure 4 - Comparison of Changes in Vehicle Angles
- Table 1C - V\&V PIRTs Summary Table
- Figure 5 - Full-Scale Test Summary
- Figure 6 - Sequential Comparisons (Front, rear, and top views)
- Table 1D - V\&V Overall Summary Table

Appendix F-1: New Jersey Concrete Barrier Impact with 2270P Vehicle

CCSA VALIDATION/VERIFICATION REPORT

Page 1 of 4
Project: CCSA Longitudinal Barriers on Curved, Superelevated Roadway Sections
Comparison Case:
2270P Vehicle with New Jersey Safety Shape Barrier
Impact Description: 25 degree impact into barrier at $100 \mathrm{~km} / \mathrm{h}$ (62 mph)
Governing Criteria:
Report Date:
MASH TL-3
February 2013

Table A - Information Sources:

General Information	Known Solution	Analysis Solution
Performing Organization	TTI	CCSA-GWU
Test/Run Number	RF476460-1-4	
Vehicle	2007 Chevrolet Silverado	CCSA - 2007 Silverado Model
Vehicle Mass (lb/kg)	$5049 / 2290$	$5005 / 2270$
Impact Speed (mph/kph)	$62.6 / 100.75$	$62.6 / 100.75$
Impact Angle (degrees)	25.2	25.2

Table B - Evaluation Parameters Summary:

Category	Subset	Values
Evaluation Method	MASH (V1, 2009)	
Hardware Type	Longitudinal	
Test Number	3-11	
Test Vehicle Required	2270P	
Criterion to beApplied	Structural Adequacy	A - Test article should contain and redirect the vehicle; the vehicle should not penetrate, under-ride, or override the installation although controlled lateral deflection of the test article is acceptable.
	Occupant Risk	D - Detached elements, fragments or other debris from the test article should not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians or personnel in a work zone.
		F - The vehicle should remain upright during and after the collision although moderate roll, pitching and yawing are
		H - The occupant impact velocity in the longitudinal direction should not exceed $40 \mathrm{ft} / \mathrm{sec}$ and the occupant ride-down acceleration in the longitudinal direction should not exceed 20 G "s.
		I - Longitudinal \& lateral occupant ridedown accelerations (ORA) should fall below the preferred value of 15.0 g , or at least below the maximum allowed value of 20.49 g .
	Vehicle Trajectory	For redirective devices the vehicle shall exit within the prescribed box.

CCSA VALIDATION/VERIFICATION REPORT

Page 2 of 4
Project: CCSA Longitudinal Barriers on Curved, Superelevated Roadway Sections
Comparison Case: 2270P Vehicle with New Jersey Safety Shape Barrier
Table C - Analysis Solution Verification Summary

Verification Evaluation Criteria	Change (\%)	Pass?
Total energy of the analysis solution (i.e., kinetic, potential, contact, etc.) must not vary more than 10 percent from the beginning of the run to the end of the run.	$<1 \%$	YES
Hourglass Energy of the analysis solution at the end of the run is less than 5% of the total initial energy at the beginning of the run	$<1 \%$	YES
The part/material with the highest amount of hourglass energy at any time during the run is less than 5% of the total initial energy at the beginning of the run.	$<1 \%$	YES
Mass added to the total model is less than 5% the total model mass at the start of the run.	$<1 \%$	YES
The part/material with the most mass added had less than 10% of its initial mass added.	$<1 \%$	YES
The moving parts/materials in the model have less than 5% of mass added to the initial moving mass of the model.	$<1 \%$	YES
There are no shooting nodes in the solution?	NA	YES
There are no solid elements with negative volumes?	NA	YES

Table D - RSVVP Results

Single Channel Time History Comparison Results			Time interval [0 sec - 0.5 sec]		
0	Sprauge-Geer Metrics		M	P	Pass?
	X acceleration		52.9	35.6	NO
	Y acceleration		3.2	16.2	YES
	Z acceleration		71.7	45.3	NO
	Yaw rate		13.4	9.5	YES
	Roll rate		16.8	24.4	YES
	Pitch rate		35.4	39.9	YES
P	ANOVA Metrics		Mean	SD	Pass?
	X acceleration/Peak		1.32	29.37	YES
	Y acceleration/Peak		0.84	12.15	YES
	Z acceleration/Peak		0.66	44.94	NO
	Yaw rate		0.2	14.87	YES
	Roll rate		0.21	17.28	YES
	Pitch rate		10.86	53.95	NO
Multi-Channel Weighting Factors			Time interval [0 sec; 0.5 sec]		
Multi-Channel Weighting Method Peaks Area I Area II Inertial		X Channel	0.142263141		
		Y Channel	0.312496147		
		Z Channel	0.045240712		
		Yaw Channel	0.19476326		
		Roll Channel	0.200826808		
		Pitch Channel	0.104409933		
Sprauge-Geer Metrics			M	P	Pass?
All Channels (weighted)			21.4	23.1	YES
ANOVA Metrics			Mean	SD	Pass?
All Channels (weighted)			1.5	22	YES

F-3

Figure 1: Simulations Energies

Figure 2a: RSVVP Results - All Channels

Figure 2b: RSVVP Results - Longitudinal Acceleration

Figure 2c: RSVVP Results - Lateral Acceleration

Figure 2d: RSVVP Results - Vertical Acceleration

Figure 2e: RSVVP Results - Roll Angle

Figure 2f: RSVVP Results - Pitch Angle
Comparison Metric values
Time interval \#1 $[0,0.5]$

MPC Metrics \qquad Sprague-Geers Magnitude Sprague-Geers Phase Sprague-Geers	Value [\%]	
	13.4 9.5 16.4	$\begin{aligned} & \text { Pass } \\ & \text { - Pass } \\ & \text { - Pass } \end{aligned}$
-ANOVA Metrics- Value [\%]		
Average	-0.2	Pass
Standard deviation	14.87 -	Pass
(Values normalized to peak of True curve)		

Figure 2g: RSVVP Results - Yaw Angle

Figure 3: Change in Vehicle Velocities

Figure 4: Change in Vehicle Angles

CCSA VALIDATION/VERIFICATION REPORT

Page 3 of 4

Project: CCSA Longitudinal Barriers on Curved, Superelevated Roadway Sections Comparison Case: 2270P Vehicle with New Jersey Safety Shape Barrier

Table E - Roadside Safety Phenomena Importance Ranking Table (MASH Evaluation)

Evaluation Criteria			Known Result	Analysis Result	Relative Diff. (\%)	Agree?
	A	Test article should contain and redirect the vehicle; the vehicle should not penetrate, under-ride, or override the installation although controlled lateral deflection of the test article is acceptable.	Yes	Yes		YES
		The relative difference in the maximum dynamic deflection is less than 20 percent.	0.0 m	0.0 m	0\%	YES
		The relative difference in the time of vehicle-barrier contact is less than 20 percent.	0.238 s	0.214 s	10\%	YES
		The relative difference in the number of broken or significantly bent posts is less than 20 percent.	Yes	Yes		YES
		Barrier did not fail (Answer Yes or No).	Yes	Yes		YES
		There were no failures of connector elements (Answer Yes or No).	Yes	Yes		YES
		There was no significant snagging between the vehicle wheels and barrier elements (Answer Yes or No).	Yes	Yes		YES
		There was no significant snagging between vehicle body components and barrier elements (Answer Yes or No).	Yes	Yes		YES
	D	Detached elements, fragments or other debris from the test article should not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians or personnel in a work zone (Answer Yes or No).	Yes	Yes		YES
	F	The vehicle should remain upright during and after the collision. The maximum pitch \& roll angles are not to exceed 75 degrees.	Yes	Yes		YES
		Maximum vehicle roll - relative difference is less than 20% or absolute difference is less than 5 degrees.	25 (.5s)	24 (.5s)	$\begin{gathered} 4 \% \\ 1 \mathrm{deg} \\ \hline \end{gathered}$	YES
		Maximum vehicle pitch - relative difference is less than 20% or absolute difference is less than 5 deg.	12 (.5s)	7 (.5s)	$\begin{aligned} & 41 \% \\ & 5 \mathrm{deg} \\ & \hline \end{aligned}$	YES
		Maximum vehicle yaw - relative difference is less than 20% or absolute difference is less than 5 deg.	30 (.5s)	26 (.5s)	$\begin{array}{r} 13 \% \\ 4 \mathrm{deg} \\ \hline \end{array}$	YES
	H	Longitudinal \& lateral occupant impact velocities (OIV) should fall below the preferred value of $30 \mathrm{ft} / \mathrm{s}(9.1 \mathrm{~m} / \mathrm{s})$, or at least below the maximum allowed value of $40 \mathrm{ft} / \mathrm{s}(12.2 \mathrm{~m} / \mathrm{s})$	Yes	Yes		YES
		Longitudinal OIV (m/s) - Relative difference is less than 20\%t or absolute difference is less than $2 \mathrm{~m} / \mathrm{s}$	4.3	4.7	$\begin{gathered} 9 \% \\ 0.4 \mathrm{~m} / \mathrm{s} \end{gathered}$	YES
		Lateral OIV (m/s - Relative difference is less than 20% or absolute difference is less than $2 \mathrm{~m} / \mathrm{s}$	9.2	7.9	$\begin{gathered} 14 \% \\ 1.3 \mathrm{~m} / \mathrm{s} \end{gathered}$	YES
	II	Longitudinal \& lateral occupant ridedown accelerations (ORA) should fall below the preferred value of 15.0 g , or at least below the maximum allowed value of 20.49 g .	Yes	Yes		YES
		Longitudinal ORA (g) - Relative difference is less than 20% or absolute difference is less than 4 g 's	5.6	7.6	$\begin{array}{r} 35 \% \\ 2 \mathrm{~g} \\ \hline \end{array}$	YES
		Lateral ORA (g) - Relative difference is less than 20% or absolute difference is less than 4 g 's	9.6	12.9	$\begin{gathered} 34 \% \\ 3 \mathrm{~g} \end{gathered}$	YES
Vehicle Trajectory		The vehicle rebounded within the exit box. (Answer Yes or No)	Yes	Yes		YES

Figure 5: Full-Scale Test Summary

Figure 6a: Sequential Comparisons - Front View

Figure 6b: Sequential Comparisons - Rear View
F-12

Figure 6c: Sequential Comparisons - Top View

CCSA VALIDATION/VERIFICATION REPORT

Project: CCSA Longitudinal Barriers on Curved, Superelevated Roadway Sections
Comparison Case: 2270P Vehicle with New Jersey Safety Shape Barrier
Table F - Composite Verification and Validation Summary:

List the Report MASH08 Test Number	YES	
Table C - Analysis Solution Verification	Did all solution verification criteria in table pass?	
Table D - RSVVP Results	Do all the time history evaluation scores from the single channel factors result in a satisfactory comparison (i.e., the comparison passes the criterion)?	NO
	If all the values for Single Channel comparison did not pass, did the weighted procedure result in an acceptable	YES
Table E - Roadside Safety Phenomena Importance Ranking Table	Did all the critical criteria in the PIRT Table pass? Note: Tire deflation was observed in the test but not in the simulation. This due to the fact that tire deflation in not incorporated in the model. This is considered not to have a critical effect on the outcome of the test	YES
Overall	Are the results of Steps I through III all affirmative (i.e., YES)? If all three steps result in a "YES" answer, the comparison can be considered validated or verified. If one of the steps results in a negative response, the result cannot be considered validated or verified.	YES

NOTES:
(none)

Appendix F-2: G4(1S) Barrier Impact with 2270P Vehicle

CCSA VALIDATION/VERIFICATION REPORT

Page 1 of 4

Project:	CCSA Longitudinal Barriers on Curved, Superelevated Roadway Sections
Comparison Case:	2270P (Pickup Truck) with G41S Barrier
Impact Description:	25.8 degree impact into barrier at $100.4 \mathrm{~km} / \mathrm{h}(62.4 \mathrm{mph})$
Governing Criteria:	MASH TL-3
Report Date:	March 2013

Table A - Information Sources:

General Information	Known Solution	Analysis Solution
Performing Organization	MwRSF	CCSA-GWU
Test/Run Number	$2214 \mathrm{WB}-2$	RR130422b
Vehicle	Dodge Ram 1500 Quad Cab	Silverado C
Vehicle Mass (lb/kg)	$5000 / 2268$	$4918 / 2231$
Impact Speed (mph/kph)	$62.4 / 100.4$	$62.4 / 100.4$
Impact Angle (degrees)	25.8	25.8

Table B - Evaluation Parameters Summary:

Category	Subset	Values
Evaluation Method	MASH (V1, 2009)	
Hardware Type	Longitudinal	
Test Number	3-11	
Test Vehicle	2270C	
Criterion to beApplied	Structural Adequacy	A - Test article should contain and redirect the vehicle; the vehicle should not penetrate, under-ride, or override the installation although controlled lateral deflection of the test article is acceptable.
	Occupant Risk	D - Detached elements, fragments or other debris from the test article should not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians or personnel in a work zone.
		F - The vehicle should remain upright during and after the collision although moderate roll, pitching and yawing are
		H - The occupant impact velocity in the longitudinal direction should not exceed $40 \mathrm{ft} / \mathrm{sec}$ and the occupant ride-down acceleration in the longitudinal direction should not exceed $20 \mathrm{G}^{\prime \prime} \mathrm{s}$.
		I - Longitudinal \& lateral occupant ridedown accelerations (ORA) should fall below the preferred value of 15.0 g , or at least below the maximum allowed value of 20.49 g .
	Vehicle Trajectory	For redirective devices the vehicle shall exit within the prescribed box.

CCSA VALIDATION/VERIFICATION REPORT

Project: CCSA Longitudinal Barriers on Curved, Superelevated Roadway Sections Comparison Case: 2270P (Pickup Truck) with G41S Barrier

Table C - Analysis Solution Verification Summary

Verification Evaluation Criteria	Change (\%)	Pass?
Total energy of the analysis solution (i.e., kinetic, potential, contact, etc.) must not vary more than 10 percent from the beginning of the run to the end of the run.	$<1 \%$	YES
Hourglass Energy of the analysis solution at the end of the run is less than 5% of the total initial energy at the beginning of the run	$<1 \%$	YES
The part/material with the highest amount of hourglass energy at any time during the run is less than 5 \% of the total initial energy at the beginning of the run.	$<1 \%$	YES
Mass added to the total model is less than 5\% the total model mass at the start of the run.	$<1 \%$	YES
The part/material with the most mass added had less than 10% of its initial mass added.	$<1 \%$	YES
The moving parts/materials in the model have less than 5% of mass added to the initial moving mass of the model.	$<1 \%$	YES
There are no shooting nodes in the solution?	NA	YES
There are no solid elements with negative volumes?	NA	YES

Table D - RSVVP Results

Single Channel Time History Comparison Results			Time interval [0 sec - 0.89		
O	Sprauge-Geer Metrics		M	P	Pass?
	X acceleration		75	38.3	NO
	Y acceleration		29.9	32.6	YES
	Z acceleration		168.7	45.3	NO
	Yaw rate		14.1	12.7	YES
	Roll rate (test data not available)				
	Pitch rate (test data not available)				
P	ANOVA Metrics		Mean	SD	Pass?
	X acceleration/Peak		-1.79	41.87	NO
	Y acceleration/Peak		1.54	31.86	YES
	Z acceleration/Peak		0.16	73.73	NO
	Yaw rate		-. 32	18.97	YES
	Roll rate (test data not available)				
	Pitch rate (test data not available)				
Multi-Channel Weighting Factors			Time interval [0 sec; 0.89		
$\begin{gathered} \text { Multi-Channel Weighting Method } \\ \text { Peaks Area I } \\ \text { Area II Inertial } \end{gathered}$		X Channel	0.22878683		
		Y Channel	0.225135792		
		Z Channel	0.046077378		
		Yaw Channel	0.5		
		Roll Channel	(test data not available)		
		Pitch Channel	(test data not available)		
Sprauge-Geer Metrics			M	P	Pass?
All Channels (weighted)			36.7	24.6	YES
ANOVA Metrics			Mean	SD	Pass?
All Channels (weighted)			-. 02	29.6	YES

Figure 1: Simulations Energies

Figure 2a: RSVVP Results - All Channels

Figure 2b: RSVVP Results - Longitudinal Acceleration

Figure 2c: RSVVP Results - Lateral Acceleration

Figure 2d: RSVVP Results - Vertical Acceleration

Figure 2e: RSVVP Results - Yaw Angle

Figure 3: Change in Vehicle Velocities

Figure 4: Change in Vehicle Angle

CCSA VALIDATION/VERIFICATION REPORT

Page 3 of 4

Project: CCSA Longitudinal Barriers on Curved, Superelevated Roadway Sections Comparison Case: 2270P (Pickup Truck) with G41S Barrier

Table E - Roadside Safety Phenomena Importance Ranking Table (MASH Evaluation)

Evaluation Criteria				Known Result	Analysis Result	Relative Diff. (\%)	Agree?
	A	A1	Test article should contain and redirect the vehicle; the vehicle should not penetrate, under-ride, or override the installation although controlled lateral deflection of the test article is acceptable.	Yes	Yes		YES
		A2	The relative difference in the maximum dynamic deflection is less than 20 percent.	1.196 m	0.980 m	18.0 \%	YES
		A3	The relative difference in the time of vehicle-barrier contact is less than 20 percent.	0.84 s	0.72 s	7.1 \%	YES
		A4	The relative difference in the number of broken or significantly bent posts is less than 20 percent.	3	3		YES
		A5	Barrier did not fail (Answer Yes or No).	Yes	Yes		YES
		A6	There were no failures of connector elements (Answer Yes or No).	Yes	Yes		YES
		A7	There was no significant snagging between the vehicle wheels and barrier elements (Answer Yes or No).	Yes	Yes		YES
		A8	There was no significant snagging between vehicle body components and barrier elements (Answer Yes or No).	Yes	Yes		YES
	D		Detached elements, fragments or other debris from the test article should not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians or personnel in a work zone (Answer Yes or No).	Yes	Yes		YES
	F	F1	The vehicle should remain upright during and after the collision. The maximum pitch \& roll angles are not to exceed 75 degrees.	Yes	Yes		YES
		F2	Maximum vehicle roll - relative difference is less than 20% or absolute difference is less than 5 degrees.	NA	NA	NA	
		F3	Maximum vehicle pitch - relative difference is less than 20% or absolute difference is less than 5 deg.	NA	NA	NA	
		F4	Maximum vehicle yaw - relative difference is less than 20% or absolute difference is less than 5 deg.	$\begin{gathered} 51 \\ (.62 \mathrm{~s}) \\ \hline \end{gathered}$	$\begin{gathered} 47 \\ (.78 \mathrm{~s}) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 7.8 \% \\ & 4 \mathrm{deg} \\ & \hline \end{aligned}$	YES
	H	H1	Longitudinal \& lateral occupant impact velocities (OIV) should fall below the preferred value of $30 \mathrm{ft} / \mathrm{s}(9.1 \mathrm{~m} / \mathrm{s})$, or at least below the maximum allowed value of $40 \mathrm{ft} / \mathrm{s}(12.2 \mathrm{~m} / \mathrm{s})$	Yes	Yes		YES
		H2	Longitudinal OIV (m / s) - Relative difference is less than $20 \% \mathrm{t}$ or absolute difference is less than $2 \mathrm{~m} / \mathrm{s}$	5.38	6.1	$\begin{gathered} 13.4 \% \\ 0.72 \mathrm{~m} / \mathrm{s} \\ \hline \end{gathered}$	YES
		H3	Lateral OIV (m / s) - Relative difference is less than 20% or absolute difference is less than $2 \mathrm{~m} / \mathrm{s}$	3.99	5.0	$\begin{gathered} 25.3 \% \\ 1.01 \mathrm{~m} / \mathrm{s} \end{gathered}$	YES
	II	I1	Longitudinal \& lateral occupant ridedown accelerations (ORA) should fall below the preferred value of 15.0 g , or at least below the maximum allowed value of 20.49 g .	Yes	Yes		YES
		I2	Longitudinal ORA (g) - Relative difference is less than 20% or absolute difference is less than 4 g's	6.92	10.72	$\begin{gathered} 54.9 \% \\ 3.8 \mathrm{~g} \\ \hline \end{gathered}$	YES
		I3	Lateral ORA (g) - Relative difference is less than 20% or absolute difference is less than 4 g's	6.61	9.86	$\begin{aligned} & 49.2 \% \\ & 3.25 \mathrm{~g} \\ & \hline \end{aligned}$	YES
Vehicle Trajectory			The vehicle rebounded within the exit box. (Answer Yes or No)	Yes	Yes		YES

Figure 5: Full-Scale Test Summary

Figure 6a: Sequential Comparisons - Front View

Figure 6b: Sequential Comparisons - Rear View

Figure 6c: Sequential Comparisons - Top View

CCSA VALIDATION/VERIFICATION REPORT

Project: CCSA Longitudinal Barriers on Curved, Superelevated Roadway Sections
 Comparison Case: 2270P (Pickup Truck) with G41S Barrier

Table F - Composite Verification and Validation Summary:

List the Report MASH08 Test Number	YES	
Table C - Analysis Solution Verification	Did all solution verification criteria in table pass?	
Table D - RSVVP Results	Do all the time history evaluation scores from the single channel factors result in a satisfactory comparison (i.e., the comparison passes the criterion)?	NO
	If all the values for Single Channel comparison did not pass, did the weighted procedure result in an acceptable	YES
Table E - Roadside Safety Phenomena Importance Ranking Table	Did all the critical criteria in the PIRT Table pass? Note: Tire deflation was observed in the test but not in the simulation. This due to the fact that tire deflation in not incorporated in the model. This is considered not to have a critical effect on the outcome of the test	YES
Overall	Are the results of Steps I through III all affirmative (i.e., YES)? If all three steps result in a "YES" answer, the comparison can be considered validated or verified. If one of the steps results in a negative response, the result cannot be considered	YES

NOTES:

(none)

Appendix F-3: MGS Barrier Impact with 2270P Vehicle

CCSA VALIDATION/VERIFICATION REPORT

Page 1 of 4
Project: Comparison Case: 2270P (Pickup Truck) with MGS Barrier
Impact Description: 25.5 degree impact into barrier at $101.1 \mathrm{~km} / \mathrm{h}$ ($\mathbf{6 2 . 8 2 \mathrm { mph } \text {) }) ~ (1)}$
Governing Criteria: MASH TL-3
Report Date: March 2013

Table A - Information Sources:

General Information	Known Solution	Analysis Solution
Performing Organization	MwRSF	CCSA-GWU
Test/Run Number	TRP-03-171-06	s130411a
Vehicle	Dodge Ram 1500 Quad Cab	Silverado C
Vehicle Mass (lb/kg)	$5000 / 2268$	$4918 / 2231$
Impact Speed $(\mathrm{mph} / \mathrm{kph})$	$62.82 / 101.1$	$62.82 / 101.1$
Impact Angle $($ degrees $)$	25.5	25.5

Table B - Evaluation Parameters Summary:

Category	Subset	Values
Evaluation Method	MASH (V1, 2009)	
Hardware Type	Longitudinal	
Test Number	3-11	
Test Vehicle	2270C	
Criterion to beApplied	Structural Adequacy	A - Test article should contain and redirect the vehicle; the vehicle should not penetrate, under-ride, or override the installation although controlled lateral deflection of the test article is acceptable.
	Occupant Risk	D - Detached elements, fragments or other debris from the test article should not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians or personnel in a work zone.
		F - The vehicle should remain upright during and after the collision although moderate roll, pitching and yawing are
		H - The occupant impact velocity in the longitudinal direction should not exceed $40 \mathrm{ft} / \mathrm{sec}$ and the occupant ride-down acceleration in the longitudinal direction should not exceed 20 G "s.
		I - Longitudinal \& lateral occupant ridedown accelerations (ORA) should fall below the preferred value of 15.0 g , or at least below the maximum allowed value of 20.49 g .
	Vehicle Trajectory	For redirective devices the vehicle shall exit within the prescribed box.

CCSA VALIDATION/VERIFICATION REPORT

Project: CCSA Longitudinal Barriers on Curved, Superelevated Roadway Sections Comparison Case: 2270P (Pickup Truck) with MGS Barr

Table C - Analysis Solution Verification Summary

Verification Evaluation Criteria	Change (\%)	Pass?
Total energy of the analysis solution (i.e., kinetic, potential, contact, etc.) must not vary more than 10 percent from the beginning of the run to the end of the run.	1.07%	YES
Hourglass Energy of the analysis solution at the end of the run is less than 5 \% of the total initial energy at the beginning of the run	$<1 \%$	YES
The part/material with the highest amount of hourglass energy at any time during the run is less than 5 \% of the total initial energy at the beginning of the run.	$<1 \%$	YES
Mass added to the total model is less than 5\% the total model mass at the start of the run.	$<1 \%$	YES
The part/material with the most mass added had less than 10% of its initial mass added.	$<1 \%$	YES
The moving parts/materials in the model have less than 5% of mass added to the initial moving mass of the model.	$<1 \%$	YES
There are no shooting nodes in the solution?	NA	YES
There are no solid elements with negative volumes?	NA	YES

Table D - RSVVP Results

Single Channel Time History Comparison Results			Time interval [0 sec - 0.67		
O	Sprauge-Geer Metrics		M	P	Pass?
	X acceleration		45	40	NO
	Y acceleration		13.2	27.6	YES
	Z acceleration		146.8	45.4	NO
	Yaw rate		13.4	11.7	NO
	Roll rate		9.6	52.7	NO
	Pitch rate		251.3	48	YES
P	ANOVA Metrics		Mean	SD	Pass?
	X acceleration/Peak		-1.92	39.08	NO
	Y acceleration/Peak		5.81	35.92	NO
	Z acceleration/Peak		1.09	65.76	NO
	Yaw rate		0.79	20.97	NO
	Roll rate		10.04	51.73	NO
	Pitch rate		1.45	119.09	YES
Multi-Channel Weighting Factors			Time in	rval [0	sec; 0.67
Multi-Channel Weighting Method Peaks Area I Area II Inertial		X Channel		206777873	
		Y Channel		27539647	
		Z Channel		, 1782565	
		Yaw Channel		, 44101893	
		Roll Channel		. 3238312	
		Pitch Channel		2659793	
Sprauge-Geer Metrics			M	P	Pass?
All Channels (weighted)			28.5	24.8	YES
ANOVA Metrics			Mean	SD	Pass?
All Channels (weighted)			1.9	33.2	YES

Figure 1: Simulations Energies

Figure 2a: RSVVP Results - All Channels

Figure 2b: RSVVP Results - Longitudinal Acceleration

Figure 2c: RSVVP Results - Lateral Acceleration

Figure 2d: RSVVP Results - Vertical Acceleration

Figure 2e: RSVVP Results - Roll Angle

Figure 2f: RSVVP Results - Pitch Angle

Figure 2g: RSVVP Results - Yaw Angle

Figure 3: Change in Vehicle Velocities

Figure 4: Change in Vehicle Angle

Project: CCSA Longitudinal Barriers on Curved, Superelevated Roadway Sections Comparison Case: 2270P (Pickup Truck) with MGS Barrier
 Table E - Roadside Safety Phenomena Importance Ranking Table (MASH Evaluation)

Evaluation Criteria			Known Result	Analysis Result	Relative Diff. (\%)	Agree?
	A	Test article should contain and redirect the vehicle; the vehicle should not penetrate, under-ride, or override the installation although controlled lateral deflection of the test article is acceptable.	Yes	Yes		YES
		The relative difference in the maximum dynamic deflection is less than 20 percent.	1.11 m	1.03 m	7\%	YES
		The relative difference in the time of vehicle-barrier contact is less than 20 percent.	0.72 s	0.63 s	12\%	
		The relative difference in the number of broken or significantly bent posts is less than 20 percent.	3	3		YES
		Barrier did not fail (Answer Yes or No).	Yes	Yes		YES
		There were no failures of connector elements (Answer Yes or No).	Yes	Yes		YES
		There was no significant snagging between the vehicle wheels and barrier elements (Answer Yes or No).	Yes	Yes		YES
		There was no significant snagging between vehicle body components and barrier elements (Answer Yes or No).	Yes	Yes		YES
	D	Detached elements, fragments or other debris from the test article should not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians or personnel in a work zone (Answer Yes or No).	Yes	Yes		YES
	F	The vehicle should remain upright during and after the collision. The maximum pitch \& roll angles are not to exceed 75 degrees.	Yes	Yes		YES
		Maximum vehicle roll - relative difference is less than 20% or absolute difference is less than 5 degrees.	$\begin{gathered} \hline 3.58 \\ (.68 \mathrm{~s}) \\ \hline \end{gathered}$	$\begin{gathered} 3.49 \\ (.68 \mathrm{~s}) \\ \hline \end{gathered}$	$\begin{gathered} 3 \% \\ 0.09 \mathrm{deg} \\ \hline \end{gathered}$	YES
		Maximum vehicle pitch - relative difference is less than 20% or absolute difference is less than 5 deg.	$\begin{gathered} 2.86 \\ (.68 \mathrm{~s}) \\ \hline \end{gathered}$	$\begin{gathered} 4.17 \\ (.68 \mathrm{~s}) \end{gathered}$	$\begin{gathered} 31.4 \% \\ 1.31 \mathrm{deg} \\ \hline \end{gathered}$	YES
		Maximum vehicle yaw - relative difference is less than 20% or absolute difference is less than 5 deg.	$\begin{aligned} & 43.74 \\ & (.68 \mathrm{~s}) \\ & \hline \end{aligned}$	$\begin{aligned} & 46.01 \\ & (.68 \mathrm{~s}) \end{aligned}$	$\begin{gathered} 4.9 \% \\ 2.27 \mathrm{deg} \end{gathered}$	YES
	H	Longitudinal \& lateral occupant impact velocities (OIV) should fall below the preferred value of $30 \mathrm{ft} / \mathrm{s}(9.1 \mathrm{~m} / \mathrm{s})$, or at least below the maximum allowed value of $40 \mathrm{ft} / \mathrm{s}(12.2 \mathrm{~m} / \mathrm{s})$	Yes	Yes		YES
		Longitudinal OIV (m/s) - Relative difference is less than $20 \% \mathrm{t}$ or absolute difference is less than $2 \mathrm{~m} / \mathrm{s}$	4.67	5.59	$\begin{gathered} 16.4 \% \\ 0.92 \mathrm{~m} / \mathrm{s} \\ \hline \end{gathered}$	YES
		Lateral OIV (m/s) - Relative difference is less than 20% or absolute difference is less than $2 \mathrm{~m} / \mathrm{s}$	4.76	5.09	$\begin{gathered} 6.5 \% \\ 0.33 \mathrm{~m} / \mathrm{s} \end{gathered}$	YES
	II	Longitudinal \& lateral occupant ridedown accelerations (ORA) should fall below the preferred value of 15.0 g , or at least below the maximum allowed value of 20.49 g .	Yes	Yes		YES
		Longitudinal ORA (g) - Relative difference is less than 20% or absolute difference is less than 4 g 's	8.23	12.10	$\begin{aligned} & 31.9 \% \\ & 3.87 \mathrm{~g} \\ & \hline \end{aligned}$	YES
		Lateral ORA (g) - Relative difference is less than 20% or absolute difference is less than 4 g's	6.93	9.68	$\begin{aligned} & 28.4 \% \\ & 2.75 \mathrm{~g} \end{aligned}$	YES
Vehicle Trajectory		The vehicle rebounded within the exit box. (Answer Yes or No)	Yes	Yes		YES

Figure 5: Full-Scale Test Summary

Figure 6a: Sequential Comparisons - Front View

Figure 6b: Sequential Comparisons - Rear View

Figure 6c: Sequential Comparisons - Top View

CCSA VALIDATION/VERIFICATION REPORT

Project: CCSA Longitudinal Barriers on Curved, Superelevated Roadway Sections

Comparison Case: 2270P (Pickup Truck) with MGS Barrier
Table F - Composite Verification and Validation Summary:

List the Report MASH08 Test Number	YES	
Table C - Analysis Solution Verification Summary	Did all solution verification criteria in table pass?	NO
Table D - RSVVP Results	Do all the time history evaluation scores from the single channel factors result in a satisfactory comparison (i.e., the comparison passes the criterion)?	If all the values for Single Channel comparison did not pass, did the weighted procedure result in an acceptable comparison.
YES		
Table E - Roadside Safety Phenomena Importance Ranking Table	Did all the critical criteria in the PIRT Table pass? Note: Tire deflation was observed in the test but not in the simulation. This due to the fact that tire deflation in not incorporated in the model. This is considered not to have a critical effect on the outcome of the test	YES
Overall	Are the results of Steps I through III all affirmative (i.e., YES)? If all three steps result in a "YES" answer, the comparison can be considered validated or verified. If one of the steps results in a negative response, the result cannot be considered validated or verified.	YES

NOTES:

(none)

Appendix G

Validation Forms for NETC 4-Bar Bridge Rail Model

Comparison to Test NETC-3

NCHRP Report 350 Test 4-12
(Qualitative Validation Only)

FEA VALIDATION/VERIFICATION REPORT FORMS

Report 350 Test 4-12

Impact of the
NETC 4-Bar Bridge Rail
(Report 350 or MASH08 or EN1317 Vehicle Type)
(Roadside hardware type and name)

Report Date: 12/18/2018

Type of Report (check one)
\square Verification (known numerical solution compared to new numerical solution).
\boxtimes Validation (physical test compared to a numerical solution).
\square Extrapolation (validated numerical solution compared to modified numerical solution).

General Information	Known Solution	Analysis Solution
Performing Organization	SwRI	Roadsafe LLC
Analyst/Engineer	C.E. Kimbal and J.B. Mayer	Chuck Plaxico
Test/Run Number:	NETC-3	
Vehicle:	8000 S -1993 International 4600 LP SUT	F800 Version 181114
Reference:	Test 4-12	Test 4-12
Impact Conditions		
Vehicle Mass:	$17,875-\mathrm{lb}$	$17,911-\mathrm{lb}$
Speed:	49.8 mph	49.8 mph
Angle:	15 degrees	15 degrees
Impact Point:	24 inches upstream of Post 6	15 inches upstream of Post 7

Composite Validation/Verification Score

List the Report 350/MASH08 or EN1317 Test Number: $\quad 4-12$		Pass?
Part I	Did all solution verification criteria in Table C-1 pass?	Y
Part II	Do all the time history evaluation scores from Table C-2 result in a satisfactory comparison (i.e., the comparison passes the criterion)? If all the values in Table C-2 did not pass, did the weighted procedure shown in Table C-3 result in an acceptable comparison. If all the criteria in Table C-2 pass, enter "yes." If all the criteria in Table C-2 did not pass but Table C-3 resulted in a passing score, enter "yes."	N.A.
Part III	All the criteria in Table C-4 (Test-PIRT) passed? Not Required for Component Tests Y Are the results of Steps I through III all affirmative (i.e., YES)? If all three steps result in a "YES" answer, the comparison can be considered validated or verified. If one of the steps results in a negative response, the result cannot be considered validated or verified.	Y

The analysis solution (check one):
\square Is verified/validated against the known solution.
区 Is NOT verified/validated against the known solution.

PART I: BASIC INFORMATION

1. What type of roadside hardware is being evaluated (check one)?

Longitudinal barrier or transitionTerminal or crash cushion
Breakaway support or work zone traffic control device
Truck-mounted attenuator
\square Other hardware or component: \qquad
2. What test guidelines were used to perform the full-scale crash test (check one)?

ØNCHRP Report 350
\square MASH08
EN1317
Other:
3. Indicate the test level and number being evaluated (fill in the blank): \qquad 4-12
4. Indicate the vehicle type appropriate for the test level and number indicated in item 3 according to the testing guidelines indicated in item 2.

NCHRP Report 350/MASH08

\square 700C	$\square 820 \mathrm{C}$	\square 1100C	\square 2000P
\square 2270P	\square	\square 10000S	$\square 36000 \mathrm{C}$

36000T

EN1317

PART II: ANALYSIS SOLUTION VERIFICATION

Table G-1. Analysis Solution Verification Table.

| Verification Evaluation Criteria | Change
 (\%) | Pass? |
| :--- | :---: | :---: | :---: |
| Total energy of the analysis solution (i.e., kinetic, potential, contact, etc.) must
 not vary more than 10 percent from the beginning of the run to the end of the
 run. | 0 | Y |
| Hourglass Energy of the analysis solution at the end of the run is less than five
 percent of the total initial energy at the beginning of the run. | 0 | Y |
| Hourglass Energy of the analysis solution at the end of the run is less than ten
 percent of the total internal energy at the end of the run. | 0 | Y |
| The part/material with the highest amount of hourglass energy at the end of the
 run is less than twenty percent of the total internal energy of the part/material at
 the end of the run. | 19
 (sidewalk) | Y |
| Mass added to the total model is less than five percent of the total model mass at
 the beginning of the run. | 0 | Y |
| The part/material with the most mass added had less than 10 percent of its initial
 mass added. | 5.7 | Y |
| The moving parts/materials in the model have less than five percent of mass
 added to the initial moving mass of the model. | 5.7 | Y |
| There are no shooting nodes in the solution? | Y | Y |
| There are no solid elements with negative volumes? | Y | |

Exception Notes:

Analysis solution passes all the criteria in Table C-1 \quad without exceptions. \square with exceptions as noted in Table C-1.
\square Analysis solution does NOT pass all the criteria in Table C-1.
\square Table C-1 is not applicable because \qquad

PART III: HISTORY EVALUTION TABLES

Table G-2. Roadside Safety Validation Metrics Rating Table (single channel option).

Evaluation Criteria								Time interval [seconds]		
O	Sprague-Geers Metrics List all the data channels being compared. Calculate the M and P metrics using RSVVP and enter the results. Values less than or equal to 40 are acceptable.									
	Channel	RSVVP Curve Preprocessing Options						M	P	Pass?
		Filter Option	Sync. Option	Shift		Drift				
				True Curve	Test Curve	True Curve	Test Curve			
	x-acceleration									
	y -acceleration									
	z-acceleration									
	Yaw-rate									
	Roll-rate									
	Pitch-rate									
P	ANOVA Metrics List all the data channels being compared. Calculate the ANOVA metrics using RSVVP and enter the results. Both of the following criteria must be met: - The mean residual error must be less than five percent of the peak acceleration ($\bar{e} \leq 0.05 \cdot a_{\text {Peak }}$) and - The standard deviation of the residuals must be less than 35 percent of the peak acceleration ($\sigma \leq 0.35 \cdot a_{\text {Peak }}$).									Pass?
	x-acceleration									
	y-acceleration									
	z-acceleration									
	Yaw-rate									
	Roll-rate									
	Pitch-rate									
Exception Notes:										

\square Analysis solution passes all the criteria in Table C-2 $\quad \square$ without exceptions. \square with exceptions as noted in Table C-2.
\square Analysis solution does NOT pass all the criteria in Table C-2.Table C-2 is not applicable because \square
\square RSVVP Single-Channel Comparison Metric Values Screens for each channel are attached on the following pages.

Table G-3. Roadside Safety Validation Metrics Rating Table (multi-channel option).

Evaluation Criteria (time interval [0.0-1.0 seconds])					
Channels (Select which were used)					
	X Acceleration	\square Y Acceleration \square	$\square \mathrm{z}$ Acceleration		
	Roll rate	\square Pitch rate \square	\square Yaw rate		
Multi-Channel Weights - Area II method -		X Channel: Y Channel: Z Channel: Yaw Channel: Roll Channel: Pitch Channel:			
Sprague-Geer Metrics Values less or equal to 40 are acceptable.			M	P	Pass?
P	ANOVA Metrics Both of the following criteria must be met: - The mean residual error must be less than five percent of the peak acceleration $\left(\bar{e} \leq 0.05 \cdot a_{\text {Peak }}\right)$ - The standard deviation of the residuals must be less than 35 percent of the peak acceleration ($\sigma \leq 0.35 \cdot a_{\text {Peak }}$)				Pass?

\square Analysis solution passes all the criteria in Table C-3without exceptions with exceptions as noted in Table C-3.
\square Analysis solution does NOT pass all the criteria in Table C-3.Table C-3 does not contain sufficient information for assessment.Table C-3 is not applicable because criteria were satisfied in Table C-2.RSVVP Multi-Channel Comparison Metric Values Screen is attached on the following page.

PART IV: PHENOMENAA IMPORTANCE RANKING TABLES

Table G-4. Evaluation Criteria Test Applicability Table.

Table G-5(a). Roadside Safety Phenomena Importance Ranking Table (Structural Adequacy).

| Evaluation Criteria | | Known
 Result | Analysis
 Result |
| :---: | :---: | :---: | :--- | :--- | :--- | :--- | :--- |

* There was additional snagging between the bumper and the rail in the test that could not be captured in the FE model due to differences in bumper width.

N.R. - Not Reported

Table G-5(b). Roadside Safety Phenomena Importance Ranking Table (Occupant Risk).

Evaluation Criteria				Known Result	Analysis Result	Difference Relative/ Absolute	Agree?
	D		Detached elements, fragments or other debris from the test article should not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians or personnel in a work zone. (Answer Yes or No)	N	N		Y
	F	1	The vehicle should remain upright during and after the collision although moderate roll, pitching and yawing are acceptable. (Answer Yes or No)	Y	Y		Y
		2	Maximum roll of the vehicle through 1.0 seconds: - Relative difference is less than 20 percent or - Absolute difference is less than 5 degrees.	$\begin{gathered} * 20.0 \\ \text { Deg } \end{gathered}$	$\begin{array}{r} 14.7 \\ \text { deg } \end{array}$	$\begin{aligned} & 26.5 \% \\ & 5.3 \mathrm{deg} \end{aligned}$	N
		3	Maximum pitch of the vehicle through 1.0 seconds: - Relative difference is less than 20 percent or - Absolute difference is less than 5 degrees.	$\begin{aligned} & * 5.0 \\ & \text { deg } \end{aligned}$	$\begin{gathered} 5.4 \\ \text { deg } \end{gathered}$	$\begin{gathered} 8.0 \% \\ 0.4 \mathrm{deg} \end{gathered}$	Y
		4	Maximum yaw of the vehicle through 0.446 seconds: - Relative difference is less than 20 percent or - Absolute difference is less than 5 degrees.	$\begin{gathered} 14.8 \\ \text { deg } \end{gathered}$	$\begin{gathered} 16.2 \\ \text { deg } \end{gathered}$	$\begin{gathered} 9.7 \% \\ 1.4 \mathrm{deg} \end{gathered}$	Y
	G	1	Did the vehicle remain upright during and after collision	Y	Y		Y
	L	1	Occupant impact velocities: - Relative difference is less than 20 percent or - Absolute difference is less than $6.6 \mathrm{ft} / \mathrm{s}$.				
			- Longitudinal OIV (ft/s)	5.4	5.9	$\begin{gathered} 9.1 \% \\ 0.5 \mathrm{ft} / \mathrm{s} \end{gathered}$	Y
			- Lateral OIV (ft/s)	-9.5	-12.1	$\begin{gathered} 28 \% \\ 2.7 \mathrm{ft} / \mathrm{s} \end{gathered}$	Y
			- THIV (ft/s)	N.R.	13.8		
		2	Occupant accelerations: - Relative difference is less than 20 percent or - Absolute difference is less than 4 g 's.				
			- Longitudinal ORA	8.95	4.95	$\begin{gathered} 44.7 \% \\ 4 \mathrm{~g} \\ \hline \end{gathered}$	Y
			- Lateral ORA	14.3	12.1	$\begin{gathered} 15.4 \% \\ 2.2 \mathrm{~g} \end{gathered}$	Y
			- PHD	N.R.	12.8		
			- ASI	N.R.	0.42		

N.R. - Not Reported

* Reported as "approximate"

Table C-5(c). Roadside Safety Phenomena Importance Ranking Table (Vehicle Trajectory).

			Evaluation Criteria	Known Result	Analysis Result	Difference Relative/ Absolute	Agree?
Vehicle Trajectory	K	1	The exit angle from the test article preferable should be less than 60 percent of test impact angle, measured at the time of vehicle loss of contact with test device.	1.3\%	8.0\%		Y
		2	Exit angle at loss of contact: - Relative difference is less than 20 percent or - Absolute difference is less than 5 degrees.	4.1 deg	1.2 deg	2.9 deg	Y
	M	3	Exit velocity at loss of contact: - Relative difference is less than 20 percent or - Absolute difference is less than 6.2 mph .	$\begin{aligned} & 35.8 \\ & \mathrm{mph} \end{aligned}$	$\begin{aligned} & 40.3 \\ & \mathrm{mph} \end{aligned}$	$\begin{gathered} 12.8 \% \\ 4.6 \mathrm{mph} \end{gathered}$	Y
		4	Front axle disconnected from suspension	Y	Y		Y

Note: Additional phenomena can be added to the tables in deemed appropriate by the analyst.
\square Analysis solution passes all the criteria in Tables G-5(a) through G-5(c)
without exceptions.
Øwith exceptions as noted in Tables G-5(a) through G-5(c).
\square Does NOT pass all the criteria in Tables G-5(a) through 5(c).Tables G-5(a) through G-5(c) does not contain sufficient information for assessment.Tables G-5(a) through G-5(c) are not applicable because
$\boxtimes \quad$ Synchronized side-by-side views of the known and analysis solutions are attached on the following pages.

Figure 1. Sequential views from FEA and Test NETC-3 from a upstream view point.

Figure 1. [Continued] Sequential views from FEA and Test NETC-3 from an upstream viewpoint.

Figure 1. [Continued] Sequential views from FEA and Test NETC-3 from an upstream viewpoint.

Figure 1. [Continued] Sequential views from FEA and Test NETC-3 from an upstream viewpoint.

Figure 2. Sequential views of Test NETC-3 and FE analysis from downstream viewpoint.

1.0 seconds

1.1 seconds

1.2 seconds

1.3 seconds

1.4 seconds

Figure 2. [CONTINUED] Sequential views of Test NETC-3 and FE analysis from downstream viewpoint.

Figure 3. Sequential views of Test NETC-3 and FE analysis from overhead viewpoint.

Figure 3. [CONTINUED] Sequential views of Test NETC-3 and FE analysis from overhead viewpoint.

Appendix H
Soil Model Development and Calibration/Validation

Soil Model

- There are several approaches that may be used for modeling the soil in analyses of guardrail posts embedded in soil.
- Some common approaches include:
- Posts embedded in a soil continuum of solid finite elements,
- Posts embedded in a continuum of meshless finite elements, and
- Subgrade reaction approach in which the post is supported by an array of uncoupled springs.
- Each of the methods mentioned above have been used by the research team with reasonable success.
- Some advantages of the discrete element approach are that the soil model can undergo large deformations without effecting numerical accuracy and stability, and fewer calculations are required with discrete elements making the solution much more efficient.
- The continuum method is reasonably accurate for low to moderate soil displacement but has the advantage of modeling soil interaction between neighboring posts.
- For the current study, two methods were used:
- The discrete elements method (i.e., springs and dampers) was used to model the soil in the w-beam section (computational efficiency).
- The soil continuum method (solid elements) was used in the impact region on the transition were the posts were closely spaced (i.e., thrie-beam and tube-rail sections).
- The continuum soil model included a 2:1 slope starting just behind the thrie-beam posts.

Soil Model

- Soil continuum model
- Length $=21.7$ feet
- Lateral width $=8.34$ feet
- Vertical depth $=7.1$ feet
- The material was modeled using the Drucker-Prager material model. This material model was calibrated based on comparison to full-scale tests (see following slides).
- The post was modeled with solid elements with single integration point.
- The soil in the immediate post region was meshed with element side lengths of approximately $1.3-1.6$ inches.
- The soil at the father extents was meshed with element side lengths of 2.5-3 inches.
- The refined-mesh region was "tied" to the elements of the coarse-mesh region using the *Contact_Tied option in LS-DYNA.

Soil Spring Model Validation

- The soil model was qualitatively validated based on comparison with impact tests on wood guardrail posts performed at the Midwest Roadside Safety Facility (MwRSF) [Rosenbaugh11]
- The properties of the spring elements were defined using a soil density of 126 pcf.
- A total of five (5) test cases were simulated which are listed in the Table to the left.

Dynamic test cases used for model validation.

	Post Size	Post Grade (as Modeled)	Soil density (as modeled) (pcf)	Embedment Depth (in.)	Impact Mass (lb)	Impact Speed (mph)
MGSATB-13	8×10	Grade 1	126	48	$1,812.0$	20.24
MGSATB-14	8×10	Grade 1	126	48	$1,817.9$	19.69
MGSATB-18	6×10	Grade 1	126	52	$1,835.0$	20.98
MGSATB-18	6×10	DS-65	126	52	$1,835.0$	20.98
MGSATB-19	6×10	Grade 1	126	52	$1,835.0$	19.73

- In all cases, the impact point was at 24.9 inches above ground on the face of the post with loading in the strong bending direction for the post.
- The striker that was used in the tests was the MwRSF bogie with rigid nose.
- The mass and impact speed of the striker varied slightly from test to test with a nominal mass and speed of 1,835lb and 20 mph , respectively.
- A finite element model of the bogie vehicle was not available to the research team, so the striker was modeled as a simple rigid mass with a semi-rigid head.

Soil Spring Model Validation

- The response of the soil-spring model matched well with the test results.
- The upper part of each figure shows sequential views of the test, followed by sequential views of the FEA overlaid onto the test images.
- Comparisons of FEA and test results regarding force versus displacement and energy versus displacement for each case are also provided.
- Test cases MGSATB-13 and MGSATB-14 were very similar (i.e., 8×10 post, similar impact mass and similar impact speed).
- The results from the FEA, accordingly, were very similar for both cases. The results, however, differed somewhat for the two test cases, with MGSATB-14 being approximately 4 kips stronger than case MGSATB-13.
- The FEA results tended to match better with the

Time $=0.00 \mathrm{sec}$

Time $=0.10 \mathrm{sec}$

Time $=0.15 \mathrm{sec}$

MGSATB-13 (Grade 1 Posts) results of Test MGSATB-13 over the first 5 inches of deflection, and tended to match better with Test MGASTB-14 at higher deflections (see next slide).

Soil Spring Model Validation

- The response of the soil-spring model matched well with the test results.
- The upper part of each figure shows sequential views of the test, followed by sequential views of the FEA overlaid onto the test images.
- Comparisons of FEA and test results regarding force versus displacement and energy versus displacement for each case are also provided.
- Test cases MGSATB-13 and MGSATB-14 were very similar (i.e., 8×10 post, similar impact mass and similar impact speed).
- The results from the FEA, accordingly, were very similar for both cases. The results, however, differed somewhat for the two test cases, with MGSATB-14 being approximately 4 kips stronger than case MGSATB-13.
- The FEA results tended to match better with the

Time $=0.00 \mathrm{sec}$
Time $=0.05 \mathrm{sec}$
Time $=0.10 \mathrm{sec}$
Time $=0.15 \mathrm{sec}$

MGSATB-14 (Grade 1 Posts) results of Test MGSATB-13 over the first 5 inches of deflection (see previous slide), and tended to match better with Test MGASTB-14 at higher deflections.

Soil Spring Model Validation

- Test cases MGSATB-18 and MGSATB-19 were also very similar (i.e., 6×10 post, identical impact mass, similar impact speed), but resulted in very different results.
- In the initial FEA simulation, using Grade 1 properties for the post, the post broke off at 16.4 inches below ground; whereas, the post did not break during the physical test for this case.

Soil Spring Model Validation

- The results of the model for Test MGSATB-18 (i.e., 6x10 post) matched well.
- DS-65 post (stronger than Grade 1) used in the analysis.

MGSATB-18 (DS-65 Posts)

Soil Spring Model Validation

- The results of the model for Test MGSATB19 also matched reasonably well, with the post rupturing at 16.4 inches below grade.
- In the full-scale test, the post was split into three pieces with a break at 8 inches below grade.
- The overlay of the sequential views in Figure 35 show that the timing of the break and the overall speed of the striker throughout the event was similar for both FEA and test.

Soil Spring Model Limitations

- The effects of dynamic loading of the soil (e.g., inertial spikes) are not accounted for in this model.
- The springs only provide lateral resistance for the posts.
- For the soil-plate model described here, the vertical resistance to pullout comes from the vertical constraint on the plates.
- That is, the nodes of the soil-plates can move laterally but not vertically.
- It is assumed that this would become less of an issue as the vertical distance between springs is reduced (i.e., mesh refinement); however, accuracy in simulating large post rotation would likely be improved if the vertical response of the soil were included in the model.

Soil Continuum Model Validation

- Soil Continuum Model Compared with Tests MGSATB-13 and MGSATB-14
- Recall these test were very similar (i.e., 8×10 post, similar impact mass and similar impact speed).
- Sequential views of FEA vs. test is shown.
- The force-displacement and energydisplacement results are compared for the continuum model, soil spring model, and test.
- Soil spring model matches best for MGSATB-13.

MGSATB-13 (Grade 1 Posts)

Soil Continuum Model Validation

- Soil Continuum Model Compared with Tests MGSATB-13 and MGSATB-14
- Recall these test were very similar (i.e., 8×10 post, similar impact mass and similar impact speed).
- Sequential views of FEA vs. test is shown.
- The force-displacement and energydisplacement results are compared for the continuum model, soil spring model, and test.
- Continuum model matches best for MGSATB-14.

MGSATB-14 (Grade 1 Posts)

Soil Continuum Model Validation

- A secondary validation was performed for the continuum soil model based on a recent full-scale test of for the MGS stiffness transition with curb.[Winkelbaurer14]
- "During the installation of a soil dependent system, additional W6x16 posts are to be installed near the impact region utilizing the same installation procedures as used for the system itself. Prior to full-scale testing, a dynamic impact test must be conducted to verify a minimum dynamic soil resistance of 7.5 kips at post deflections between 5 and 20 in ., as measured at a height of 25 in ."
- The soil properties were the same as used in the previous comparison.
- Impact Conditions:
- MwRSF bogie with rigid nose.
- Mass = 1,843-lb
- Impact Speed = 20 mph .
- Impact Point = 24.9 inches above ground.

Dynamic Set up

Dynamic TestInstalltion Details

Soil Continuum Model Validation

- The results show that the continuum model matches well for the first 15 inches of displacement.
- But then shows stiffer response.

Baseline Soil Response Compared to Subsequent Test Soil Response

- MwRSF subsequently performed 3 full-scale tests on a transition design:
- MWTC-1: MASH Test 4-20 (small car)
- MWTC-2: MASH Test 4-20 (small car)
- MWTC-3: MASH Test 4-21 (pickup)
- The preliminary static post-soil test for each of those test cases is shown here with comparison to baseline strength.
- The results show that the initial stiffness of the soil for the full-scale test cases was significantly

 higher than the baseline.
- The peak force for each cases was:
- MWTC-1: 67\% higher than baseline.
- MWTC-2: Equal to baseline.
- MWTC-3: 25\% higher than baseline.

MGSATB-5 and MGSATB-6

Test No.	Post Size	Post Material	Soil Density (as modeled) (pcf)	Embedment Depth (inches)	Impact Mass (lb)	Impact Speed (mph)
MGSATB-1	W6x15	AASHTO M180	126	54	1810	19.22
MGSATB-2	W6x15	AASHTO M180	126	54	1810	19.71
MGSATB-5	W6x15	AASHTO M180	126	54	1816	21.9
MGSATB-6	W6x15	AASHTO M180	126	54	1816	21.7

Same test series as shown on Slide 22 but with steel posts

$\underset{\text { Time }=}{\text { Analysis of }} \mathbf{0} \mathbf{6 x 8}$ inch Wood Post in Soil

Validation Forms for 2-Bar Transition Model

Comparison to Test NETC-3

NCHRP Report 350 Test 4-12
(NCHRP Web Report 179 Forms)

FEA VALIDATION/VERIFICATION REPORT FORMS

Report 350 Test 3-21

Impact of the
NETC 2-Bar Transition
(Report 350 or MASH08 or EN1317 Vehicle Type)
(Roadside hardware type and name)

Report Date: 2/25/2019
Type of Report (check one)
\square Verification (known numerical solution compared to new numerical solution).
\searrow Validation (physical test compared to a numerical solution).
\square Extrapolation (validated numerical solution compared to modified numerical solution).

General Information	Known Solution	Analysis Solution
Performing Organization	Texas Transportaion Institute	Roadsafe LLC
Analyst/Engineer	Dean Alberson	Chuck Plaxico
Test/Run Number:	$401181-1$	
Vehicle:	2000 Chevrolet 2500	C2500D-V5b-R160309
Reference:	Test 3-21	Test 3-21
Impact Conditions		
Vehicle Mass:	$4,706-\mathrm{lb}$	$4,575-\mathrm{lb}$
Speed:	63.6 mph	63.6 mph
Angle:	24.9 degrees	24.9 degrees
Impact Point:	5.36 ft upstream of Critical Post	15 inches upstream of Post 7

Composite Validation/Verification Score

List the Report 350/MASH08 or EN1317 Test Number:		$3-21$
Part I	Did all solution verification criteria in Table C-1 pass?	Pass?
Part II	Do all the time history evaluation scores from Table C-2 result in a satisfactory comparison (i.e., the comparison passes the criterion)? If all the values in Table C-2 did not pass, did the weighted procedure shown in Table C-3 result in an acceptable comparison. If all the criteria in Table C-2 pass, enter "yes." If all the criteria in Table C-2 did not pass but Table C-3 resulted in a passing score, enter "yes."	Y
Part III	All the criteria in Table C-4 (Test-PIRT) passed? Not Required for Component Tests	Y
	Are the results of Steps I through III all affirmative (i.e., YES)? If all three steps result in a "YES" answer, the comparison can be considered validated or verified. If one of the steps results in a negative response, the result cannot be considered validated or verified.	Y

The analysis solution (check one):
Is verified/validated against the known solution.
\square Is NOT verified/validated against the known solution.

PART I: BASIC INFORMATION

1. What type of roadside hardware is being evaluated (check one)?

Longitudinal barrier or transitionTerminal or crash cushion
Breakaway support or work zone traffic control device
Truck-mounted attenuator
\square Other hardware or component: \qquad
2. What test guidelines were used to perform the full-scale crash test (check one)?

【NCHRP Report 350
\square MASH08
EN1317
Other:
3. Indicate the test level and number being evaluated (fill in the blank): \qquad 3-21
4. Indicate the vehicle type appropriate for the test level and number indicated in item 3 according to the testing guidelines indicated in item 2.

NCHRP Report 350/MASH08

\square 700C	\square 820C	\square 1100C	$\square_{2000 \mathrm{P}}$
\square 2270P	\square 8000S	\square 10000	\square 36000V

36000T

EN1317

Car (900 kg)	Car (1300 kg)	Car (1500 kg)
Rigid HGV (10 ton)	Rigid HGV (16 ton)	Rigid HGV (30 ton)
Bus (13 ton)	Articulated HGV (38 ton)	

PART II: ANALYSIS SOLUTION VERIFICATION

Table I-1. Analysis Solution Verification Table.

Verification Evaluation Criteria	Change (\%)	Pass?
Total energy of the analysis solution (i.e., kinetic, potential, contact, etc.) must not vary more than 10 percent from the beginning of the run to the end of the run.	8.6\%	Y
Hourglass Energy of the analysis solution at the end of the run is less than five percent of the total initial energy at the beginning of the run.	0\%	Y
Hourglass Energy of the analysis solution at the end of the run is less than ten percent of the total internal energy at the end of the run.	0\%	Y
The part/material with the highest amount of hourglass energy at the end of the run is less than twenty percent of the total internal energy of the part/material at the end of the run.	0\%	Y
Mass added to the total model is less than five percent of the total model mass at the beginning of the run.	0\%	Y
The part/material with the most mass added had less than 10 percent of its initial mass added.	0\%	Y
The moving parts/materials in the model have less than five percent of mass added to the initial moving mass of the model.	0\%	Y
There are no shooting nodes in the solution?	Y	Y
There are no solid elements with negative volumes?	Y	Y

Exception Notes:

Analysis solution passes all the criteria in Table C-1 $\quad \boxtimes$ without exceptions.
\square with exceptions as noted in Table C-1.
\square Analysis solution does NOT pass all the criteria in Table C-1.
\square Table C-1 is not applicable because \qquad

PART III: HISTORY EVALUTION TABLES

Table I-2. Roadside Safety Validation Metrics Rating Table (single channel option).

Evaluation Criteria								Time interval [seconds]		
O	Sprague-Geers Metrics List all the data channels being compared. Calculate the M and P metrics using RSVVP and enter the results. Values less than or equal to 40 are acceptable.									
	Channel	RSVVP Curve Preprocessing Options						M	P	Pass?
		Filter Option	Sync. Option	Shift		Drift				
				True Curve	Test Curve	True Curve	Test Curve			
	x-acceleration	CFC 60	none	none	none	none	none	11.1	33.6	Y
	y-acceleration	CFC 60	none	none	none	none	none	19.4	34.4	Y
	z-acceleration	CFC 60	none	none	none	none	none	17	53.8	N
	Yaw-rate	CFC 60	none	none	none	none	none	7.3	10.9	Y
	Roll-rate	CFC 60	none	none	none	none	none	4.0	41.4	$\approx Y$
	Pitch-rate	CFC 60	none	none	none	none	none	20.4	23.3	Y
P	ANOVA Metrics List all the data channels being compared. Calculate the ANOVA metrics using RSVVP and enter the results. Both of the following criteria must be met: - The mean residual error must be less than five percent of the peak acceleration ($\bar{e} \leq 0.05 \cdot a_{\text {Peak }}$) and - The standard deviation of the residuals must be less than 35 percent of the peak acceleration ($\sigma \leq 0.35 \cdot a_{\text {Peak }}$).									Pass?
	x-acceleration							0.08	12.7	Y
	y-acceleration							1.5	13.6	Y
	z-acceleration							0.09	16.8	Y
	Yaw-rate							4.1	11.2	Y
	Roll-rate							3.74	52.8	N
	Pitch-rate							2.91	32.1	Y
Exception Notes:										

\square Analysis solution passes all the criteria in Table I-2 \square without exceptions. \square with exceptions as noted in Table I-2.

Analysis solution does NOT pass all the criteria in Table I-2.Table I-2 is not applicable because
\square RSVVP Single-Channel Comparison Metric Values Screens for each channel are attached on the following pages.

Table I-3. Roadside Safety Validation Metrics Rating Table (multi-channel option).

Evaluation Criteria (time interval [0.0-1.0 seconds])						
Channels (Select which were used)						
区 \times Acceleration		】 Y Acceleration \boxtimes	\z Acceleration			
இ Roll rate		\ Pitch rate \boxtimes	இ Yaw rate			
Multi-Channel Weights- Area II method -		X Channel: 0.180 Y Channel: 0.268 Z Channel: 0.053 Yaw Channel: 0.426 Roll Channel: 0.009 Pitch Channel: 0.065				
0	Sprague-Geer Metrics Values less or equal to 40 are acceptable.		M 24.6	P	Pass?	
			27.9	Y		
P	ANOVA Metrics Both of the following criteria must be met: - The mean residual error must be less than five percent of the peak acceleration $\left(\bar{e} \leq 0.05 \cdot a_{\text {Peak }}\right)$ - The standard deviation of the residuals must be less than 35 percent of the peak acceleration ($\sigma \leq 0.35 \cdot a_{\text {Peak }}$)					Pass?
			-1.9	14.1	Y	

Analysis solution passes all the criteria in Table I-3 $\quad \square$ without exceptions \square with exceptions as noted in Table I-3.
\square Analysis solution does NOT pass all the criteria in Table I-3.
Table l-3 does not contain sufficient information for assessment.
Table I-3 is not applicable because criteria were satisfied in Table I-2.
\measuredangle RSVVP Multi-Channel Comparison Metric Values Screen is attached on the following page.

PART IV: PHENOMENAA IMPORTANCE RANKING TABLES

Table I-4. Evaluation Criteria Test Applicability Table.

Table I-5(a). Roadside Safety Phenomena Importance Ranking Table (Structural Adequacy).

			Evaluation Criteria	Known Result	Analysis Result	Difference Relative/ Absolute	Agree?
	A	A1	Test article should contain and redirect the vehicle; the vehicle should not penetrate, under-ride, or override the installation although controlled lateral deflection of the test article is acceptable. (Answer Yes or No)	Y	Y		Y
		A2	Maximum dynamic deflection: - Relative difference is less than 20 percent or - Absolute difference is less than 6 inches	8.0 in	5.8 in (0.1 sec)	$\begin{aligned} & 27.5 \% \\ & 2.2 \text { in } \end{aligned}$	Y
		A3	Maximum permanent deflection: - Relative difference is less than 20 percent or - Absolute difference is less than 6 inches	5.8 in	4.3 in	$\begin{aligned} & 25.9 \% \\ & 1.5 \text { in } \end{aligned}$	Y
		A4	Length of vehicle-barrier contact (at initial separation): - Relative difference is less than 20 percent or - Absolute difference is less than 6.6 ft	14.4 ft	14.7 ft	$\begin{aligned} & 1.5 \% \\ & 0.22 \mathrm{ft} \end{aligned}$	Y
		A5	Number of broken or significantly bent posts is less than 20 percent.	0	0		Y
		A6	Did the rail element rupture or tear (Answer Yes or No)	No	No	$>$	Y
		A7	Was there significant snagging between the vehicle wheels and barrier elements (Answer Yes or No).	N	N	$>$	Y
		A8	Was there significant snagging between vehicle body components and barrier elements (Answer Yes or No).	N	N		Y

Table I-5(b). Roadside Safety Phenomena Importance Ranking Table (Occupant Risk).

Evaluation Criteria				Known Result	Analysis Result	Difference Relative/ Absolute	Agree?
	D		Detached elements, fragments or other debris from the test article should not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians or personnel in a work zone. (Answer Yes or No)	N	N		Y
		F1	The vehicle should remain upright during and after the collision although moderate roll, pitching and yawing are acceptable. (Answer Yes or No)	Y	Y		Y
		F2	Maximum roll of the vehicle through 1.0 seconds: - Relative difference is less than 20 percent or - Absolute difference is less than 5 degrees.	$\begin{aligned} & -19.4 \\ & \text { deg } \end{aligned}$	$\begin{aligned} & -17 \\ & \text { deg } \end{aligned}$	$\begin{aligned} & 12.4 \% \\ & 2.4 \mathrm{deg} \end{aligned}$	Y
	F	F3	Maximum pitch of the vehicle through 1.0 seconds: - Relative difference is less than 20 percent or - Absolute difference is less than 5 degrees.	$\begin{aligned} & -13.7 \\ & \text { deg } \end{aligned}$	$\begin{aligned} & -16.5 \\ & \text { deg } \end{aligned}$	$\begin{aligned} & 20.0 \% \\ & 2.8 \mathrm{deg} \end{aligned}$	Y
		F4	Maximum yaw of the vehicle through 1.0 seconds: - Relative difference is less than 20 percent or - Absolute difference is less than 5 degrees.	55.6 deg	$\begin{aligned} & 48.2 \\ & \text { deg } \end{aligned}$	$\begin{aligned} & 13.3 \% \\ & 7.4 \mathrm{deg} \end{aligned}$	Y
		5	Did the vehicle remain upright during and after collision	Y	Y		Y
	L1		Occupant impact velocities: - Relative difference is less than 20 percent or - Absolute difference is less than $6.6 \mathrm{ft} / \mathrm{s}$.				
			-Longitudinal OIV (ft/s)	17.1	19.7	$\begin{aligned} & 15.2 \% \\ & 2.6 \mathrm{ft} / \mathrm{s} \end{aligned}$	Y
			-Lateral OIV (ft / s)	-24.6	-24.9	$\begin{aligned} & \hline 1.2 \% \\ & 0.3 \mathrm{ft} / \mathrm{s} \end{aligned}$	Y
			-THIV (ft/s)	29.9	31.5	$\begin{aligned} & \hline 5.4 \% \\ & 1.6 \mathrm{ft} / \mathrm{s} \end{aligned}$	Y
	L	L2	Occupant accelerations: - Relative difference is less than 20 percent or - Absolute difference is less than 4 g's.				
			-Longitudinal ORA	-8.3	-8.3	$\begin{gathered} \hline 0 \% \\ 0 \mathrm{~g} \end{gathered}$	Y
			-Lateral ORA	10.0	7.5	$\begin{aligned} & \hline 25 \% \\ & 2.5 \mathrm{~g} \end{aligned}$	Y
			-PHD	11.9	9.1	$\begin{aligned} & \hline 23.5 \% \\ & 2.8 \mathrm{~g} \end{aligned}$	Y
			-ASI	1.74	1.48	$\begin{aligned} & 14.9 \text { \% } \\ & 0.26 \end{aligned}$	Y

Table I-5(c). Roadside Safety Phenomena Importance Ranking Table (Vehicle Trajectory).

			Evaluation Criteria	Known Result	Analysis Result	Difference Relative/ Absolute	Agree?
	K	M1	The exit angle from the test article preferable should be less than 60 percent of test impact angle, measured at the time of vehicle loss of contact with test device.	*33\%	36\%		Y
		M2	Exit angle at loss of contact: - Relative difference is less than 20 percent or - Absolute difference is less than 5 degrees.	$\begin{aligned} & \hline{ }^{* 8.21} \\ & \text { deg } \\ & (0.375 \\ & \text { sec }) \\ & \hline \end{aligned}$	$\begin{aligned} & 8.95 \mathrm{deg} \\ & (0.375 \\ & \mathrm{sec}) \end{aligned}$	$\begin{aligned} & 9.0 \% \\ & 0.74 \mathrm{deg} \end{aligned}$	Y
	M	M3	Exit velocity at loss of contact: - Relative difference is less than 20 percent or - Absolute difference is less than 6.2 mph .	$\begin{aligned} & \text { *47.0 } \\ & \mathrm{mph} \end{aligned}$	$\begin{aligned} & 44.6 \\ & \mathrm{mph} \end{aligned}$	5.1 \% 2.4 mph	Y

*Reported as 11.7 degrees. Test data showed the 8.21 degrees at 0.375 seconds in TRAP report.
** Reported as 52.9 mph . Test data showed 47 mph at 0.375 seconds in TRAP report.
\boxtimes Analysis solution passes all the criteria in Tables G-5(a) through I-5(c)
Øwithout exceptions.
\square with exceptions as noted in Tables G-5(a) through I-5(c).
\square Does NOT pass all the criteria in Tables I-5(a) through 5(c).Tables I-5(a) through I-5(c) does not contain sufficient information for assessment.Tables I-5(a) through I-5(c) are not applicable because \qquad
Synchronized side-by-side views of the known and analysis solutions are attached on the following pages.

Time $=0.1$ seconds

Time $=0.15$ seconds

Time $=0.20$ seconds

Figure 1. Sequential views from FEA and Test 401181-1 from an overhead viewpoint.

Time $=0.25$ seconds

Time $=0.3$ seconds

Time $=0.35$ seconds

Time $=0.4$ seconds

Time $=0.45$ seconds

Figure 1. [Continued] Sequential views from FEA and Test 401181-1 from an overhead viewpoint.

Time $=0.5$ seconds

Figure 1. [Continued] Sequential views from FEA and Test 401181-1 from an overhead viewpoint.

Time $=0.1$ seconds

Time $=0.2$ seconds

Time $=0.3$ seconds

Figure 2. Sequential views from FEA and Test 401181-1 from a downstream viewpoint.

Figure 2. [CONTINUED] Sequential views from FEA and Test 401181-1 from a downstream viewpoint.

Figure 2. [CONTINUED] Sequential views from FEA and Test 401181-1 from a downstream viewpoint.

Appendix J
Sequential Views for Test 4-10 on
Curb-Mounted NETC 3-Bar Bridge Rail

0.00 seconds

0.05 seconds

0.10 seconds

0.15 seconds

0.20 seconds

Figure J-1. Sequential views from analysis of MASH Test 4-10 for NETC 3-Bar bridge rail from an overhead viewpoint.

0.25 seconds

0.30 seconds

0.35 seconds

0.40 seconds

0.45 seconds

Figure J-1. [Continued] Sequential views from analysis of MASH Test 4-10 for NETC 3Bar bridge rail from an overhead viewpoint.

0.50 seconds

0.55 seconds

0.60 seconds

0.65 seconds

0.70 seconds

Figure J-1. [Continued] Sequential views from analysis of MASH Test 4-10 for NETC 3Bar bridge rail from an overhead viewpoint.
0.00 seconds

0.05 seconds

0.10 seconds

0.15 seconds

0.20 seconds

Figure J-2. Sequential views from analysis of MASH Test 4-10 for NETC 3-Bar bridge rail from upstream and downstream viewpoints.
0.25 seconds

0.30 seconds

0.35 seconds

0.40 seconds

0.45 seconds

Figure J-2. [Continued] Sequential views from analysis of MASH Test 4-10 for NETC 3Bar bridge rail from upstream and downstream viewpoints.
0.50 seconds

0.55 seconds

0.60 seconds

0.65 seconds

0.70 seconds

Figure J-2. [Continued] Sequential views from analysis of MASH Test 4-10 for NETC 3Bar bridge rail from upstream and downstream viewpoints.
0.00 seconds

0.05 seconds

0.10 seconds

0.15 seconds

Figure J-3. Sequential views from analysis of MASH Test 4-10 for NETC 3-Bar bridge rail from an oblique viewpoint.
0.20 seconds

0.25 seconds

0.30 seconds

0.35 seconds

Figure J-3. [Continued] Sequential views from analysis of MASH Test 4-10 for NETC 3Bar bridge rail from from an oblique viewpoint.
0.40 seconds

0.45 seconds

0.50 seconds

0.55 seconds

Figure J-3. [Continued] Sequential views from analysis of MASH Test 4-10 for NETC 3Bar bridge rail from an oblique viewpoint.

Appendix K

Sequential Views for Test 4-11 on
Curb-Mounted NETC 3-Bar Bridge Rail
0.00 seconds

0.05 seconds

0.15 seconds

0.20 seconds

Figure K-1. Sequential views from analysis of MASH Test 4-11 for NETC 3-Bar bridge rail from an overhead viewpoint.

0.25 seconds

0.30 seconds

0.40 seconds

0.45 seconds

Figure K-1. [Continued] Sequential views from analysis of MASH Test 4-11 for NETC 3Bar bridge rail from an overhead viewpoint.

0.50 seconds

0.55 seconds

0.65 seconds

0.70 seconds

Figure K-1. [Continued] Sequential views from analysis of MASH Test 4-11 for NETC 3Bar bridge rail from an overhead viewpoint.
0.00 seconds

0.05 seconds

0.10 seconds

0.15 seconds

0.20 seconds

Figure K-2. Sequential views from analysis of MASH Test 4-11 for NETC 3-Bar bridge rail from upstream and downstream viewpoints.
0.25 seconds

0.30 seconds

0.35 seconds

0.40 seconds

0.45 seconds

Figure K-2. [Continued] Sequential views from analysis of MASH Test 4-11 for NETC 3Bar bridge rail from upstream and downstream viewpoints.
0.50 seconds

0.55 seconds

0.60 seconds

0.65 seconds

0.70 seconds

Figure K-2. [Continued] Sequential views from analysis of MASH Test 4-11 for NETC 3Bar bridge rail from upstream and downstream viewpoints.
0.00 seconds

0.05 seconds

0.10 seconds

0.15 seconds

Figure K-3. Sequential views from analysis of MASH Test 4-11 for NETC 3-Bar bridge rail from an oblique viewpoint.
0.20 seconds

0.25 seconds

0.30 seconds

0.35 seconds

Figure K-3. [Continued] Sequential views from analysis of MASH Test 4-11 for NETC 3Bar bridge rail from from an oblique viewpoint.
0.40 seconds

0.45 seconds

0.50 seconds

0.55 seconds

Figure K-3. [Continued] Sequential views from analysis of MASH Test 4-11 for NETC 3Bar bridge rail from an oblique viewpoint.

Appendix L

Sequential Views for Test 4-12 on
Curb-Mounted NETC 3-Bar Bridge Rail
(Case 1-47.5" Truck Bed)
0.00 seconds

0.05 seconds

0.10 seconds

0.15 seconds

0.20 seconds

Figure L-1. Sequential views from analysis of MASH Test 4-12 for NETC 3-Bar bridge rail from an overhead viewpoint - Case 1.
0.25 seconds

0.30 seconds

0.35 seconds

0.40 seconds

0.45 seconds

Figure L-1. [Continued] Sequential views from analysis of MASH Test 4-12 for NETC 3Bar bridge rail from an overhead viewpoint - Case 1.
0.50 seconds

0.55 seconds

0.60 seconds

0.65 seconds

0.70 seconds

Figure L-1. [Continued] Sequential views from analysis of MASH Test 4-12 for NETC 3Bar bridge rail from an overhead viewpoint - Case 1.
0.75 seconds

0.80 seconds

0.85 seconds

0.90 seconds

0.95 seconds

Figure L-1. [Continued] Sequential views from analysis of MASH Test 4-12 for NETC 3Bar bridge rail from an overhead viewpoint - Case 1.
0.00 seconds

0.05 seconds

0.10 seconds

0.15 seconds

Figure K-2. Sequential views from analysis of MASH Test 4-12 for NETC 3-Bar bridge rail from upstream and downstream viewpoints - Case 1.
0.20 seconds

0.25 seconds

0.30 seconds

0.35 seconds

Figure K-2. [Continued] Sequential views from analysis of MASH Test 4-12 for NETC 3Bar bridge rail from upstream and downstream viewpoints - Case 1.
0.40 seconds

0.45 seconds

0.50 seconds

0.55 seconds

Figure K-2. [Continued] Sequential views from analysis of MASH Test 4-12 for NETC 3Bar bridge rail from upstream and downstream viewpoints - Case 1.
0.60 seconds

0.65 seconds

0.70 seconds

0.75 seconds

Figure K-2. [Continued] Sequential views from analysis of MASH Test 4-12 for NETC 3Bar bridge rail from upstream and downstream viewpoints - Case 1.
0.80 seconds

0.85 seconds

0.90 seconds

0.95 seconds

Figure K-2. [Continued] Sequential views from analysis of MASH Test 4-12 for NETC 3Bar bridge rail from upstream and downstream viewpoints - Case 1.

Figure K-3. Sequential views from analysis of MASH Test 4-12 for NETC 3-Bar bridge rail from an oblique viewpoint - Case 1.

Figure K-3. [Continued] Sequential views from analysis of MASH Test 4-12 for NETC 3Bar bridge rail from an oblique viewpoint - Case 1.

Figure K-3. [Continued] Sequential views from analysis of MASH Test 4-12 for NETC 3Bar bridge rail from an oblique viewpoint - Case 1.

Figure K-3. [Continued] Sequential views from analysis of MASH Test 4-12 for NETC 3Bar bridge rail from an oblique viewpoint - Case 1.

Sequential Views for Test 4-12 on
Curb-Mounted NETC 3-Bar Bridge Rail
(Case 2-50" Truck Bed)
0.00 seconds

0.05 seconds

0.10 seconds

0.15 seconds

0.20 seconds

Figure M-1. Sequential views from analysis of MASH Test 4-12 for NETC 3-Bar bridge rail from an overhead viewpoint - Case 2.
0.25 seconds

0.30 seconds

0.35 seconds

0.40 seconds

0.45 seconds

Figure M-1. [Continued] Sequential views from analysis of MASH Test 4-12 for NETC 3-
Bar bridge rail from an overhead viewpoint - Case 2.

0.50 seconds

0.55 seconds

0.60 seconds

0.65 seconds

0.70 seconds

Figure M-1. [Continued] Sequential views from analysis of MASH Test 4-12 for NETC 3Bar bridge rail from an overhead viewpoint - Case 2.
0.75 seconds

0.80 seconds

0.85 seconds

0.90 seconds

0.95 seconds

Figure M-1. [Continued] Sequential views from analysis of MASH Test 4-12 for NETC 3Bar bridge rail from an overhead viewpoint - Case 2.
0.00 seconds

0.05 seconds

0.10 seconds

0.15 seconds

Figure M-2. Sequential views from analysis of MASH Test 4-12 for NETC 3-Bar bridge rail from upstream and downstream viewpoints - Case 2.
0.20 seconds

0.25 seconds

0.30 seconds

0.35 seconds

Figure M-2. [Continued] Sequential views from analysis of MASH Test 4-12 for NETC 3Bar bridge rail from upstream and downstream viewpoints - Case 2.
0.40 seconds

0.45 seconds

0.50 seconds

0.55 seconds

Figure M-2. [Continued] Sequential views from analysis of MASH Test 4-12 for NETC 3Bar bridge rail from upstream and downstream viewpoints - Case 2.
0.60 seconds

0.65 seconds

0.70 seconds

0.75 seconds

Figure M-2. [Continued] Sequential views from analysis of MASH Test 4-12 for NETC 3Bar bridge rail from upstream and downstream viewpoints - Case 2.
0.80 seconds

0.85 seconds

0.90 seconds

0.95 seconds

Figure M-2. [Continued] Sequential views from analysis of MASH Test 4-12 for NETC 3-
Bar bridge rail from upstream and downstream viewpoints - Case 2.

Figure M-3. Sequential views from analysis of MASH Test 4-12 for NETC 3-Bar bridge rail from an oblique viewpoint - Case 2.

Figure M-3. [Continued] Sequential views from analysis of MASH Test 4-12 for NETC 3Bar bridge rail from an oblique viewpoint - Case 2.

Figure M-3. [Continued] Sequential views from analysis of MASH Test 4-12 for NETC 3Bar bridge rail from an oblique viewpoint - Case 2.

Figure M-3. [Continued] Sequential views from analysis of MASH Test 4-12 for NETC 3Bar bridge rail from an oblique viewpoint - Case 2.

Appendix N

Sequential Views for Test 4-20 on
AGT 3-Bar Transition
0.00 seconds

0.05 seconds

0.10 seconds

0.15 seconds

0.20 seconds

Figure N-1. Sequential views from analysis of MASH Test 4-20 for AGT 3-Bar transition from an overhead viewpoint.
0.25 seconds

0.30 seconds

0.35 seconds

0.40 seconds

0.45 seconds

Figure N-1. [Continued] Sequential views from analysis of MASH Test 4-20 for AGT 3Bar transition from an overhead viewpoint.
0.00 seconds

0.05 seconds

0.10 seconds

0.15 seconds

0.20 seconds

Figure N-2. Sequential views from analysis of MASH Test 4-20 for AGT 3-Bar transition from upstream and downstream viewpoints.
0.25 seconds

0.30 seconds

0.35 seconds

0.40 seconds

0.45 seconds

Figure N-2. [Continued] Sequential views from analysis of MASH Test 4-20 for AGT 3Bar transition from upstream and downstream viewpoints.
0.00 seconds

0.05 seconds

0.10 seconds

0.15 seconds

Figure N-3. Sequential views from analysis of MASH Test 4-20 for AGT 3-Bar transition from an oblique viewpoint.
0.20 seconds

0.25 seconds

0.30 seconds

0.35 seconds

Figure N-3. [Continued] Sequential views from analysis of MASH Test 4-20 for AGT 3Bar transition from an oblique viewpoint.

Appendix 0

Sequential Views for Test 4-21 on

AGT 3-Bar Transition

0.00 seconds

0.05 seconds

0.10 seconds

0.15 seconds

0.20 seconds

Figure O-1. Sequential views from analysis of MASH Test 4-21 for AGT 3-Bar transition from an overhead viewpoint.
0.25 seconds

0.30 seconds

0.35 seconds

0.40 seconds

0.45 seconds

Figure O-1. [Continued] Sequential views from analysis of MASH Test 4-21 for AGT 3Bar transition from an overhead viewpoint.
0.50 seconds

0.55 seconds

0.60 seconds

0.65 seconds

0.70 seconds

Figure O-1. [Continued] Sequential views from analysis of MASH Test 4-21 for AGT 3Bar transition from an overhead viewpoint.
0.00 seconds

0.05 seconds

0.10 seconds

0.15 seconds

0.20 seconds

Figure O-2. Sequential views from analysis of MASH Test 4-21 for AGT 3-Bar transition from upstream and downstream viewpoints.
0.25 seconds

0.30 seconds

0.35 seconds

0.40 seconds

0.45 seconds

Figure O-2. [Continued] Sequential views from analysis of MASH Test 4-21 for AGT 3Bar transition from upstream and downstream viewpoints.
0.50 seconds

0.55 seconds

0.60 seconds

0.65 seconds

0.70 seconds

Figure O-2. [Continued] Sequential views from analysis of MASH Test 4-21 for AGT 3Bar transition from upstream and downstream viewpoints.

Figure O-3. Sequential views from analysis of MASH Test 4-21 for AGT 3-Bar transition from an oblique viewpoint.

Figure O-3. [Continued] Sequential views from analysis of MASH Test 4-21 for AGT 3Bar transition from from an oblique viewpoint.

Figure O-3. [Continued] Sequential views from analysis of MASH Test 4-21 for AGT 3Bar transition from an oblique viewpoint.

Appendix P

Sequential Views for Test 4-22 on
AGT 3-Bar Transition
0.00 seconds

0.05 seconds

0.10 seconds

0.15 seconds

0.20 seconds

Figure P-1. Sequential views from analysis of MASH Test 4-22 for AGT 3-Bar transition from an overhead viewpoint.
0.25 seconds

0.30 seconds

0.35 seconds

0.40 seconds

0.45 seconds

Figure P-1. [Continued] Sequential views from analysis of MASH Test 4-22 for AGT 3-Bar transition from an overhead viewpoint.
0.50 seconds

0.55 seconds

0.60 seconds

0.65 seconds

0.70 seconds

Figure P-1. [Continued] Sequential views from analysis of MASH Test 4-22 for AGT 3-Bar transition from an overhead viewpoint.
0.00 seconds

0.05 seconds

0.10 seconds

0.15 seconds

Figure P-2. Sequential views from analysis of MASH Test 4-22 for AGT 3-Bar transition from upstream and downstream viewpoints.
0.20 seconds

0.25 seconds

0.30 seconds

0.35 seconds

Figure P-2. [Continued] Sequential views from analysis of MASH Test 4-22 for AGT 3-Bar transition from upstream and downstream viewpoints.
0.40 seconds

0.45 seconds

0.50 seconds

0.55 seconds

Figure P-2. [Continued] Sequential views from analysis of MASH Test 4-22 for AGT 3-Bar transition from upstream and downstream viewpoints.
0.60 seconds

0.65 seconds

0.70 seconds

0.75 seconds

Figure P-2. [Continued] Sequential views from analysis of MASH Test 4-22 for AGT 3-Bar transition from upstream and downstream viewpoints.

Figure P-3. Sequential views from analysis of MASH Test 4-22 for AGT 3-Bar transition from an oblique viewpoint.

Figure P-3. [Continued] Sequential views from analysis of MASH Test 4-22 for AGT 3-Bar transition from an oblique viewpoint.
0.40 seconds

0.45 seconds

0.50 seconds

0.55 seconds

Figure P-3. [Continued] Sequential views from analysis of MASH Test 4-22 for AGT 3-Bar transition from an oblique viewpoint.

Appendix Q

Sequential Views for Test 4-10 on

Sidewalk-Mounted NETC 4-Bar Bridge Rail

0.00 seconds

0.05 seconds

0.10 seconds

0.15 seconds

0.20 seconds

Figure Q-1. Sequential views from analysis of MASH Test 4-10 for NETC 4-Bar bridge rail from an overhead viewpoint.
0.25 seconds

0.30 seconds

0.35 seconds

0.40 seconds

0.45 seconds

Figure Q-1. [Continued] Sequential views from analysis of MASH Test 4-10 for NETC 4Bar bridge rail from an overhead viewpoint.

0.55 seconds

0.60 seconds

0.65 seconds

0.70 seconds

Figure Q-1. [Continued] Sequential views from analysis of MASH Test 4-10 for NETC 4Bar bridge rail from an overhead viewpoint.
0.00 seconds

0.05 seconds

0.10 seconds

0.15 seconds

0.20 seconds

Figure Q-2. Sequential views from analysis of MASH Test 4-10 for NETC 4-Bar bridge rail from upstream and downstream viewpoints.
0.25 seconds

0.30 seconds

0.35 seconds

0.40 seconds

0.45 seconds

Figure Q-2. [Continued] Sequential views from analysis of MASH Test 4-10 for NETC 4Bar bridge rail from upstream and downstream viewpoints.
0.50 seconds

0.55 seconds

0.60 seconds

0.65 seconds

0.70 seconds

Figure Q-2. [Continued] Sequential views from analysis of MASH Test 4-10 for NETC 4Bar bridge rail from upstream and downstream viewpoints.

Figure Q-3. Sequential views from analysis of MASH Test 4-10 for NETC 4-Bar bridge rail from an oblique viewpoint.

Figure Q-3. [Continued] Sequential views from analysis of MASH Test 4-10 for NETC 4Bar bridge rail from from an oblique viewpoint.

Figure Q-3. [Continued] Sequential views from analysis of MASH Test 4-10 for NETC 4Bar bridge rail from an oblique viewpoint.

Figure Q-3. [Continued] Sequential views from analysis of MASH Test 4-10 for NETC 4Bar bridge rail from an oblique viewpoint.

Appendix R

Sequential Views for Test 4-11 on
Sidewalk-Mounted NETC 4-Bar Bridge Rail

0.05 seconds

0.10 seconds

0.15 seconds

0.20 seconds

Figure R-1. Sequential views from analysis of MASH Test 4-11 for NETC 4-Bar bridge rail from an overhead viewpoint.
0.25 seconds

0.30 seconds

0.35 seconds

0.40 seconds

0.45 seconds

Figure R-1. [Continued] Sequential views from analysis of MASH Test 4-11 for NETC 4Bar bridge rail from an overhead viewpoint.
0.50 seconds

0.55 seconds

0.60 seconds

0.65 seconds

0.70 seconds

Figure R-1. [Continued] Sequential views from analysis of MASH Test 4-11 for NETC 4Bar bridge rail from an overhead viewpoint.
0.00 seconds

0.05 seconds

0.10 seconds

0.15 seconds

0.20 seconds

Figure R-2. Sequential views from analysis of MASH Test 4-11 for NETC 4-Bar bridge rail from upstream and downstream viewpoints.
0.25 seconds

0.30 seconds

0.35 seconds

0.40 seconds

0.45 seconds

Figure R-2. [Continued] Sequential views from analysis of MASH Test 4-11 for NETC 4Bar bridge rail from upstream and downstream viewpoints.
0.50 seconds

0.55 seconds

0.60 seconds

0.65 seconds

0.70 seconds

Figure R-2. [Continued] Sequential views from analysis of MASH Test 4-11 for NETC 4Bar bridge rail from upstream and downstream viewpoints.
0.00 seconds

0.05 seconds

0.10 seconds

0.15 seconds

Figure R-3. Sequential views from analysis of MASH Test 4-11 for NETC 4-Bar bridge rail from an oblique viewpoint.
0.20 seconds

0.25 seconds

0.30 seconds

0.35 seconds

Figure R-3. [Continued] Sequential views from analysis of MASH Test 4-11 for NETC 4Bar bridge rail from from an oblique viewpoint.
0.40 seconds

0.45 seconds

0.50 seconds

0.55 seconds

Figure R-3. [Continued] Sequential views from analysis of MASH Test 4-11 for NETC 4Bar bridge rail from an oblique viewpoint.
0.60 seconds

0.65 seconds

0.70 seconds

0.75 seconds

Figure R-3. [Continued] Sequential views from analysis of MASH Test 4-11 for NETC 4Bar bridge rail from an oblique viewpoint.

Appendix S

Sequential Views for Test 4-12 on
Sidewalk-Mounted NETC 4-Bar Bridge Rail
0.00 seconds

0.05 seconds

0.10 seconds

0.15 seconds

0.20 seconds

Figure S-1. Sequential views from analysis of MASH Test 4-12 for NETC 4-Bar bridge rail from an overhead viewpoint.
0.25 seconds

0.30 seconds

0.35 seconds

0.40 seconds

0.45 seconds

Figure S-1. [Continued] Sequential views from analysis of MASH Test 4-12 for NETC 4Bar bridge rail from an overhead viewpoint.
0.50 seconds

0.55 seconds

0.60 seconds

0.65 seconds

0.70 seconds

Figure S-1. [Continued] Sequential views from analysis of MASH Test 4-12 for NETC 4Bar bridge rail from an overhead viewpoint.
0.75 seconds

0.80 seconds

0.85 seconds

0.90 seconds

0.95 seconds

Figure S-1. [Continued] Sequential views from analysis of MASH Test 4-12 for NETC 4Bar bridge rail from an overhead viewpoint.

Figure S-2. Sequential views from analysis of MASH Test 4-12 for NETC 4-Bar bridge rail from upstream and downstream viewpoints.
0.20 seconds

0.25 seconds

0.30 seconds

0.35 seconds

Figure S-2. [Continued] Sequential views from analysis of MASH Test 4-12 for NETC 4Bar bridge rail from upstream and downstream viewpoints.
0.40 seconds

0.45 seconds

0.50 seconds

0.55 seconds

Figure S-2. [Continued] Sequential views from analysis of MASH Test 4-12 for NETC 4Bar bridge rail from upstream and downstream viewpoints.
0.60 seconds

0.65 seconds

0.70 seconds

0.75 seconds

Figure S-2. [Continued] Sequential views from analysis of MASH Test 4-12 for NETC 4Bar bridge rail from upstream and downstream viewpoints.
0.80 seconds

0.85 seconds

0.90 seconds

0.95 seconds

Figure S-2. [Continued] Sequential views from analysis of MASH Test 4-12 for NETC 4Bar bridge rail from upstream and downstream viewpoints.

Figure S-3. Sequential views from analysis of MASH Test 4-12 for NETC 4-Bar bridge rail from an oblique viewpoint.

Figure S-3. [Continued] Sequential views from analysis of MASH Test 4-12 for NETC 4Bar bridge rail from an oblique viewpoint.

Figure S-3. [Continued] Sequential views from analysis of MASH Test 4-12 for NETC 4Bar bridge rail from an oblique viewpoint.

Figure S-3. [Continued] Sequential views from analysis of MASH Test 4-12 for NETC 4Bar bridge rail from an oblique viewpoint.

Figure S-3. [Continued] Sequential views from analysis of MASH Test 4-12 for NETC 4Bar bridge rail from an oblique viewpoint.

Appendix T

Sequential Views for Test 4-20 on

Sidewalk-Mounted AGT 4-Bar Bridge Rail

0.00 seconds

0.05 seconds

0.10 seconds

0.15 seconds

0.20 seconds

Figure T-1. Sequential views from analysis of MASH Test 4-20 for AGT 4-Bar bridge rail from an overhead viewpoint.
0.25 seconds

0.30 seconds

0.35 seconds

0.40 seconds

0.45 seconds

Figure T-1. [Continued] Sequential views from analysis of MASH Test 4-20 for AGT 4-Bar bridge rail from an overhead viewpoint.
0.00 seconds

0.05 seconds

0.10 seconds

0.15 seconds

Figure T-2. Sequential views from analysis of MASH Test 4-20 for AGT 4-Bar bridge rail from upstream and downstream viewpoints.
0.20 seconds

0.25 seconds

0.30 seconds

0.35 seconds

Figure T-2. [Continued] Sequential views from analysis of MASH Test 4-20 for AGT 4-Bar bridge rail from upstream and downstream viewpoints.

Figure T-3. Sequential views from analysis of MASH Test 4-20 for AGT 4-Bar bridge rail from an oblique viewpoint.

0.25 seconds

0.30 seconds

0.35 seconds

Figure T-3. [Continued] Sequential views from analysis of MASH Test 4-20 for AGT 4-Bar bridge rail from an oblique viewpoint.

Appendix U

Sequential Views for Test 4-21 on

Sidewalk-Mounted AGT 4-Bar Bridge Rail

0.00 seconds

0.05 seconds

0.10 seconds

0.15 seconds

0.20 seconds

Figure U-1. Sequential views from analysis of MASH Test 4-21 for AGT 4-Bar bridge rail from an overhead viewpoint.
0.25 seconds

0.30 seconds

0.35 seconds

0.40 seconds

0.45 seconds

Figure U-1. [Continued] Sequential views from analysis of MASH Test 4-21 for AGT 4Bar bridge rail from an overhead viewpoint.
0.50 seconds

0.55 seconds

0.60 seconds

0.65 seconds

0.70 seconds

Figure U-1. [Continued] Sequential views from analysis of MASH Test 4-21 for AGT 4Bar bridge rail from an overhead viewpoint.
0.75 seconds

0.80 seconds

0.85 seconds

0.90 seconds

Figure U-1. [Continued] Sequential views from analysis of MASH Test 4-21 for AGT 4Bar bridge rail from an overhead viewpoint.
0.00 seconds

0.05 seconds

0.10 seconds

0.15 seconds

Figure U-2. Sequential views from analysis of MASH Test 4-21 for AGT 4-Bar bridge rail from upstream and downstream viewpoints.
0.20 seconds

0.25 seconds

0.30 seconds

0.35 seconds

Figure U-2. [Continued] Sequential views from analysis of MASH Test 4-21 for AGT 4Bar bridge rail from upstream and downstream viewpoints.
0.40 seconds

0.45 seconds

0.50 seconds

0.55 seconds

Figure U-2. [Continued] Sequential views from analysis of MASH Test 4-21 for AGT 4Bar bridge rail from upstream and downstream viewpoints.
0.60 seconds

0.65 seconds

0.70 seconds

0.75 seconds

Figure U-2. [Continued] Sequential views from analysis of MASH Test 4-21 for AGT 4Bar bridge rail from upstream and downstream viewpoints.
0.80 seconds

0.85 seconds

0.90 seconds

Figure U-2. [Continued] Sequential views from analysis of MASH Test 4-21 for AGT 4Bar bridge rail from upstream and downstream viewpoints.
0.00 seconds

0.05 seconds

0.10 seconds

0.15 seconds

Figure U-3. Sequential views from analysis of MASH Test 4-21 for AGT 4-Bar bridge rail from an oblique viewpoint.
0.20 seconds

0.25 seconds

0.30 seconds

0.35 seconds

Figure U-3. [Continued] Sequential views from analysis of MASH Test 4-21 for AGT 4Bar bridge rail from an oblique viewpoint.
0.40 seconds

0.45 seconds

0.50 seconds

0.55 seconds

Figure U-3. [Continued] Sequential views from analysis of MASH Test 4-21 for AGT 4Bar bridge rail from an oblique viewpoint.
0.60 seconds

0.65 seconds

0.70 seconds

0.75 seconds

Figure U-3. [Continued] Sequential views from analysis of MASH Test 4-21 for AGT 4Bar bridge rail from an oblique viewpoint.

Appendix V

Sequential Views for Test 4-22 on

Sidewalk-Mounted AGT 4-Bar Bridge Rail

0.00 seconds

0.05 seconds

0.10 seconds

0.15 seconds

0.20 seconds

Figure V-1. Sequential views from analysis of MASH Test 4-22 for AGT 4-Bar bridge rail from an overhead viewpoint.
0.25 seconds

0.30 seconds

0.35 seconds
0.40 seconds

0.40 seconds

0.45 seconds

Figure V-1. [Continued] Sequential views from analysis of MASH Test 4-22 for AGT 4Bar bridge rail from an overhead viewpoint.
0.50 seconds

0.55 seconds

0.60 seconds

0.65 seconds

0.70 seconds

Figure V-1. [Continued] Sequential views from analysis of MASH Test 4-22 for AGT 4Bar bridge rail from an overhead viewpoint.
0.75 seconds

0.80 seconds

0.85 seconds

0.90 seconds

0.95 seconds

Figure V-1. [Continued] Sequential views from analysis of MASH Test 4-22 for AGT 4Bar bridge rail from an overhead viewpoint.
0.00 seconds

0.05 seconds

0.10 seconds

0.15 seconds

Figure V-2. Sequential views from analysis of MASH Test 4-22 for AGT 4-Bar bridge rail from upstream and downstream viewpoints.
0.20 seconds

0.25 seconds

0.30 seconds

0.35 seconds

Figure V-2. [Continued] Sequential views from analysis of MASH Test 4-22 for AGT 4Bar bridge rail from upstream and downstream viewpoints.
0.40 seconds

0.45 seconds

0.50 seconds

0.55 seconds

Figure V-2. [Continued] Sequential views from analysis of MASH Test 4-22 for AGT 4Bar bridge rail from upstream and downstream viewpoints.
0.60 seconds

0.65 seconds

0.70 seconds
0.75 seconds

Figure V-2. [Continued] Sequential views from analysis of MASH Test 4-22 for AGT 4Bar bridge rail from upstream and downstream viewpoints.
0.80 seconds

0.85 seconds

0.90 seconds

0.95 seconds

Figure V-2. [Continued] Sequential views from analysis of MASH Test 4-22 for AGT 4Bar bridge rail from upstream and downstream viewpoints.
0.00 seconds

0.05 seconds

0.10 seconds

0.15 seconds

Figure V-3. Sequential views from analysis of MASH Test 4-22 for AGT 4-Bar bridge rail from an oblique viewpoint.
0.20 seconds

0.25 seconds

0.30 seconds

0.35 seconds

Figure V-3. [Continued] Sequential views from analysis of MASH Test 4-22 for AGT 4Bar bridge rail from an oblique viewpoint.
0.40 seconds

0.45 seconds

0.50 seconds

0.55 seconds

Figure V-3. [Continued] Sequential views from analysis of MASH Test 4-22 for AGT 4Bar bridge rail from an oblique viewpoint.
0.60 seconds

0.65 seconds

0.70 seconds

0.75 seconds

Figure V-3. [Continued] Sequential views from analysis of MASH Test 4-22 for AGT 4Bar bridge rail from an oblique viewpoint.
0.80 seconds

0.85 seconds

0.90 seconds

0.95 seconds

Figure V-3. [Continued] Sequential views from analysis of MASH Test 4-22 for AGT 4Bar bridge rail from an oblique viewpoint.

Appendix W

Sequential Views for Test 3-10 on

Curb-Mounted NETC 2-Bar Bridge Rail

0.05 seconds

0.10 seconds

0.15 seconds

0.20 seconds

Figure W-1. Sequential views from analysis of MASH Test 3-10 for NETC 2-Bar bridge rail from an overhead viewpoint.
0.25 seconds

0.30 seconds

0.35 seconds

0.40 seconds

0.45 seconds

Figure W-1. [Continued] Sequential views from analysis of MASH Test 3-10 for NETC 2Bar bridge rail from an overhead viewpoint.

0.50 seconds

0.55 seconds
"

0.60 seconds

0.65 seconds
禺 \| क्ष \|

0.70 seconds

Figure W-1. [Continued] Sequential views from analysis of MASH Test 3-10 for NETC 2Bar bridge rail from an overhead viewpoint.
0.75 seconds

0.80 seconds
"

0.85 seconds

0.90 seconds

Figure W-1. [Continued] Sequential views from analysis of MASH Test 3-10 for NETC 2Bar bridge rail from an overhead viewpoint.
0.00 seconds

0.05 seconds

0.10 seconds

0.15 seconds

Figure W-2. Sequential views from analysis of MASH Test 3-10 for NETC 2-Bar bridge rail from upstream and downstream viewpoints.
0.20 seconds

0.25 seconds

0.30 seconds

0.35 seconds

Figure W-2. [Continued] Sequential views from analysis of MASH Test 3-10 for NETC 2Bar bridge rail from upstream and downstream viewpoints.
0.40 seconds

0.45 seconds

0.50 seconds

0.55 seconds

Figure W-2. [Continued] Sequential views from analysis of MASH Test 3-10 for NETC 2Bar bridge rail from upstream and downstream viewpoints.

Figure W-3. Sequential views from analysis of MASH Test 3-10 for NETC 2-Bar bridge rail from an oblique viewpoint.

Figure W-3. [Continued] Sequential views from analysis of MASH Test 3-10 for NETC 2Bar bridge rail from an oblique viewpoint.

Figure W-3. [Continued] Sequential views from analysis of MASH Test 3-10 for NETC 2Bar bridge rail from an oblique viewpoint.

Figure W-3. [Continued] Sequential views from analysis of MASH Test 3-10 for NETC 2Bar bridge rail from an oblique viewpoint.

Appendix X

Sequential Views for Test 3-11 on

Curb-Mounted NETC 2-Bar Bridge Rail

0.00 seconds

0.05 seconds

0.10 seconds

0.15 seconds

0.20 seconds

Figure X-1. Sequential views from analysis of MASH Test 3-11 for NETC 2-Bar bridge rail from an overhead viewpoint.
0.25 seconds

0.30 seconds

0.35 seconds

0.40 seconds

0.45 seconds

Figure X-1. [Continued] Sequential views from analysis of MASH Test 3-11 for NETC 2Bar bridge rail from an overhead viewpoint.
0.50 seconds

0.55 seconds

0.60 seconds

0.65 seconds

0.70 seconds

Figure X-1. [Continued] Sequential views from analysis of MASH Test 3-11 for NETC 2Bar bridge rail from an overhead viewpoint.
0.75 seconds

0.80 seconds

0.85 seconds

0.90 seconds

Figure X-1. [Continued] Sequential views from analysis of MASH Test 3-11 for NETC 2Bar bridge rail from an overhead viewpoint.
0.00 seconds

0.05 seconds

0.10 seconds

0.15 seconds

Figure X-2. Sequential views from analysis of MASH Test 3-11 for NETC 2-Bar bridge rail from upstream and downstream viewpoints.
0.20 seconds

0.25 seconds

0.30 seconds

0.35 seconds

Figure X-2. [Continued] Sequential views from analysis of MASH Test 3-11 for NETC 2Bar bridge rail from upstream and downstream viewpoints.
0.40 seconds

0.45 seconds

0.50 seconds

0.55 seconds

Figure X-2. [Continued] Sequential views from analysis of MASH Test 3-11 for NETC 2Bar bridge rail from upstream and downstream viewpoints.
0.60 seconds

0.65 seconds

0.70 seconds

0.75 seconds

Figure X-2. [Continued] Sequential views from analysis of MASH Test 3-11 for NETC 2Bar bridge rail from upstream and downstream viewpoints.
0.80 seconds

0.85 seconds

0.90 seconds

Figure X-2. [Continued] Sequential views from analysis of MASH Test 3-11 for NETC 2Bar bridge rail from upstream and downstream viewpoints.

Figure X-3. Sequential views from analysis of MASH Test 3-11 for NETC 2-Bar bridge rail from an oblique viewpoint.

Figure X-3. [Continued] Sequential views from analysis of MASH Test 3-11 for NETC 2Bar bridge rail from an oblique viewpoint.

Figure X-3. [Continued] Sequential views from analysis of MASH Test 3-11 for NETC 2Bar bridge rail from an oblique viewpoint.

Figure X-3. [Continued] Sequential views from analysis of MASH Test 3-11 for NETC 2Bar bridge rail from an oblique viewpoint.

Appendix Y

Sequential Views for Test 3-20 on
Curb-Mounted AGT 2-Bar Bridge Rail
0.00 seconds

0.05 seconds

0.10 seconds

0.15 seconds

0.20 seconds

Figure Y-1. Sequential views from analysis of MASH Test 3-20 for AGT 2-Bar bridge rail from an overhead viewpoint.
0.25 seconds

0.30 seconds

0.35 seconds

0.40 seconds

0.45 seconds

Figure Y-1. [Continued] Sequential views from analysis of MASH Test 3-20 for AGT 2Bar bridge rail from an overhead viewpoint.
0.50 seconds

0.55 seconds

0.60 seconds

0.65 seconds

0.70 seconds

Figure Y-1. [Continued] Sequential views from analysis of MASH Test 3-20 for AGT 2Bar bridge rail from an overhead viewpoint.
0.00 seconds

0.05 seconds

0.10 seconds

0.15 seconds

Figure Y-2. Sequential views from analysis of MASH Test 3-20 for AGT 2-Bar bridge rail from upstream and downstream viewpoints.
0.20 seconds

0.25 seconds

0.30 seconds

0.35 seconds

Figure Y-2. [Continued] Sequential views from analysis of MASH Test 3-20 for AGT 2Bar bridge rail from upstream and downstream viewpoints.
0.40 seconds

0.45 seconds

0.50 seconds

0.55 seconds

Figure Y-2. [Continued] Sequential views from analysis of MASH Test 3-20 for AGT 2Bar bridge rail from upstream and downstream viewpoints.
0.60 seconds

0.65 seconds

0.70 seconds

0.75 seconds

Figure Y-2. [Continued] Sequential views from analysis of MASH Test 3-20 for AGT 2Bar bridge rail from upstream and downstream viewpoints.
0.00 seconds

0.05 seconds

0.15 seconds

Figure Y-3. Sequential views from analysis of MASH Test 3-20 for AGT 2-Bar bridge rail from an oblique viewpoint.
0.20 seconds

0.35 seconds

Figure Y-3. [Continued] Sequential views from analysis of MASH Test 3-20 for AGT 2Bar bridge rail from an oblique viewpoint.
0.40 seconds

0.45 seconds

0.55 seconds

Figure Y-3. [Continued] Sequential views from analysis of MASH Test 3-20 for AGT 2Bar bridge rail from an oblique viewpoint.
0.60 seconds

0.70 seconds

0.75 seconds

Figure Y-3. [Continued] Sequential views from analysis of MASH Test 3-20 for AGT 2Bar bridge rail from an oblique viewpoint.

Appendix Z

Sequential Views for Test 3-21 on
Curb-Mounted AGT 2-Bar Bridge Rail
0.00 seconds

0.05 seconds

0.10 seconds

0.15 seconds

0.20 seconds

Figure Z-1. Sequential views from analysis of MASH Test 3-21 for AGT 2-Bar bridge rail from an overhead viewpoint.
0.25 seconds

0.30 seconds

0.35 seconds

0.40 seconds

0.45 seconds

Figure Z-1. [Continued] Sequential views from analysis of MASH Test 3-21 for AGT 2-Bar bridge rail from an overhead viewpoint.
0.50 seconds

0.55 seconds

0.60 seconds

0.65 seconds

0.70 seconds

Figure Z-1. [Continued] Sequential views from analysis of MASH Test 3-21 for AGT 2-Bar bridge rail from an overhead viewpoint.

Figure Z-1. [Continued] Sequential views from analysis of MASH Test 3-21 for AGT 2-Bar bridge rail from an overhead viewpoint.
0.00 seconds

0.05 seconds

0.10 seconds

0.15 seconds

Figure Z-2. Sequential views from analysis of MASH Test 3-21 for AGT 2-Bar bridge rail from upstream and downstream viewpoints.
0.20 seconds

0.25 seconds

0.30 seconds

0.35 seconds

Figure Z-2. [Continued] Sequential views from analysis of MASH Test 3-21 for AGT 2-Bar bridge rail from upstream and downstream viewpoints.
0.40 seconds

0.45 seconds

0.50 seconds

0.55 seconds

Figure Z-2. [Continued] Sequential views from analysis of MASH Test 3-21 for AGT 2-Bar bridge rail from upstream and downstream viewpoints.
0.60 seconds

0.65 seconds

0.70 seconds

0.75 seconds

Figure Z-2. [Continued] Sequential views from analysis of MASH Test 3-21 for AGT 2-Bar bridge rail from upstream and downstream viewpoints.
0.80 seconds

0.85 seconds

0.90 seconds

0.95 seconds

Figure Z-2. [Continued] Sequential views from analysis of MASH Test 3-21 for AGT 2-Bar bridge rail from upstream and downstream viewpoints.
0.00 seconds

0.05 seconds

0.10 seconds

0.15 seconds

Figure Z-3. Sequential views from analysis of MASH Test 3-21 for AGT 2-Bar bridge rail from an oblique viewpoint.

0.20 seconds

0.25 seconds

0.30 seconds

0.35 seconds

Figure Z-3. [Continued] Sequential views from analysis of MASH Test 3-21 for AGT 2-Bar bridge rail from an oblique viewpoint.
0.40 seconds

0.50 seconds

0.55 seconds

Figure Z-3. [Continued] Sequential views from analysis of MASH Test 3-21 for AGT 2-Bar bridge rail from an oblique viewpoint.
0.60 seconds

0.75 seconds

Figure Z-3. [Continued] Sequential views from analysis of MASH Test 3-21 for AGT 2-Bar bridge rail from an oblique viewpoint.
0.80 seconds

Figure Z-3. [Continued] Sequential views from analysis of MASH Test 3-21 for AGT 2-Bar bridge rail from an oblique viewpoint.

[^0]: CONCRETE TRANSITION BARRIER 526(33)

[^1]: CONCRETE TRANSITION BARRIER 526(35)

[^2]: CONCRETE TRANSITION BARRIER 526(36)

