Development of MASH Computer Simulated Steel Bridge Rail and Transition Details - Appendices to Final Report

APPENDIX A: MAINE DOT STANDARD BRIDGE RAIL DRAWINGS

~ CURB WITH BITUMINOUS WEARING SURFACE ~ * 3" Hot Mix Asphalt + 1/4" (nom.) High Performance Waterproofing Membrane

-- CURB WITH CONCRETE WEARING SURFACE --

-- CURB WITH INTEGRAL WEARING SURFACE --

~ 2 - BAR TRAFFIC RAILING ~

~ 4 - BAR TRAFFIC / PEDESTRIAN RAILING ~

* Including Rail Bar Cap (Typ.)

€ Rail Bar attachment bolts. See Notes for hole size.

STEEL BRIDGE RAILING

Rail Bars: TS 8x4x⁵/₁₆ (1) TS 4x4x¹/₄ (1)

Rail Bars: TS 8x4x⁵/₁₆ (1) TS 4x4x¹/₄ (2)

~ POST & BASE PLATE PLAN ~

~ ANCHOR PLATE PLAN ~

~ RAIL BAR CAP ~ Note: Match corner radius of rail bar

~ POST - TO - BASE WELD DETAIL ~

~ RAIL BAR SPLICE SECTION ~ * Weld nuts to plate before assembling splice tube

In the second second

~ RAIL BAR EXPANSION JOINT SECTION ~ For details not shown, see "Rail Bar Splice Section"

STEEL BRIDGE RAILING

~ RAIL BAR SPLICE & EXPANSION JOINT DETAIL ~ (Bottom View)

SPLICE TUBE DIMENSIONS			
	TS 8x4	TS 4x4	
Top & Bot. Plates	21/2 x 3/8 x "L"	25/8 x ³ /8 x "L"	
Side Plates	6 ³ /4 x ³ /8 x "L"	27/8 x ³ /8 x "L"	

SPLICE & EXPANSION JOINT TABLE				
"A"	"B"	"С"	"_"	"X"
4"	2"		/′-8″	3/4"
4"	2"	$2!/_{2}$ "	/′-8″	21/2"
5 ¹ /2"	21/2"	3!/2"	2'-0"	33/4"
61/2"	3 ¹ /2"	9" *	2'-4"	5"
8 ¹ /2"	4 ¹ /2"	//" *	2'-10"	7"
	"A" 4" 5 ¹ / ₂ " 6 ¹ / ₂ "	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	"A" "B" "C" 4" 2" 4" 2" $2^{l}/_{2}$ " 5!/2" 2!/2" $3^{l}/_{2}$ " 6!/2" $3^{l}/_{2}$ " 9" *	"A" "B" "C" "L" $4"$ $2"$ $$ $l'-8"$ $4"$ $2"$ $2l/2"$ $l'-8"$ $5l/2"$ $2l/2"$ $3l/2"$ $2'-0"$ $6l/2"$ $3l/2"$ $9" *$ $2'-4"$

T = Total Movement

* = Single Slot

MATERIALS:

Rail barsASTM A 500, Grade BRail posts, shapes & platesAASHTO M 270M/M 270, Grade 50Anchor studs, washers & heavy hex nutsAASHTO M 314, Grade 105All other bolts & nuts (unless noted)AASHTO A 307, Grade C

STEEL BRIDGE RAILING 507(12) A-16

~ CURB REINFORCING PLAN ~

~ SIDEWALK REINFORCING PLAN ~

NOTES:

I. All work and materials shall conform to the provisions of Section 507 -Railings of the Standard Specifications.

2. Tubing shall meet the longitudinal CVN minimum requirements of 15 ft-lb at 0°F or proportional values of sub - size specimens. Testing shall be done in accordance with ASTM A 673. The H frequency shall be used and the material shall be as - rolled.

3. Twenty - five percent of the post - to - base welds in a production lot shall be tested by the Magnetic Particle Method. If rejectable discontinuities are found, another twenty - five percent of that production lot shall be tested. If rejectable discontinuities are found in the second twenty - five percent, all post - to - base welds in that lot shall be tested. Acceptance criteria shall be in accordance with the latest edition of the AWS DI.5 Bridge Welding Code.

NOTES (Continued):

4. All exposed cut or sheared edges shall be broken and free of burrs. The inside weld flash of tubing shall be removed at splices and expansion joints.

5. Rail posts shall be set normal to grade unless otherwise shown.

6. Lengths of rail bar shall be attached to a minimum of 2 rail posts and to at least 4 posts whenever possible.

7. Rail bar expansion joints shall be provided in any rail bay spanning a superstructure expansion joint. Expansion joint width shall be "X" at 45° F and will be adjusted in the field as directed by the Resident. Refer to detail and table on page 507(12) for dimension "X".

8. All parts shall be galvanized after fabrication in accordance with ASTM A 123, except that hardware shall meet the requirements of either ASTM A 153 or ASTM B 695, Class 50, Type I. Parts except hardware shall be blast - cleaned prior to galvanizing in accordance with SSPC - SP6.

9. Anchor bolts shall be set with a template. Nuts securing the post base plate shall be tightened to a snug fit and given an additional $\frac{1}{8}$ turn.

IO. Rail bars shall be attached to posts using $\frac{3}{4}$ " $\phi \sim ASTM$ A 307 bolts $(\frac{5}{8})$ " $\phi \sim ASTM$ A 325 bolts may be substituted) inserted through the face of the rail bar. Bolts shall be round or dome head and may be rib neck, slotted, wrench head or tension control (TC or twist - off). Holes in posts shall be $\frac{1}{16}$ " larger than the diameter of the bolt. Holes in rail bars shall be drilled to size as follows:

Slotted, wrench head or TC bolts: V_{16} " larger than bolt diameter Rib neck bolts: Size appropriate to accomodate an interference fit

All bolts for fastening the rail bars to the posts shall be 6 inches in length and shall include a flat washer under the nut.

II. Holes in rail bars shall be field - drilled and shall be coated with an approved zinc - rich paint prior to erection.

12. Bolts in expansion joints shall be tightened only to a point that will allow rail movement.

13. The alternate curb projection shown for the curb - mounted railings is intended for use with granite bridge curb.

14. If there is a conflict between these Standard Details and the Design Drawings, the Contractor shall notify the Resident immediately.

<i>6′-4</i> ″ ►	Bridge Transition Type "I"	
3'-8" 2'-8"	Precast Concrete Transition Curb See Standard Details P. 609(08)	

~ CONCRETE TRANSITION BARRIER ~ (2 - Bar Traffic Railing)

~ CONCRETE TRANSITION BARRIER ~ (3 - Bar Traffic / Bicycle Railing) (4 - Bar Traffic / Bicycle Railing similar)

~ CONCRETE TRANSITION BARRIER ~ (4 - Bar Traffic / Pedestrian Railing)

~ GUARDRAIL ANCHORAGE SECTION ~

~ GUARDRAIL ANCHOR PLATE ~

CONCRETE TRANSITION BARRIER 526(24) A-21

CONCRETE TRANSITION BARRIER 526(25) A-22

CONCRETE TRANSITION BARRIER 526(26) A-23

CONCRETE TRANSITION BARRIER 526(30) A-27

CONCRETE TRANSITION BARRIER 526(32) A-29

CONCRETE TRANSITION BARRIER 526(33) A-30

CONCRETE TRANSITION BARRIER 526(35) A-32

CONCRETE TRANSITION BARRIER 526(36) A-33

	REINFORCING STEEL SCHEDULE							
	2 - Bar Traffic		3 - Bar Bike		4 - Bar Bike		4 - Bar Ped.	
	Qty.	Length	Qty.	Length	Qty.	Length	Qty.	Length
<i>TB500</i>	10	4'-6"	10	4'-6"	12	4'-6"	12	4'-6"
TB501	2	/'-8"	2	2'-2"	2	3'-2"	2	2'-//"
TB502	2	/′-7″	2	2'-0"	2	2'-10"	2	2'-9"
TB503	2	/'-7"	2	/'-/0"	2	2'-6"	2	2′-7″
TB504	2	/′-6″	2	1′-8″	2	2'-2"	2	2'-5"
TB505	2	/′-6"	2	1′-6″	2	/'-/0"	2	2'-3"
TB506			2	4′-8″	2	5'-/"	2	4'-8"
TB550	5	10'-2"	6	10'-2"	7	10'-2"	7	10'-2"
TB600			4	2′-7″	4	3′-7"	4	3′-4″
TB650			5	5′-10″	5	7′-10″	5	7'-4"
TB65/	2	7'-//"	2	7'-//"	2	7'-//"	2	7'-//"
TB652	5	8'-9"	5	8'-9"	5	8'-9"	5	8'-9"

Notes:

The first digit following the letters of the mark indicate the size of the reinforcing bar. (TB500 = bar size #5.) All dimensions are out - to out of bar.

Quantities given are for one Transition Barrier.

~ TB652 ~

CONCRETE TRANSITION BARRIER 526(37) A-34

NOTES:

I. All work and materials shall conform to the provisions of Standard Specifications Section 526 - Concrete Barrier.

2. The Contractor is responsible for ensuring that vertical reinforcing bars TB651 and TB652 are installed prior to placement of the curb or sidewalk concrete. Payment for these bars will be considered incicdental to Item No. 526.34, Permanent Concrete Transition Barrier.

3. Reinforcing steel shall have a minimum concrete cover of 2 inches.

4. Quantities of reinforcing bars shown are for one transition barrier only.

5. When the Concrete Transition Barrier is cantilevered over an expansion joint, the nose shall be blocked out as shown.

6. Payment for guardrail anchorage will be considered incidental to the transition barrier pay item. Class 8.8.3 bolts shall be used when corrosion - resistant steel guardrail is specified on the approach roadway

7. Precast Concrete Transition Curb shall meet the requirements of Standard Specifications Section 609 - Curb. The bridge end of the curb shall be saw cut in the field to fit flush against the backwall, as dictated by the bridge skew angle and the profile grade. Where curbing is specified on the adjacent highway, the transition shall be modified accordingly. Payment for transition curb will be considered incidental to the Concrete Transition Barrier pay item.

8. Concrete Transition Barrier is designed for attachment of Bridge Transition Type "I" unless otherwise indicated on the Design Drawings. Refer to Section 606 for details.

9. After installation of the guardrail is complete, upset the threads on the anchor bolts in three (3) places around each bolt, at the junction of the nut and the exposed thread, with a center punch or similar tool.

IO. If there is a conflict between these Standard Details and the Design Drawings, the requirements of the Design Drawings shall be followed.

MATERIALS:

Concrete	Class "LP"
Reinforcing Steel	AASHTO M 3IM/M 3I, Grade 60
	M 270M/M 270, Grade 36 (Galvanized)
Bolts	AASHTO M 314, Grade 105 (Galvanized)

CONCRETE TRANSITION BARRIER 526(38)

A-35

STANDARD BRIDGE TRANSITION - TYPE "I" 606(21) A-36

Suppl. Std. Detail BRIDGE TRANSITION - TYPE "IA" 606(2/A) A-37

Sept. 6, 2017

APPENDIX B: NEW HAMPSHIRE DOT STANDARD BRIDGE RAIL DRAWINGS

T3 STEEL BRIDGE RAIL								BRIDGE SHEET
1.								OF
REVISIONS AFTER PROPOSAL			BY	DATE		BY	DATE	OF
		DESIGNED	NETC/JSZ	3/02	CHECKED	NHDOT		FILE NUMBER
		DRAWN	PJP	10/05	CHECKED	JSZ	10/05	
		QUANTITIES			CHECKED			
		ISSUE DATE	11/15/05	FEDERAL	PROJECT NO.	SH	EET NO.	TOTAL SHEETS
		REV. DATE	11/1/16					

T4 STEEL BRIDGE RAIL								BRIDGE SHEET
14		LL DRU	DOLT	VAIL				OF
REVISIONS AFTER PROPOSAL			BY	DATE		BY	DATE	OF
		DESIGNED	NETC/JSZ	3/02	CHECKED	NHDOT		FILE NUMBER
		DRAWN	PJP	10/05	CHECKED	JSZ	10/05	
		QUANTITIES			CHECKED			
		ISSUE DATE	11/15/05	FEDERAL	PROJECT NO.	SH	EET NO.	TOTAL SHEETS
		REV. DATE	11/1/16					

APPENDIX C: VERMONT DOT STANDARD BRIDGE RAIL DRAWINGS

5%6"×35%8"×35%8" PLATE HSS4×4×5/16 PAY LIMITS OF BRIDGE RAILING, GALVANIZED WITH HEX NUTS, I FLAT WASHER, STEEL TUBING CONCRETE COMBINATION AND I LOCK WASHER. (TYP) 8' - 0" 5' - 4'' 1'-8" 4" 4" 4" 5" ------ D 2' -6" 5/8 " Ø SLOTTED ROUND HEAD BOLTS WITH HEX NUTS, I FLAT WASHER, AND I LOCK WASHER. (TYP) - Q- - Q-·----l O 6" 8 /2 0 4" 5" 0 | ' - 0" i O ന C ______ TOP OF PAVEMENT ORSIDEWALK NOTES: I. $1/_{16}$ " DIA. × $\frac{7}{8}$ " SLOTTED HOLE IN RAIL, Ç ⁵/₈ " DIA. × I' − I" SLOTTED ROUND HEAD BOLTS WITH HEX NUT, I PLAIN HARDENED WASHER, I LOCK WASHER (TYP) NOTE: $\overline{EF} = EACH FACE$ 3" CLEAR, UNLESS OTHERWISE SPECIFIED ON THE PLANS. 5. 2'-2" BAR LAP UNLESS OTHERWISE SPECIFIED ON THE PLANS. *** MATCH SLOPE OF NEAREST TRANSVERSE STEEL |2" 12" 9" 9" THRU BOLT BEYOND (TYP) -8. •• #4 @ 8'' #4 @ 8'' #4 @ 8'' ╪╼╼╪╼╼╋╴ 21/2" CLR . •• THRU BOLTS 9. (TYP) -60 #4 @ 8'' #4 @ 8" 2 1/2 " CLR 21/2" CLR 21/2" CLR 2 1/2 '' CLR • • 21/2" CLR AESTHETIC DETAIL ***---*** *** *** *** *** SECTION B-B SECTION C-C SECTION D-D BRIDGE RAILING, GALVANIZED STEEL TUBING CONCRETE COMBINATION

C-2

ALL WORK AND MATERIALS SHALL CONFORM TO SECTION 525.

PRIOR TO GALVANIZING THE ASSEMBLED POST, GRIND ALL EDGES TO A MINIMUM RADIUS OF $V_{
m 16}$ ".

3. ALL POSTS SHALL BE SET NORMAL TO GRADE.

4. SECTIONS OF RAIL TUBE SHALL BE ATTACHED TO A MINIMUM OF TWO BRIDGE POSTS AND PREFERABLY TO AT LEAST 4 POSTS.

HOLES IN RAILS FOR TUBE ATTACHMENT MAY BE FIELD-DRILLED. HOLES SHALL BE COATED WITH AN APPROVED ZINC-RICH PAINT PRIOR TO INSTALLATION.

6. BOLTS SHALL BE TORQUED SNUG TIGHT (APPROXIMATELY 100 FT-LB).

7. RAIL TUBES SHALL BE ATTACHED USING $\frac{3}{4}$ " FULL DIAMETER BODY ASTM A 449 (TYPE I) ROUND HEAD BOLTS INSERTED THROUGH THE FACE OF THE TUBE.

SEE STANDARD DRAWING G-IFOR DETAILS OF DELINEATORS. A DELINEATOR SHALL BE INSTALLED AT 30 FOOT SPACING OR THE NEAREST POST. WHITE IS TO BE INSTALLED ON THE DRIVER'S RIGHT. FOR ONE WAY BRIDGES, YELLOW IS TO BE INSTALLED ON THE DRIVER'S LEFT. PAYMENT FOR DELINEATORS SHALL BE INCIDENTAL TO OTHER ITEMS.

AESTHETIC TREATMENT TYPE SHALL BE APPLIED AS SPECIFIED IN THE CONTRACT PLANS. IF NONE IS SPECIFIED IT SHALL NOT BE USED. AESTHETIC TREATMENT DETAILED ON THIS SHEET MAY ALSO BE APPLIED ON THE FASCIA SIDE OF THE RAIL, IF SPECIFIED IN THE CONTRACT PLANS.

IO. BRIDGE RAILING SHALL HAVE A RUBBED FINISH IN ACCORDANCE WITH SECTION 501.

THIS RAILING MEETS THE REQUIREMENTS FOR A NCHRP REPORT 350 TL-4 SERVICE LEVEL. **OTHER STDS.** G-1 **STANDARD** STANDARD S = 352A

C-4

OST# I-6	7′ - 0''	7′-0''
OST# 7&8	6′-0''	6′-0''
POST# 9	SEE STD G-I	SEE STD G-I

GUARDRAIL APPROACH SECTION, GALVANIZED 2 RAIL BOX BEAM

CLIP I"xI"

(TYP)

POST	RAIL HEIGHT	RAIL SPACING	RAIL HEIGHT
NUMBER	(A)	(B)	(C)
I	2′ -9½ ''	I ' - 3 ¾ ''	I′-5¾''
2	2'-9"	' - 3 / ₂ ''	l′-5 <mark>½</mark> ″
3	2′ -81/2 ''	' - 3 ³ / ₁₆ ''	l ′ -55⁄16''
4	2' -8"	I ' - 2 <mark>%</mark> ''	l′-5 <mark>½</mark> ″

2' - 3''

RANSTITUN PL.					
D THRIE BEAMS (12 G)	AUGE)	6' - 3'' THRIE-BEAN (SEE STD S-363) 3' - 1 1/2 '' _ 3' - 1		M GUARDRAIL, GALVANIZED 🔊 (SEE STD G-I)	-
	<u>2'-8''</u>		4 ¹ / ₈ ''	<u>-</u> ↓	-SEE STD G-
POST POST POST #8 #9 #10	POST #11 PO # TION		POST #14	4" CURB REVEAL FLARE CURB	

¾" CARRIAGE

BOLT (TYP)

TOP

RAIL

2 3/8 ''

Μ

3 13/6

3 13/6

RAIL-TO-RAIL WIDTH UNLESS DIRECTED WOOD POST WOOD BLOCKOUT OTHERWISE (SEE STD S-363) (SEE STD S-363) _ _ _ _ _ _ 32' -6'' 7′-6'' FLARE CURB AT IO: I

NOTES:

STEEL BEAM GUARDRAIL, GALVANIZED

FLARE BACK STEEL BEAM GUARDRAIL,

GALVANIZED AT 80: I FOR 25'-0" TO RESTORE

- I. PAYMENT FOR GUARDRAIL APPROACH SECTION. GALVANIZED 2 RAIL BOX BEAM SHALL INCLUDE THE TERMINAL CONNECTOR, CONNECTION PLATE, DEFLECTOR PLATE, RAIL, POSTS, BLOCKS AND ATTACHMENT HARDWARE.
- 2. ALL APPROACH RAIL SPLICES SHALL BE LAPPED IN THE DIRECTION OF TRAFFIC FLOW.
- 3. TUBE AND STEEL POST MATERIALS, DIMENSION SIZES AND NOTES SHALL BE THE SAME AS THOSE OF THE BRIDGE RAIL. UNLESS OTHERWISE NOTED.
- 4. APPROACH RAIL BOLTS SHALL BE ASTM A307 GRADE A AND NUTS SHALL BE AASHTO M291 (ASTM A563 GRADE A OR BETTER) (GALVANIZED). WASHERS SHALL BE ASTM F844.
- 5. PRIOR TO GALVANIZING, GRIND ALL EDGES TO A MINIMUM RADIUS OF 1/16".

VTRANS AND FHWA APPROVAL ON FILE WITH CONTRACT ADMINISTRATION

- WIDTH SHALL BE 4" @ 68°F AND WILL BE ADJUSTED IN THE FIELD BY THE ENGINEER FOR OTHER

- RIGHT. FOR ONE WAY BRIDGES, YELLOW IS TO BE INSTALLED ON THE DRIVER'S LEFT. PAYMENT

VTRANS AND FHWA APPROVAL ON FILE WITH CONTRACT ADMINISTRATION

VTRANS AND FHWA APPROVAL ON FILE WITH CONTRACT ADMINISTRATION

GUARDRAIL APPROACH SECTION, Galvanized 3 Rail Box Beam

2"x 2" CLIP ON BOTH /

CORNERS PERMITTED

HEAVY POST DETAIL

SOIL PLATE CLIP DETAIL

(TYP)

NOTES

- AND BE FREE OF BURRS.
- 4. RAIL POSTS SHALL BE SET NORMAL TO GRADE.
- TEMPERATURES.
- ADDITIONAL ONE-EIGHTH TURN.

- PROCEDURE PROVIDED BY THE FABRICATOR.
- WITH SECTION 105.

MATERIALS

3 mm ($\frac{1}{8}$ ") PAD SHALL COMPLY WITH SUBSECTION 731.01 OR 731.02.

		S	PLICE TABL	E		
	Т	Α	В	С	L	X
	N/A	100 (4 '')	50 (2 '')		508 (20 '')	19 (3/4 ")
		EXPANS	SION JOINT	TABLE		
	< 100 (4 '')	100 (4 '')	50 (2 '')	64 (2 ¹ / ₂ ")	508 (20 '')	64 (21/2 ")
	>100 (4 ") <165 (61/2	") 140 (5 ¹ / ₂ ")	60 (2 3/ 8 '')	89 (3 ¹ / ₂ ")	603 (23 ³ ⁄ ₄ '')	
	> 165 (61/2 ") <229 (9	") 163 (6 ¹ / ₂ ")	86 (3 3/8 ")	229 (9 ") *	705 (27 3/4 ")	
	>229 (9") <330 (13)	") 216(8 <mark>1/</mark> 2")	(4 3/8 ")	279(")*	857 (33 <u>3</u> 4 '')	179 (7 '')
<u>OTTED HOL</u> R EXPANSIO NT ONLY (T 16 DIA × 4 %"DIA × 1¾ 30LTS (TYP	DN YP) 5		OWN ON THE		PANSION JOI PLANS. SEE	
		OJECT:	Α	LL DETA	ILS NOT	
						INU. •

STC DESIGN IPARM I DESIGNE SQUAD L RAILIN

I. ALL WORK AND MATERIALS SHALL CONFORM TO THE PROVISIONS OF SECTION 525 -RAILINGS OF THE STANDARD SPECIFICATION FOR CONSTRUCTION.

2. TUBING AND POSTS SHALL MEET THE REQUIREMENTS OF SECTION 732.

3. ALL EXPOSED CUT OR SHEARED EDGES SHALL BE ROUNDED TO A 2 mm $(\frac{1}{16})$ RADIUS

5. SECTIONS OF RAIL TUBE SHALL BE ATTACHED TO A MINIMUM OF TWO (2) RAIL POSTS AND PREFERABLY TO AT LEAST FOUR (4) POSTS.

6. RAIL TUBE EXPANSION JOINTS SHALL BE PROVIDED IN ANY RAIL BAY SPANNING A SUPERSTRUCTURE EXPANSION JOINT. EXPANSION JOINT WIDTH SHALL BE "X" AT 7°C (45°F) AND WILL BE ADJUSTED IN THE FIELD BY THE ENGINEER FOR OTHER

7. RAIL POSTS ANCHORING NUTS SHALL BE TIGHTENED TO A SNUG FIT AND GIVEN AN

8. RAIL TUBES SHALL BE ATTACHED USING 75 mm (3") FULL DIAMETER BODY AASHTO MI64M (TYPE I) ROUND HEAD BOLTS INSERTED THROUGH THE FACE OF THE TUBE. HOLES IN POSTS SHALL BE 2 mm ($\frac{1}{16}$ ") LARGER THAN THE BOLT SIZE.

9. HOLES IN RAILS FOR RAIL TUBE ATTACHMENT MAY BE FIELD-DRILLED. HOLES SHALL BE COATED WITH AN APPROVED ZINC-RICH PAINT PRIOR TO ERECTION.

IO. ANY BENDING OF RAIL SHALL BE DONE AT A FABRICATOR PLANT, ACCORDING TO A

II. THE FABRICATOR SHALL SUBMIT FABRICATION DRAWINGS INCLUDING WELDING PROCEDURES TO THE STRUCTURES SECTION FOR APPROVAL IN ACCORDANCE

ALL DETAIL	S NOT TO SCALE
Τ:	PROJECT NO.:
DCKBRIDGE	project no.: BRF 022-1(20)
FILE NAME: 85e039\Structures\d FILE NAME: de039rail2m.i PL	-
	AWN BY: H. I. SALLS
LEADER: C. P. WILLIAMS CH	ECKED BY: R. S. YOUNG
NG DETAIL I SH	EET: 78 OF 139

I. REFER TO SHEET 78 FOR ADDITIONAL DETAILS, NOTES AND MATERIAL SPECIFICATIONS.

2. PAYMENT FOR GUARD RAIL APPROACH SECTION, GALVANIZED NETC 4 RAIL SHALL INCLUDE THE TERMINAL CONNECTOR, THE CONNECTION PLATE, RAIL, POSTS, BLOCKS AND ATTACHMENT

3. RETROREFLECTIVE MATERIAL SHALL MEET REQUIREMENTS OF SUBSECTION 750.08 AND SHALL BE OF ENCAPSULATED LENS SILVER INSTALLED ON DRIVER'S RIGHT.

4. ALL APPROACH RAIL SPLICES SHALL BE LAPPED IN THE DIRECTION OF TRAFFIC FLOW.

5. ALL BRIDGE APPROACH RAIL MATERIALS, DIMENSION SIZES AND NOTES SHALL BE THE SAME AS THOSE OF THE BRIDGE RAIL, UNLESS OTHERWISE NOTED.

6. APPROACH RAIL BOLTS SHALL BE ASTM A307 GRADE A AND NUTS SHALL BE AASHTO M291M (ASTM A563 GRADE A OR BETTER) (GALVANIZED). WASHERS SHALL BE ASTM F844.

7. WELD SPLICE BARS TO FIT BEND. USE COMPLETE PENETRATION WELD (B-U2).

8. THE CONCRETE CURB WILL BE PAID FOR AS ITEM 616.28, "CAST-IN-PLACE CONCRETE CURB. TYPE B. "

ALL DETAIL	S NOT TO SCALE
Τ:	PROJECT NO.:
DCKBRIDGE	BRF 022-1(20)
FILE NAME: 85e039\Structures\d FILE NAME: de039raillm.i PL	
ED BY: H. I. SALLS DR	AWN BY: H. I. SALLS
LEADER: C. P. WILLIAMS CH	ECKED BY: R. S. YOUNG
NG DETAIL 2 SH	EET: 79 OF 139

C-17

THRIE-BEAM TO HDSB TRANSITION SECTION (HM-TF-I3/RE-69)

ALL DETAIL	_S NOT TO SCALE
T:	PROJECT NO.:
DCKBRIDGE	BRF 022-1(20)
FILE NAME: 85e039\Structures\d FILE NAME: de039rail3m.i PL	•
	RAWN BY: H. I. SALLS
LEADER: C. P. WILLIAMS CH	IECKED BY: R. S. YOUNG
NG DETAIL 3 SH	IEET: 80 OF 139

APPENDIX D: RHODE ISLAND DOT STANDARD BRIDGE RAIL DRAWINGS

RAIL NOTES:

- 1. FOUR BAR (CRASH-TESTED) STEEL BRIDGE RAIL SHALL INCLUDE POSTS, BASE PLATES, ANCHOR RODS, PREFORMED PADS, RAIL ASSEMBLY BOLTS, NUTS, WASHERS, STUDS, STRUCTURAL TUBING, SPLICE BARS, PIPE SPACERS, RETRO REFLECTIVE DELINEATORS, ALL APPURTENANCES, METALIZING, AND PAINTING (IF SPECIFIED).
- 2. BRIDGE RAIL POSTS SHALL BE SET NORMAL (90 DEGREES) TO THE PROFILE GRADE, EXCEPT ON GRADES OVER 1.5% WHERE POSTS SHALL BE SET VERTICAL.
- 3. ENDS OF RAIL TUBE SECTIONS SHALL BE SAWED OR MILLED AND SHALL BE TRUE AND SMOOTH. ALL CUT EDGES OF ALL MATERIAL SHALL BE GROUND SMOOTH.
- 4. EACH PIECE OF RAIL TUBING SHALL BE ATTACHED TO A MINIMUM OF THREE (3) POSTS.
- 5. BOLT HOLES SHALL BE DRILLED OR PUNCHED. FLAME CUTTING MAY BE USED TO FINISH SLOTTED HOLES IF MECHANICALLY GUIDED.
- AT INTERIOR SPLICES, PIPE SPACERS SHALL BE USED ON ONLY ONE SIDE OF THE SPLICE 6. TO ALLOW MOVEMENT ON THAT SIDE. ALL 4 RAILS AT A SPLICE SHALL RECEIVE THE SAME TREATMENT. AT END SPLICES AND AT INTERIOR EXPANSION SPLICES PIPE SPACERS SHALL BE USED ON BOTH SIDES OF THE SPLICE TO ALLOW MOVEMENT ON BOTH SIDES.
- 7. MILL OR SHOP TRANSVERSE WELDS SHALL NOT BE PERMITTED ON ANY RAIL ELEMENT. RAIL ELEMENTS USED ON CURVES SHALL USE 3/8" WALL TUBES AND SHALL BE SHOP FORMED TO THE REQUIRED CURVATURE.
- 8. NO PUNCHING, DRILLING, CUTTING OR WELDING SHALL BE PERMITTED AFTER METALIZING, (EXCEPT FOR DETAIL "A"). DAMAGED AREAS OF METALIZING SHALL BE REPAIRED IN STRICT CONFORMANCE WITH THE MATERIAL SUPPLIER'S RECOMMENDATIONS AND SHALL BE APPROVED BY THE ENGINEER.
- 9. NUTS FOR 1"Ø THREADED ANCHOR RODS CONNECTING THE BASE PLATE TO THE CONCRETE SHALL BE TIGHTENED TO A SNUG FIT AND GIVEN AN ADDITIONAL 1/8 TURN.
- 10 THREADS FOR ANCHOR RODS MAY BE ROLLED OR CUT. IF CUT THREADS ARE USED BOLT DIAMETER SHALL NOT BE LESS THAN NOMINAL DIAMETER. IF ROLLED THREADS ARE USED, ROD DIAMETER SHALL NOT BE LESS THAN ROOT DIAMETER OF THREADS.

MATERIAL NOTES:

- 11. STRUCTURAL TUBING SHALL CONFORM TO THE REQUIREMENTS OF ASTM A500, GRADE B, STRUCTURAL STEEL TUBING. RAIL TUBING SHALL MEET THE LONGITUDINAL CHARPY V-NOTCH REQUIREMENTS OF 15 LBS. AT O'F FOR ASTM A500, GRADE B. THE TEST SAMPLES SHALL BE TAKEN AFTER FORMING THE TUBES. CHARPY V-NOTCH IS NOT REQUIRED FOR SPLICE TUBES.
- 12. RAIL POSTS AND BASE PLATES SHALL CONFORM TO THE REQUIREMENTS OF ASTM A572 GR. 50, EXCEPT ANCHOR PLATES MAY BE ASTM A36.
- 13. THREADED STUDS AND MATCHING NUTS FOR RAIL-TO-POST ATTACHMENT (DETAIL A) SHALL CONFORM TO ASTM A276 TYPE 304, STAINLESS STEEL, AND SHALL BE TORQUE TESTED PER AWS D1.5, 7.7.1. DETAIL B BOLTS SHALL BE ASTM A325 OR A449. ALL OTHER BOLTS AND NUTS SHALL CONFORM TO ASTM A307 AND ASTM 563 GRADE A RESPECTIVELY OR BETTER. ANCHOR RODS SHALL CONFORM TO ASTM A449 EXCEPT THAT ASTM A307 NUTS MAY BE USED ON THE BOTTOM OF ANCHOR ASSEMBLY. WASHERS SHALL BE HARDENED STEEL COMMERCIAL TYPE A PLAIN WIDE WASHERS AND SHALL MEET THE DIMENSIONAL REQUIREMENTS OF A.N.S.I. B18.22.
- 14. ALL STEEL COMPONENTS (EXCEPT STAINLESS) SHALL BE METALIZED AFTER FABRICATION IN CONFORMANCE WITH SECTION 827 "THERMAL SPRAYED ZINC COATING FOR NEW STRUCTURAL STEEL" OF THE RHODE ISLAND STANDARD SPECIFICATIONS FOR ROAD AND BRIDGE CONSTRUCTION. THE METALIZING SHALL HAVE A UNIFORM APPEARANCE, AND METALIZED MATERIAL SHALL BE PROPERLY STORED.
- 15. DETAIL "A" STUDS SHALL BE WELDED BEFORE TUBES ARE METALIZED.
- 16. PREFORMED BEARING PADS (1/8" THICK) SHALL CONFORM TO AASHTO M251.

DESIGNER NOTE: PROVIDE PAINT COLOR FOR RAILING SYSTEM.

THIS BRIDGE RAIL SYSTEM WAS SUCCESSFULLY CRASH TESTED FOR AASHTO TL4 IN 1997 BY THE NEW ENGLAND TRANSPORTATION CONSORTIUM.

RE\ No.	VISIONS DATE	RHODE ISLAND DEPARTMENT OF TRANSPORTATION
		BRIDGE STANDARDS
		FOUR BAR STEEL BRIDGE RAIL (CRASH—TESTED TL—4) SHEET 1
		DRAWING NUMBER: 10.22

DIMENSION TABLE						
	С	D	Х	L		
	4"	2"	3/4"	1'-8"		
	4"	2"	2"	1'-8"		
	5"	2 1/2"	3"	2'-1"		

RAIL NOTES:

1. TWO BAR (CRASH-TESTED) STEEL BRIDGE RAIL, SHALL INCLUDE POSTS, BASE PLATES, ANCHOR RODS, PREFORMED PADS, RAIL ASSEMBLY BOLTS, NUTS, WASHERS, STUDS, STRUCTURAL TUBING, SPLICE BARS, PIPE SPACERS, RETRO REFLECTIVE DELINEATORS, ALL APPURTENANCES, METALIZING, AND PAINTING (IF SPECIFIED).

2. BRIDGE RAIL POSTS SHALL BE SET NORMAL (90 DEGREES) TO THE PROFILE GRADE, EXCEPT ON GRADES OVER 1.5% WHERE POSTS SHALL BE SET VERTICAL.

3. ENDS OF RAIL TUBE SECTIONS SHALL BE SAWED OR MILLED AND SHALL BE TRUE AND SMOOTH. ALL CUT EDGES OF ALL MATERIAL SHALL BE GROUND SMOOTH.

4. EACH PIECE OF RAIL TUBING SHALL BE ATTACHED TO A MINIMUM OF THREE (3) POSTS.

5. BOLT HOLES SHALL BE DRILLED OR PUNCHED. FLAME CUTTING MAY BE USED TO FINISH SLOTTED HOLES IF MECHANICALLY GUIDED.

6. AT INTERIOR SPLICES, PIPE SPACERS SHALL BE USED ON ONLY ONE SIDE OF THE SPLICE TO ALLOW MOVEMENT ON THAT SIDE. BOTH RAILS AT A SPLICE SHALL RECEIVE THE SAME TREATMENT. AT INTERIOR EXPANSION JOINTS AND AT ALL END SPLICES, THE SLOTTED HOLES AND PIPE SPACERS SHALL BE USED ON BOTH SIDES OF THE SPLICE TO ALLOW MOVEMENT ON EACH SIDE.

7. MILL OR SHOP TRANSVERSE WELDS SHALL NOT BE PERMITTED ON ANY RAIL ELEMENT. RAIL ELEMENTS USED ON CURVES SHALL USE 3/8" WALL TUBES AND SHALL BE SHOP FORMED TO THE REQUIRED CURVATURE.

8. NO PUNCHING, DRILLING, CUTTING OR WELDING SHALL BE PERMITTED AFTER METALIZING, (EXCEPT FOR DETAIL "A"). DAMAGED AREAS OF METALIZING SHALL BE REPAIRED IN STRICT CONFORMANCE WITH THE MATERIAL SUPPLIER'S RECOMMENDATIONS AND SHALL BE APPROVED BY THE ENGINEER.

9. NUTS FOR 1"Ø THREADED ANCHOR RODS CONNECTING THE BASE PLATE TO THE CONCRETE SHALL BE TIGHTENED TO A SNUG FIT AND GIVEN AN ADDITIONAL 1/8 TURN.

10. THREADS FOR ANCHOR RODS MAY BE ROLLED OR CUT. IF CUT THREADS ARE USED, BOLT DIAMETER SHALL NOT BE LESS THAN NOMINAL DIAMETER. IF ROLLED THREADS ARE USED, ROD DIAMETER SHALL NOT BE LESS THAN ROOT DIAMETER OF THREADS.

11. THE RAIL POST, BASE PLATE AND ANCHOR CAGE MUST BE INSTALLED PRECISELY TO THE LOCATION DIMENSIONED ON THESE PLANS. THE POSITION OF THE (3)-#5 LONGITUDINAL REBARS MAY BE ADJUSTED TO ACCOMMODATE THE ANCHOR CAGE, BUT MUST NOT BE CUT.

MATERIAL NOTES:

12. STRUCTURAL TUBING SHALL CONFORM TO THE REQUIREMENTS OF ASTM A500, GRADE B, STRUCTURAL STEEL TUBING. RAIL TUBING SHALL MEET THE LONGITUDINAL CHARPY V-NOTCH REQUIREMENTS OF 15 LBS. AT 0°F FOR ASTM A500, GRADE B. THE TEST SAMPLES SHALL BE TAKEN AFTER FORMING THE TUBES. CHARPY V-NOTCH IS NOT REQUIRED FOR SPLICE TUBES.

13. RAIL POSTS AND BASE PLATES SHALL CONFORM TO THE REQUIREMENTS OF ASTM A572 GR. 50, EXCEPT ANCHOR PLATES MAY BE ASTM A36.

14. THREADED STUDS AND MATCHING NUTS FOR RAIL-TO-POST ATTACHMENT (DETAIL A) SHALL CONFORM TO ASTM A276 TYPE 304, STAINLESS STEEL, AND SHALL BE TORQUE TESTED PER AWS D1.5, 7.7.1. DETAIL B BOLTS SHALL BE ASTM A325 OR A449. ALL OTHER BOLTS AND NUTS SHALL CONFORM TO ASTM A307 AND ASTM 563 GRADE A RESPECTIVELY OR BETTER. ANCHOR RODS SHALL CONFORM TO ASTM A449 EXCEPT THAT ASTM A307 NUTS MAY BE USED ON THE BOTTOM OF ANCHOR ASSEMBLY. WASHERS SHALL BE HARDENED STEEL COMMERCIAL TYPE A PLAIN WIDE WASHERS AND SHALL MEET THE DIMENSIONAL REQUIREMENTS OF A.N.S.I. B18.22.

15. ALL STEEL COMPONENTS (EXCEPT STAINLESS) SHALL BE METALIZED AFTER FABRICATION IN CONFORMANCE WITH SECTION 827 "THERMAL SPRAYED ZINC COATING FOR NEW STRUCTURAL STEEL" OF THE RHODE ISLAND STANDARD SPECIFICATIONS FOR ROAD AND BRIDGE CONSTRUCTION. THE METALIZING SHALL HAVE A UNIFORM APPEARANCE, AND METALIZED MATERIAL SHALL BE PROPERLY STORED.

16. DETAIL "A" STUDS SHALL BE WELDED BEFORE TUBES ARE METALIZED.

17. PREFORMED BEARING PADS (1/8" THICK) SHALL CONFORM TO AASHTO M251.

DESIGNER NOTE: PROVIDE PAINT COLOR FOR RAILING SYSTEM. THIS BRIDGE RAIL SYSTEM WAS SUCCESSFULLY CRASH TESTED FOR AASHTO TL4 IN 1994 BY THE NEW ENGLAND TRANSPORTATION CONSORTIUM.

REVISIONS				
No.	DATE	RHODE ISLAND DEPARTMENT OF TRANSPORTATION		
		BRIDGE STANDARDS		
		TWO BAR STEEL BRIDGE		
		RAIL (CRASH-TESTED $TL-4$)		
		SHEET 1		
		DRAWING NUMBER: 10.30		
-		DRAWING NUMBER, 10.30		

L
1'-8"
1'-8"
2'-1"

/

Validation Forms for Yaris (1100C) Vehicle Model

Model Information

Number of parts	919
Number of nodes	393165
Number of solid elements	15234
Number of shell elements	358457
Number of beam elements	4685
Number of constrained joints	19

Connections

BEAM CONNECTIONS 4685
NODAL_RIGID_BODY 759
EXTRA_NODES_SET 20
JOINTS 44
RIGID_BODIES 2
SPOTWELD 2828

Material Testing

- Specimens were cut from actual components
- 160 tensile tests
- Data converted
- 12 different materials generated based on test data
- Parts grouped into

Strain (mm/mm)

Accelerometers

Left Rear Seat (Node 4000390)
Right Rear Seat (Node 4000398)
Engine Top (Node 4000414)
Engine Bottom (Node 4000422)
Vehicle C.G. (Node 4000406)

Simulation Benchmark

LS-DYNA		
Platform	Linux RHEL 5.4	
Version	mpp s R6.1.2	
Revision	85139	
Precision	Single precision (I4R4)	
Time to simulate 200 ms	1 hour 32 min.	
Number of processors	16	

Inertia Comparisons

	Actual Vehicle	FE Model
Weight, kg	1078	1101
Pitch inertia, kg-m^2	1498	1545
Yaw inertia, kg-m^2	1647	1718
Roll inertia, kg-m^2	388	396
Vehicle CG X, mm	1022	1025
Vehicle CG Y, mm	-8.3	-3.0
Vehicle CG Z, mm	558	557

Full-Scale Crash Tests

Toyota Yaris (2006-2010)

Test Type	Test Number	
Frontal Full Wall	NHTSA 5677 (56.3 km/hr), 6221 (56.2 km/hr), 6059 (39.8 km/hr), 6060 (39.8 km/hr), 6069 (39.8 km/hr)	
Frontal Offset	IIHS CEF0610 (64.7 km/hr)	
Side Impact NHTSA	NHTSA 5679 (62.1 km/hr), 6220 (62.3 km/hr), 6558 (61.9 km/h), 6585 (61.8 km/hr)	
Side Impact IIHS	IIHS CES50638 (50.2 km/hr), CES0639 (50.0 km/hr)	
Rigid Pole Test	NHTSA 7145 (7 deg, 56 km/hr)	
Vehicle to Vehicle	NHTSA 7371 (15 deg, 112.7 km/hr, 50 % overlap), 7293 (7 deg, 112.7 km/hr, No frame overlap),	
Roof Strength	IIHS SWR0920	
Speed Bump	FOIL10002 (8 tests: varied speed bump configurations)	
Sloped Terrain	FOIL 10003 (6 tests: 6H:1V slopes, 25 deg - 8, 16, and 24 km/hr)	

Yaris – Frontal Full Wall – 56 km/hr

Two Full-scale Crash Tests @ 56 km/hr:
 NHTSA 5677 (56.3 km/hr) – 2007 Sedan
 NHTSA 6221 (56.2 km/hr) – 2008 Hatch Back

Yaris – Frontal Full Wall – 56 km/hr

	FE Model	Test 5677	Test 6221
Weight (kg)	1263	1271	1245
Engine Type	1.5L V4	1.5L V4	1.5L V4
Tire size	P185/60R15	P185/60R15	P185/60R15
Attitude (mm)	F - 668	F – 673	F – 675
(As delivered)	R - 673	R – 680	R – 673
Wheelbase (mm)	2538	2551	2463
CG (mm) Rear of front wheel C/L	1035	999	976
Body Style	4 Door Sedan	4 Door Sedan	3 Door Liftback

Yaris – Frontal Full Wall – 56 km/h - Video

YARIS COARSE MESH MODEL (CCSA 01) Loadcase 1 : Time = 0.000000 Frame 1

📂 X

Yaris – Frontal Full Wall – 56 km/h - Video

YARIS COARSE MESH MODEL (CCSA 01) Loadcase 1 : Time = 0.000000 Frame 1

👝 X

Yaris – Frontal Full Wall – 56 km/hr - Energy Summary

Yaris – Frontal Full Wall – 56 km/hr - Acceleration

Yaris – Frontal Full Wall – 56 km/hr - Acceleration

Yaris – Frontal Full Wall – 56 km/hr - Velocity

Yaris – Frontal Full Wall – 56 km/hr - Velocity

Yaris – Frontal Full Wall – 56 km/hr – Wall Force

Yaris – Frontal Full Wall – 56 km/hr – Wall Force

Yaris / NJ CMB

- MwRSF Test 2214NJ-1
- Impact Condition
 - ♣ 62.6 mi/hr
 - ♣ 26.1 deg
- Vehicle2002 Kia Rio

Yaris / NJ CMB - Video

Model info: YARIS COARSE MESH MODEL (CCSA V01) Time = 0.000000 Frame 1

Yaris / NJ CMB - Video

Model info: YARIS COARSE MESH MODEL (CCSA V01) Time = 0.000000 Frame 1

Yaris / NJ CMB - Video

Model info: YARIS COARSE MESH MODEL (CCSA V01) Time = 0.000000 Frame 1

Yaris / NJ CMB - Energy Summary

Yaris / NJ CMB - Roll, Pitch, and Yaw

Yaris / NJ CMB – X - Acceleration

Yaris / NJ CMB – Y - Acceleration

Yaris / NJ CMB – Z - Acceleration

Yaris / NJ CMB – RSVVP Comparison Metrics

Proceed to evalute metrics

Yaris / NJ CMB – RSVVP Evaluation – X - Acceleration

Yaris / NJ CMB – RSVVP Evaluation – Y - Acceleration

Proceed to evalute metrics

Yaris / NJ CMB – RSVVP Evaluation – Z - Acceleration

Proceed to evalute metrics

Yaris / NJ CMB – RSVVP Evaluation – Yaw Rate

Yaris / NJ CMB – RSVVP Evaluation – Roll Rate

Proceed to evalute metrics

Yaris / NJ CMB – RSVVP Evaluation – Pitch Rate

Proceed to evalute metrics

Summary

- Model verified in 56 km/hr and 40 km/hr full frontal impacts (NHTSA tests 5677, 6221, and 6069)
- > Model verified in 64 km/hr frontal offset impact (IIHS test CEF0610)
- Model verified in NHTSA and IIHS side impacts (NHTSA tests 5679, 6220, 6558, 6585 and IIHS tests CES50638 CES0639)
- Model Validated in NJ shape concrete barrier impact (MwRSF Test 2214NJ-1, Kia Rio vehicle)

Appendix F

Validation Forms for Silverado (2270P) Vehicle Model

Validation Reports

- Appendix F-1: NJ Concrete Barrier Impact with 2270P Vehicle
- Appendix F-2: G4(1S) Barrier Impact with 2270P Vehicle
- Appendix F-3: MGS Barrier Impact with 2270P Vehicle

Each of the Reports Includes:

- Table 1A V&V Summary Table
- Table 1B V&V Analysis Solution Verification Summary Table & RSVVP Results
- Figure 1 Energy Balance Diagram
- Figure 2A RSVVP Multi-Channel Comparison
- Figure 2B RSVVP Longitudinal Acceleration Comparison
- Figure 2C RSVVP Lateral Acceleration Comparison
- Figure 2D RSVVP Vertical Acceleration Comparison
- Figure 2E RSVVP Roll Angle Comparison
- Figure 2F RSVVP Pitch Angle Comparison
- Figure 2G- RSVVP Yaw Angle Comparison
- Figure 3 Comparison of Changes in Vehicle Velocities
- Figure 4 Comparison of Changes in Vehicle Angles
- Table 1C V&V PIRTs Summary Table
- Figure 5 Full-Scale Test Summary
- Figure 6 Sequential Comparisons (Front, rear, and top views)
- Table 1D V&V Overall Summary Table

Appendix F-1: New Jersey Concrete Barrier Impact with 2270P Vehicle

CCSA VALIDATION/VERIFICATION REPORT

Page 1 of 4

Project:	CCSA Longitudinal Barriers on Curved, Superelevated Roadway Sections
Comparison Case:	2270P Vehicle with New Jersey Safety Shape Barrier
Impact Description:	25 degree impact into barrier at 100 km/h (62 mph)
Governing Criteria:	MASH TL-3
Report Date:	February 2013

Table A – Information Sources:

General Information	Known Solution	Analysis Solution	
Performing Organization	TTI	CCSA-GWU	
Test/Run Number	RF476460-1-4		
Vehicle	2007 Chevrolet Silverado	CCSA - 2007 Silverado Model	
Vehicle Mass (lb/kg)	5049 / 2290	5005 / 2270	
Impact Speed (mph/kph)	62.6 / 100.75	62.6 / 100.75	
Impact Angle (degrees)	25.2	25.2	

Table B - Evaluation Parameters Summary:

Category	Subset	Values
Evaluation Method	MASH (V1, 2009)	
Hardware Type	Longitudinal	
Test Number	3-11	
Test Vehicle Required	2270P	
Criterion to be Applied	Structural Adequacy	A - Test article should contain and redirect the vehicle; the vehicle should not penetrate, under-ride, or override the installation although controlled lateral deflection of the test article is acceptable.
	Occupant Risk	\mathbf{D} - Detached elements, fragments or other debris from the test article should not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians or personnel in a work zone.
		${f F}$ - The vehicle should remain upright during and after the collision although moderate roll, pitching and yawing are
		\mathbf{H} - The occupant impact velocity in the longitudinal direction should not exceed 40 ft/sec and the occupant ride-down acceleration in the longitudinal direction should not exceed 20 G ^{ee} s.
		I - Longitudinal & lateral occupant ridedown accelerations (ORA) should fall below the preferred value of 15.0 g, or at least below the maximum allowed value of 20.49 g.
	Vehicle Trajectory	For redirective devices the vehicle shall exit within the prescribed box.

CCSA VALIDATION/VERIFICATION REPORT

Page 2 of 4

Project: CCSA Longitudinal Barriers on Curved, Superelevated Roadway Sections Comparison Case: 2270P Vehicle with New Jersey Safety Shape Barrier Table C – Analysis Solution Verification Summary

Verification Evaluation Criteria	Change (%)	Pass?
Total energy of the analysis solution (i.e., kinetic, potential, contact, etc.) must not vary more than 10 percent from the beginning of the run to the end of the run.	<1%	YES
Hourglass Energy of the analysis solution at the end of the run is less than 5 % of the total initial energy at the beginning of the run	<1%	YES
The part/material with the highest amount of hourglass energy at any time during the run is less than 5 % of the total initial energy at the beginning of the run.	<1%	YES
Mass added to the total model is less than 5 % the total model mass at the start of the run.	<1%	YES
The part/material with the most mass added had less than 10 % of its initial mass added.	<1%	YES
The moving parts/materials in the model have less than 5 % of mass added to the initial moving mass of the model.	<1%	YES
There are no shooting nodes in the solution?	NA	YES
There are no solid elements with negative volumes?	NA	YES

Table D - RSVVP Results

Sin	gle Channel Time History Comparison	Results	Time inter	val [0 sec	- 0.5 sec]
0	Sprauge-Geer Metrics		M	Р	Pass?
	X acceleration		52.9	35.6	NO
	Y acceleration		3.2	16.2	YES
	Z acceleration			45.3	NO
	Yaw rate		13.4	9.5	YES
	Roll rate		16.8	24.4	YES
	Pitch rate		35.4	39.9	YES
Ρ	ANOVA Metrics		Mean	SD	Pass?
	X acceleration/Peak		1.32	29.37	YES
	Y acceleration/Peak		0.84	12.15	YES
	Z acceleration/Peak		0.66	44.94	NO
	Yaw rate		0.2	14.87	YES
	Roll rate		0.21	17.28	YES
	Pitch rate		10.86	53.95	NO
Μι	Iti-Channel Weighting Factors		Time inter	val [0 sec;	0.5 sec]
Μι	ulti-Channel Weighting Method	X Channel	0.142263141		
	Peaks Area I	Y Channel	0.	31249614	7
	Area II Inertial	Z Channel	0.045240712		2
		Yaw Channel			5
	Roll Channel		0.200826808		
Pitch Channel			0.104409933		
Sp	rauge-Geer Metrics		Μ	Ρ	Pass?
	All Channels (weighted)		21.4	23.1	YES
A٨	IOVA Metrics		Mean	SD	Pass?
	All Channels (weighted)		1.5	22	YES

Figure 2a: RSVVP Results – All Channels

Figure 2c: RSVVP Results – Lateral Acceleration

Figure 2e: RSVVP Results – Roll Angle

Figure 2g: RSVVP Results – Yaw Angle

Figure 4: Change in Vehicle Angles

Page 3 of 4

Project: CCSA Longitudinal Barriers on Curved, Superelevated Roadway Sections Comparison Case: 2270P Vehicle with New Jersey Safety Shape Barrier

Evaluation Criteria				Known Result	Analysis Result	Relative Diff. (%)	Agree?
		A1	Test article should contain and redirect the vehicle; the vehicle should not penetrate, under-ride, or override the installation although controlled lateral deflection of the test article is acceptable.		Yes	, , , , , , , , , , , , , , , , , , ,	YES
acy		A2	The relative difference in the maximum dynamic deflection is less than 20 percent.	0.0 m	0.0 m	0%	YES
dequ		A3	The relative difference in the time of vehicle-barrier contact is less than 20 percent.	0.238 s	0.214 s	10%	YES
Structural Adequacy	A	A4	The relative difference in the number of broken or significantly bent posts is less than 20 percent.	Yes	Yes		YES
ctu		A5	Barrier did not fail (Answer Yes or No).	Yes	Yes		YES
tru		A6	There were no failures of connector elements (Answer Yes or No).	Yes	Yes		YES
S		A7	There was no significant snagging between the vehicle wheels and barrier elements (Answer Yes or No).	Yes	Yes		YES
		A8	There was no significant snagging between vehicle body components and barrier elements (Answer Yes or No).	Yes	Yes		YES
		D	Detached elements, fragments or other debris from the test article should not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians or personnel in a work zone (Answer Yes or No).	Yes	Yes		YES
	- F -	F1	The vehicle should remain upright during and after the collision. The maximum pitch & roll angles are not to exceed 75 degrees.	Yes	Yes		YES
		F2	Maximum vehicle roll – relative difference is less than 20% or absolute difference is less than 5 degrees.	25 (.5s)	24 (.5s)	4% 1 deg	YES
		F3	Maximum vehicle pitch – relative difference is less than 20% or absolute difference is less than 5 deg.	12 (.5s)	7 (.5s)	41% 5 deg	YES
Risk		F4	Maximum vehicle yaw – relative difference is less than 20% or absolute difference is less than 5 deg.	30 (.5s)	26 (.5s)	13% 4 deg	YES
Occupant Risk		H1	Longitudinal & lateral occupant impact velocities (OIV) should fall below the preferred value of 30 ft/s (9.1 m/s), or at least below the maximum allowed value of 40 ft/s (12.2 m/s)	Yes	Yes		YES
Oce	Η	H2	Longitudinal OIV (m/s) - Relative difference is less than 20%t or absolute difference is less than 2 m/s	4.3	4.7	9% 0.4 m/s	YES
		H3	Lateral OIV (m/s - Relative difference is less than 20% or absolute difference is less than 2 m/s	9.2	7.9	14% 1.3 m/s	YES
-	1	I1	Longitudinal & lateral occupant ridedown accelerations (ORA) should fall below the preferred value of 15.0 g, or at least below the maximum allowed value of 20.49 g.	Yes	Yes		YES
		I2	Longitudinal ORA (g) - Relative difference is less than 20% or absolute difference is less than 4 g's	5.6	7.6	35% 2 g	YES
		I3	Lateral ORA (g) - Relative difference is less than 20% or absolute difference is less than 4 g's	9.6	12.9	34% 3 g	YES
Vehicle Trajectory			The vehicle rebounded within the exit box. (Answer Yes or No)	Yes	Yes		YES

Table E - Roadside Safety Phenomena Importance Ranking Table (MASH Evaluation)

Figure 5: Full-Scale Test Summary

Figure 6a: Sequential Comparisons – Front View

Figure 6b: Sequential Comparisons – Rear View

Figure 6c: Sequential Comparisons – Top View

Project: CCSA Longitudinal Barriers on Curved, Superelevated Roadway Sections Comparison Case: 2270P Vehicle with New Jersey Safety Shape Barrier

Table F - Composite Verification and Validation Summary:

-	List the Report MASH08 Test Number				
Table C – Analysis	Did all solution verification criteria in table pass?				
Solution		YES			
Verification					
Table D - RSVVP	Do all the time history evaluation scores from the single				
Results	channel factors result in a satisfactory comparison (i.e.,	NO			
	the comparison passes the criterion)?				
	If all the values for Single Channel comparison did not	VEC			
	pass, did the weighted procedure result in an acceptable	YES			
Table E - Roadside	Did all the critical criteria in the PIRT Table pass?				
Safety Phenomena	Note: Tire deflation was observed in the test but not in				
Importance	the simulation. This due to the fact that tire deflation in	YES			
Ranking Table	not incorporated in the model. This is considered not to				
_	have a critical effect on the outcome of the test				
Overall	Are the results of Steps I through III all affirmative (i.e.,				
	YES)? If all three steps result in a "YES" answer, the				
	comparison can be considered validated or verified. If one	YES			
	of the steps results in a negative response, the result cannot				
	be considered validated or verified.				

NOTES:

(none)

Appendix F-2: G4(1S) Barrier Impact with 2270P Vehicle

CCSA VALIDATION/VERIFICATION REPORT

Page 1 of 4

Project:	CCSA Longitudinal Barriers on Curved, Superelevated Roadway Sections
Comparison Case:	2270P (Pickup Truck) with G41S Barrier
Impact Description:	25.8 degree impact into barrier at 100.4 km/h (62.4 mph)
Governing Criteria:	MASH TL-3
Report Date:	March 2013

Table A – Information Sources:

General Information	Known Solution	Analysis Solution	
Performing Organization	MwRSF	CCSA-GWU	
Test/Run Number	2214WB-2	RR130422b	
Vehicle	Dodge Ram 1500 Quad Cab	Silverado C	
Vehicle Mass (lb/kg)	5000 / 2268	4918 / 2231	
Impact Speed (mph/kph)	62.4 / 100.4	62.4 / 100.4	
Impact Angle (degrees)	25.8	25.8	

Table B - Evaluation Parameters Summary:

Category	Subset	Values
Evaluation Method	MASH (V1, 2009)	
Hardware Type	Longitudinal	
Test Number	3-11	
Test Vehicle	2270C	
Criterion to be Applied	Structural Adequacy	A - Test article should contain and redirect the vehicle; the vehicle should not penetrate, under-ride, or override the installation although controlled lateral deflection of the test article is acceptable.
	Occupant Risk	${f D}$ - Detached elements, fragments or other debris from the test article should not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians or personnel in a work zone.
		${f F}$ - The vehicle should remain upright during and after the collision although moderate roll, pitching and yawing are
		\mathbf{H} - The occupant impact velocity in the longitudinal direction should not exceed 40 ft/sec and the occupant ride-down acceleration in the longitudinal direction should not exceed 20 G ^{rrs} .
		I - Longitudinal & lateral occupant ridedown accelerations (ORA) should fall below the preferred value of 15.0 g, or at least below the maximum allowed value of 20.49 g.
	Vehicle Trajectory	For redirective devices the vehicle shall exit within the prescribed box.

Page 2 of 4

Project: CCSA Longitudinal Barriers on Curved, Superelevated Roadway Sections Comparison Case: 2270P (Pickup Truck) with G41S Barrier

Table C – Analysis Solution Verification Summary

Verification Evaluation Criteria	Change (%)	Pass?
Total energy of the analysis solution (i.e., kinetic, potential, contact, etc.) must not vary more than 10 percent from the beginning of the run to the end of the run.	< 1%	YES
Hourglass Energy of the analysis solution at the end of the run is less than 5 % of the total initial energy at the beginning of the run	< 1%	YES
The part/material with the highest amount of hourglass energy at any time during the run is less than 5 % of the total initial energy at the beginning of the run.	< 1%	YES
Mass added to the total model is less than 5 % the total model mass at the start of the run.	< 1%	YES
The part/material with the most mass added had less than 10 % of its initial mass added.	< 1%	YES
The moving parts/materials in the model have less than 5 % of mass added to the initial moving mass of the model.	< 1%	YES
There are no shooting nodes in the solution?	NA	YES
There are no solid elements with negative volumes?	NA	YES

Table D - RSVVP Results

Single Channel Time History Comparis	Time interval [0 sec - 0.89			
O Sprauge-Geer Metrics		М	P	Pass?
X acceleration		75	38.3	NO
Y acceleration		29.9	32.6	YES
Z acceleration		168.7	45.3	NO
Yaw rate		14.1	12.7	YES
Roll rate (test data not available)				
Pitch rate (test data not available)				
P ANOVA Metrics		Mean	SD	Pass?
X acceleration/Peak		-1.79	41.87	NO
Y acceleration/Peak		1.54	31.86	YES
Z acceleration/Peak		0.16	73.73	NO
Yaw rate		32	18.97	YES
Roll rate (test data not available)				
Pitch rate (test data not available)				
Multi-Channel Weighting Factors		Time inte	erval [0	sec; 0.89
Multi-Channel Weighting Method	X Channel	0.22878683		
Peaks Area I	Y Channel	0.225135792		
Area II Inertial	Z Channel	0.046077378		
	Yaw Channel	0.5		
	Roll Channel	(test data not available)		
	(test data not available)			
Sprauge-Geer Metrics	Μ	Р	Pass?	
All Channels (weighted)	36.7	24.6	YES	
ANOVA Metrics	Mean	SD	Pass?	
All Channels (weighted)		02	29.6	YES

Figure 2a: RSVVP Results – All Channels

Figure 2c: RSVVP Results – Lateral Acceleration

Figure 2e: RSVVP Results – Yaw Angle

Figure 3: Change in Vehicle Velocities

Figure 4: Change in Vehicle Angle

Page 3 of 4

Project: CCSA Longitudinal Barriers on Curved, Superelevated Roadway Sections Comparison Case: 2270P (Pickup Truck) with G41S Barrier

Table E - Roadside Safety Phenomena Importance Ranking Table (MASH Evaluation)

			Evaluation Criteria	Known Result	Analysis Result	Relative Diff. (%)	Agree?	
		A1	Test article should contain and redirect the vehicle; the vehicle should not penetrate, under-ride, or override the installation although controlled lateral deflection of the test article is acceptable.	Yes	Yes		YES	
acy		A2	The relative difference in the maximum dynamic deflection is less than 20 percent.	1.196 m	0.980 m	18.0 %	YES	
Structural Adequacy		A3	A3	The relative difference in the time of vehicle-barrier contact is less than 20 percent.	0.84 s	0.72 s	7.1 %	YES
ıral A	A	A4	The relative difference in the number of broken or significantly bent posts is less than 20 percent.	3	3		YES	
ctu		A5	Barrier did not fail (Answer Yes or No).	Yes	Yes		YES	
tru		A6	There were no failures of connector elements (Answer Yes or No).	Yes	Yes		YES	
S		A7	There was no significant snagging between the vehicle wheels and barrier elements (Answer Yes or No).		Yes		YES	
		A8	There was no significant snagging between vehicle body components and barrier elements (Answer Yes or No).	Yes	Yes		YES	
	D		Detached elements, fragments or other debris from the test article should not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians or personnel in a work zone (Answer Yes or No).	Yes	Yes		YES	
		F1	The vehicle should remain upright during and after the collision. The maximum pitch & roll angles are not to exceed 75 degrees.	Yes	Yes		YES	
		F2	Maximum vehicle roll – relative difference is less than 20% or absolute difference is less than 5 degrees.	NA	NA	NA		
	F	F3	Maximum vehicle pitch – relative difference is less than 20% or absolute difference is less than 5 deg.	NA	NA	NA		
Risk		F4	Maximum vehicle yaw – relative difference is less than 20% or absolute difference is less than 5 deg.	51 (.62s)	47 (.78s)	7.8% 4 deg	YES	
Occupant Risk		H1	Longitudinal & lateral occupant impact velocities (OIV) should fall below the preferred value of 30 ft/s (9.1 m/s), or at least below the maximum allowed value of 40 ft/s (12.2 m/s)	Yes	Yes		YES	
000	Η	H2	Longitudinal OIV (m/s) - Relative difference is less than 20%t or absolute difference is less than 2 m/s	5.38	6.1	13.4% 0.72 m/s	YES	
		Н3	Lateral OIV (m/s) - Relative difference is less than 20% or absolute difference is less than 2 m/s	3.99	5.0	25.3% 1.01 m/s	YES	
		I1	Longitudinal & lateral occupant ridedown accelerations (ORA) should fall below the preferred value of 15.0 g, or at least below the maximum allowed value of 20.49 g.	Yes	Yes		YES	
	I	I2	Longitudinal ORA (g) - Relative difference is less than 20% or absolute difference is less than 4 g's	6.92	10.72	54.9% 3.8 g	YES	
		13	Lateral ORA (g) - Relative difference is less than 20% or absolute difference is less than 4 g's	6.61	9.86	49.2% 3.25 g	YES	
	Vehicle Trajectory		The vehicle rebounded within the exit box. (Answer Yes or No)	Yes	Yes		YES	

Figure 5: Full-Scale Test Summary

Figure 6a: Sequential Comparisons – Front View

Figure 6b: Sequential Comparisons – Rear View

Figure 6c: Sequential Comparisons – Top View

Page 4 of 4

Project: CCSA Longitudinal Barriers on Curved, Superelevated Roadway Sections Comparison Case: 2270P (Pickup Truck) with G41S Barrier

List the Report MASH08 Test Number			
Table C – Analysis Solution Verification	Did all solution verification criteria in table pass?		
Table D - RSVVPResults	Do all the time history evaluation scores from the single channel factors result in a satisfactory comparison (i.e., the comparison passes the criterion)?	NO	
	If all the values for Single Channel comparison did not pass, did the weighted procedure result in an acceptable	YES	
Table E - Roadside Safety Phenomena Importance Ranking Table	Did all the critical criteria in the PIRT Table pass? Note: Tire deflation was observed in the test but not in the simulation. This due to the fact that tire deflation in not incorporated in the model. This is considered not to have a critical effect on the outcome of the test	YES	
Overall	Are the results of Steps I through III all affirmative (i.e., YES)? If all three steps result in a "YES" answer, the comparison can be considered validated or verified. If one of the steps results in a negative response, the result cannot be considered	YES	

Table F - Composite Verification and Validation Summary:

NOTES:

(none)

Appendix F-3: MGS Barrier Impact with 2270P Vehicle

CCSA VALIDATION/VERIFICATION REPORT

Page 1 of 4

Project:	CCSA Longitudinal Barriers on Curved, Superelevated Roadway Sections
Comparison Case:	2270P (Pickup Truck) with MGS Barrier
Impact Description:	25.5 degree impact into barrier at 101.1 km/h (62.82 mph)
Governing Criteria:	MASH TL-3
Report Date:	March 2013

Table A – Information Sources:

General Information	Known Solution	Analysis Solution	
Performing Organization	MwRSF	CCSA-GWU	
Test/Run Number	TRP-03-171-06	s130411a	
Vehicle	Dodge Ram 1500 Quad Cab	Silverado C	
Vehicle Mass (lb/kg)	5000 / 2268	4918 / 2231	
Impact Speed (mph/kph)	62.82 / 101.1	62.82 / 101.1	
Impact Angle (degrees)	25.5	25.5	

Table B - Evaluation Parameters Summary:

Je D - Evaluation I al a	v	
Category	Subset	Values
Evaluation Method	MASH (V1, 2009)	
Hardware Type	Longitudinal	
Test Number	3-11	
Test Vehicle	2270C	
Criterion to be Applied	Structural Adequacy	A - Test article should contain and redirect the vehicle; the vehicle should not penetrate, under-ride, or override the installation although controlled lateral deflection of the test article is acceptable.
	Occupant Risk	${f D}$ - Detached elements, fragments or other debris from the test article should not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians or personnel in a work zone.
		${f F}$ - The vehicle should remain upright during and after the collision although moderate roll, pitching and yawing are
		\mathbf{H} - The occupant impact velocity in the longitudinal direction should not exceed 40 ft/sec and the occupant ride-down acceleration in the longitudinal direction should not exceed 20 G ^{ee} s.
		I - Longitudinal & lateral occupant ridedown accelerations (ORA) should fall below the preferred value of 15.0 g, or at least below the maximum allowed value of 20.49 g.
	Vehicle Trajectory	For redirective devices the vehicle shall exit within the prescribed box.

Page 2 of 4

Project: CCSA Longitudinal Barriers on Curved, Superelevated Roadway Sections Comparison Case: 2270P (Pickup Truck) with MGS Barr

Table C – Analysis Solution Verification Summary

Verification Evaluation Criteria	Change (%)	Pass?
Total energy of the analysis solution (i.e., kinetic, potential, contact, etc.) must not vary more than 10 percent from the beginning of the run to the end of the run.	1.07%	YES
Hourglass Energy of the analysis solution at the end of the run is less than 5 % of the total initial energy at the beginning of the run	< 1%	YES
The part/material with the highest amount of hourglass energy at any time during the run is less than 5 % of the total initial energy at the beginning of the run.	< 1%	YES
Mass added to the total model is less than 5 % the total model mass at the start of the run.	< 1%	YES
The part/material with the most mass added had less than 10 % of its initial mass added.	< 1%	YES
The moving parts/materials in the model have less than 5 % of mass added to the initial moving mass of the model.	< 1%	YES
There are no shooting nodes in the solution?	NA	YES
There are no solid elements with negative volumes?	NA	YES

Table D - RSVVP Results

Single Channel Time History Comparison Results			erval [0 s	sec - 0.6'	
O Sprauge-Geer Metrics			Р	Pass?	
X acceleration		45	40	NO	
Y acceleration		13.2	27.6	YES	
Z acceleration		146.8	45.4	NO	
Yaw rate		13.4	11.7	NO	
Roll rate		9.6	52.7	NO	
Pitch rate		251.3	48	YES	
P ANOVA Metrics		Mean	SD	Pass?	
X acceleration/Peak		-1.92	39.08	NO	
Y acceleration/Peak		5.81	35.92	NO	
Z acceleration/Peak		1.09	65.76	NO	
Yaw rate		0.79	20.97	NO	
Roll rate		10.04	51.73	NO	
Pitch rate		1.45	119.09	YES	
Multi-Channel Weighting Factors		Time inte	erval [0	sec; 0.6'	
Multi-Channel Weighting Method	X Channel	0.206777873			
Peaks Area I	Y Channel	0.275396472			
Area II Inertial	Z Channel	0.017825655 0.441018937			
	Yaw Channel				
Roll Channel Pitch Channel		0.032383125			
		0.	02659793	7	
Sprauge-Geer Metrics		Μ	Р	Pass?	
All Channels (weighted)		28.5	24.8	YES	
ANOVA Metrics		Mean	SD	Pass?	
All Channels (weighted)		1.9	33.2	YES	

Figure 2a: RSVVP Results – All Channels

Figure 2c: RSVVP Results – Lateral Acceleration

Figure 2e: RSVVP Results – Roll Angle

Figure 2g: RSVVP Results – Yaw Angle

Figure 3: Change in Vehicle Velocities

Figure 4: Change in Vehicle Angle

Page 3 of 4

Project: CCSA Longitudinal Barriers on Curved, Superelevated Roadway Sections Comparison Case: 2270P (Pickup Truck) with MGS Barrier Table E - Roadside Safety Phenomena Importance Ranking Table (MASH Evaluation)

Evaluation Criteria			Known Analys Result Resul			Agree?	
	A1 Test article should contain and redirect the vehicle; the vehicle should not penetrate, under-ride, or override the installation although controlled lateral deflection of the test article is acceptable.		Yes	Yes		YES	
lacy		A2	The relative difference in the maximum dynamic deflection is less than 20 percent.	1.11 m	1.03 m	7%	YES
dequ		A3	The relative difference in the time of vehicle-barrier contact is less than 20 percent.	0.72 s	0.63 s	12%	
Structural Adequacy	A	A4	The relative difference in the number of broken or significantly bent posts is less than 20 percent.	3	3		YES
ctu		A5	Barrier did not fail (Answer Yes or No).	Yes	Yes		YES
in		A6	There were no failures of connector elements (Answer Yes or No).	Yes	Yes		YES
S		A7	There was no significant snagging between the vehicle wheels and barrier elements (Answer Yes or No).	Yes	Yes		YES
		A8	There was no significant snagging between vehicle body components and barrier elements (Answer Yes or No).	Yes	Yes		YES
	Detached elements, fragments or other debris from the test article should not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians or personnel in a work zone (Answer Yes or No).F1The vehicle should remain upright during and after the collision. The maximum pitch & roll angles are not to exceed 75 degrees.		Yes	Yes		YES	
			Yes	Yes		YES	
		F2	Maximum vehicle roll – relative difference is less than 20% or absolute difference is less than 5 degrees.	3.58 (.68s)	3.49 (.68s)	3% 0.09 deg	YES
	F3 Maximum vehicle pitch – relative difference is less than 20% or absolute difference is less than 5 deg. F4 Maximum vehicle yaw – relative difference is less than 20% or absolute difference is less than 5 deg. H1 Longitudinal & lateral occupant impact velocities (OIV) should fall below the preferred value of 30 ft/s (9.1 m/s), or at least below the maximum allowed value of 40 ft/s (12.2 m/s) H1 Longitudinal OIV (m/s) - Relative difference is less than 20% or absolute difference is less than 20% or at least below the maximum allowed value of 40 ft/s (12.2 m/s)			2.86 (.68s)	4.17 (.68s)	31.4% 1.31 deg	YES
Risk			43.74 (.68s)	46.01 (.68s)	4.9% 2.27 deg	YES	
ccupant			Yes	Yes		YES	
Õ	Η	H2	Longitudinal OIV (m/s) - Relative difference is less than 20%t or absolute difference is less than 2 m/s	4.67	5.59	16.4% 0.92 m/s	YES
	H3 Lateral OIV (m/s) - Relative difference is less than 20% or absolute difference is less than 2 m/s		4.76	5.09	6.5% 0.33 m/s	YES	
	Image:		Yes	Yes		YES	
			Longitudinal ORA (g) - Relative difference is less than 20% or	8.23	12.10	31.9% 3.87 g	YES
			6.93	9.68	28.4% 2.75 g	YES	
	/ehic aject		The vehicle rebounded within the exit box. (Answer Yes or No)	Yes	Yes		YES

Figure 5: Full-Scale Test Summary

Figure 6a: Sequential Comparisons – Front View

Figure 6b: Sequential Comparisons – Rear View

Figure 6c: Sequential Comparisons – Top View

Page 4 of 4

Project: CCSA Longitudinal Barriers on Curved, Superelevated Roadway Sections

Comparison Case: 2270P (Pickup Truck) with MGS Barrier

Table F - Composite Verification and Validation Summary:

List the Report MAS	H08 Test Number	
Table C – Analysis	Did all solution verification criteria in table pass?	
Solution Verification		YES
Summary		
Table D - RSVVP	Do all the time history evaluation scores from the single	
Results	channel factors result in a satisfactory comparison (i.e., the	NO
	comparison passes the criterion)?	
	If all the values for Single Channel comparison did not pass,	VEC
	did the weighted procedure result in an acceptable comparison.	YES
Table E - Roadside	Did all the critical criteria in the PIRT Table pass?	
Safety Phenomena	Note: Tire deflation was observed in the test but not in the	
Importance	simulation. This due to the fact that tire deflation in not	YES
Ranking Table	incorporated in the model. This is considered not to have a	
	critical effect on the outcome of the test	
Overall	Are the results of Steps I through III all affirmative (i.e.,	
	YES)? If all three steps result in a "YES" answer, the	
	comparison can be considered validated or verified. If one of	YES
	the steps results in a negative response, the result cannot be	
	considered validated or verified.	

NOTES:

(none)

Validation Forms for NETC 4-Bar Bridge Rail Model

Comparison to Test NETC-3

NCHRP Report 350 Test 4-12

(Qualitative Validation Only)

FEA VALIDATION/VERIFICATION REPORT FORMS

Report 350 Test 4-12

Impact of the

NETC 4-Bar Bridge Rail

(Report 350 or MASH08 or EN1317 Vehicle Type)

(Roadside hardware type and name)

Report Date: <u>12/18/2018</u>

Type of Report (check one)

Verification (known numerical solution compared to new numerical solution).

Validation (physical test compared to a numerical solution).

Extrapolation (validated numerical solution compared to modified numerical solution).

General Information	Known Solution	Analysis Solution
Performing Organization	SwRI	Roadsafe LLC
Analyst/Engineer	C.E. Kimbal and J.B. Mayer	Chuck Plaxico
Test/Run Number:	NETC-3	
Vehicle:	8000S – 1993 International	F800 Version 181114
	4600 LP SUT	
Reference:	Test 4-12	Test 4-12
Impact Conditions		
Vehicle Mass:	17,875-lb	17,911-lb
Speed:	49.8 mph	49.8 mph
Angle:	15 degrees	15 degrees
Impact Point:	24 inches upstream of Post 6	15 inches upstream of Post 7

Composite Validation/Verification Score

	List the Report 350/MASH08 or EN1317 Test Number:4-12	Pass?
Part I	Did all solution verification criteria in Table C-1 pass?	Y
Part II	Do all the time history evaluation scores from Table C-2 result in a satisfactory comparison (i.e., the comparison passes the criterion)? If all the values in Table C-2 did not pass, did the weighted procedure shown in Table C-3 result in an acceptable comparison. If all the criteria in Table C-2 pass, enter "yes." If all the criteria in Table C-2 pass, enter "yes."	N.A.
Part III	All the criteria in Table C-4 (Test-PIRT) passed? Not Required for Component Tests	Y
	Are the results of Steps I through III all affirmative (i.e., YES)? If all three steps result in a "YES" answer, the comparison can be considered validated or verified. If one of the steps results in a negative response, the result cannot be considered validated or verified.	Y

The analysis solution (check one):

Is verified/validated against the known solution.

Is NOT verified/validated against the known solution.

PART I: BASIC INFORMATION

- 1. What type of roadside hardware is being evaluated (check one)?
 - Longitudinal barrier or transition
 - Terminal or crash cushion
 - Breakaway support or work zone traffic control device
 - Truck-mounted attenuator
 - Other hardware or component: ______
- What test guidelines were used to perform the full-scale crash test (check one)?
 NCHRP Report 350
 MASHOR

🗌 EN1317		
Other:		

- 3. Indicate the test level and number being evaluated (fill in the blank): _____4-12_____
- **4.** Indicate the vehicle type appropriate for the test level and number indicated in item 3 according to the testing guidelines indicated in item 2.

NCHRP	Report	350/MASH08	
_		·	

700C 2270P 36000T	820C 8000S	☐ 1100C ∑ 10000S	2000P 36000V
<u>EN1317</u>			
Car (900 kg) Rigid HGV (10 ton) Bus (13 ton)	Car (1300 kg) Rigid HGV (10 Articulated H	6 ton)	Car (1500 kg) Rigid HGV (30 ton)
Other:			

PART II: ANALYSIS SOLUTION VERIFICATION

Verification Evaluation Criteria	Change (%)	Pass?
Total energy of the analysis solution (i.e., kinetic, potential, contact, etc.) must not vary more than 10 percent from the beginning of the run to the end of the run.	0	Y
<i>Hourglass Energy</i> of the analysis solution at the end of the run is less than <i>five percent</i> of the total <i>initial energy</i> at the <i>beginning</i> of the run.	0	Y
<i>Hourglass Energy</i> of the analysis solution at the end of the run is less than <i>ten percent</i> of the total <i>internal energy</i> at the <i>end</i> of the run.	0	Y
The part/material with the highest amount of hourglass energy at the end of the run is less than twenty percent of the total internal energy of the part/material at the end of the run.	19 (sidewalk)	Y
Mass added to the total model is less than five percent of the total model mass at the beginning of the run.	0	Y
The part/material with the most mass added had less than 10 percent of its initial mass added.	5.7	Y
The moving parts/materials in the model have less than five percent of mass added to the initial moving mass of the model.	5.7	Y
There are no shooting nodes in the solution?	Y	Y
There are no solid elements with negative volumes?	Y	Y

Table G-1. Analysis Solution Verification Table.

Analysis solution passes <u>all</u> the criteria in Table C-1 without exceptions.

with exceptions as noted in Table C-1.

Analysis solution does NOT pass <u>all</u> the criteria in Table C-1.

Table C-1 is not applicable because

PART III: HISTORY EVALUTION TABLES

Table G-2.	Roadside Safety Validation Metrics Rating Table (single channel option).
------------	--

		Eva	aluation Crite	eria						
0	Sprague-Geers Metrics								ime interv	
	List all the data chai	-	•				-		[seconds]
	RSVVP and enter th	e results. V	alues less tha	an or equa	al to 40 ar	re accept	able.		1	1
			RSVVP Curve	e Preproc	essing Op	otions				
	Channel	Filter	Sync.	Sh	hift	Dr	ift	Μ	Р	Pass?
		Option	Option	True	Test	True	Test			
		option	Option	Curve	Curve	Curve	Curve			
	x-acceleration									
	y-acceleration									
	z-acceleration									
	Yaw-rate									
	Roll-rate									
	Pitch-rate									
	$\begin{array}{l} \textbf{ANOVA Metrics} \\ \text{List all the data channels being compared. Calculate the ANOVA metrics} \\ \text{using RSVVP and enter the results. Both of the following criteria must be} \\ \text{met:} \\ \bullet \text{The mean residual error must be less than five percent of the peak} \\ \text{acceleration } (\overline{e} \leq 0.05 \cdot a_{Peak}) \text{ and} \\ \bullet \text{The standard deviation of the residuals must be less than 35 percent} \\ \text{of the peak acceleration } (\sigma \leq 0.35 \cdot a_{Peak}). \end{array}$								Standard Deviation of Residuals	Pass
	x-acceleration									
	y-acceleration									
	z-acceleration									
	Yaw-rate									
	Roll-rate									
	Pitch-rate									

Analysis solution passes <u>all</u> the criteria in Table C-2	without exceptions.
	with exceptions as noted in Table C-2.
Analysis salution does NOT need all the suitoria in Ta	

	Analysis solution does NOT	pass all the criteria in Table C-2.
--	----------------------------	-------------------------------------

Table C-2 is not applicable because ______

RSVVP Single-Channel Comparison	Metric Values Screens for each channel are attac	hed on the
following pages.		

	Evaluation Criteria (time interval [0.0 – 1.0 seconds])									
		Channels (Select which were used)							
] X Acceleration	Acceleratio	n							
] Roll rate	aw rate								
	Multi-Channel Weights - Area II method -									
0	Sprague-Geer Metrics Values less or equal to 40 are ac	ceptable.		М	Р	Pass?				
Ρ	ANOVA Metrics Both of the following criteria must be met: • The mean residual error must be less than five percent of the peak acceleration $(\bar{e} \le 0.05 \cdot a_{Peak})$ isometric to the residuals must be less than 35 percent of the peak acceleration ($\sigma \le 0.35 \cdot a_{Peak}$)isometric to the 									

 Table G-3.
 Roadside Safety Validation Metrics Rating Table (multi-channel option).

Analysis solution passes <u>all</u> the criteria in Table C-3 without exceptions

with exceptions as noted in Table C-3.

Analysis solution does NOT pass <u>all</u> the criteria in Table C-3.

Table C-3 does not contain sufficient information for assessment.

Table C-3 is not applicable because criteria were satisfied in Table C-2.

RSVVP Multi-Channel Comparison Metric Values Screen is attached on the following page.

PART IV: PHENOMENAA IMPORTANCE RANKING TABLES

Evaluation Factors			Applicable Tests			
Structural Adequacy	A	should not penetrate	, under-ride, or ov	t the vehicle; the veh verride the installation article is acceptable.	n although	10, 11, 12, 20, 21, 22, 35, 36, 37, 38
	В	breaking away, fract	uring or yielding.	in a predictable man	•	60, 61, 70, 71, 80, 81
	C	Acceptable test artic penetration or contro			controlled	30, 31, 32, 33, 34, 39, 40, 41, 42, 43, 44, 50, 51, 52, 53
Occupant Risk	D	should not penetrate	or show potential sent an undue haz	r debris from the test for penetrating the o ard to other traffic, p	ccupant	All
	E	vehicular damage sh	ould not block the	r debris from the test e driver's vision or ot vehicle. (Answer Yes	herwise	70, 71
	F		10	ing and after the coll awing are acceptable		All except those listed in criterion G
	G	It is preferable, althous upright during and a		that the vehicle remains	ain	12, 22 (for test level 1 – 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44)
	Н	Occupant Component	bact velocities sho Impact Velocity Preferred	uld satisfy the follow Limits (m/s) Maximum	ving:	10, 20, 30,31, 32, 33, 34, 36, 40, 41, 42, 43, 50, 51, 52, 53,
	11	Longitudinal and Lateral	9	12		80, 81
	Ι		3 wn accelerations s dedown Accelerat Preferred 15	5 should satisfy the foll ion Limits (g's) Maximum 20	owing:	60, 61, 70, 71 10, 20, 30,31, 32, 33, 34, 36, 40, 41, 42, 43, 50, 51, 52, 53, 60, 61, 70, 71, 80, 81
Vehicle Trajectory	K	After collision it is p into adjacent traffic		vehicle's trajectory r	ot intrude	All
	L		t velocity in the lo the occupant ride			11,21, 35, 37, 38, 39
	Μ	The exit angle from percent of test impac contact with test dev	ct angle, measured	ferable should be les l at the time of vehicl		10, 11, 12, 20, 21, 22, 35, 36, 37, 38, 39
	N	Vehicle trajectory b		cle is acceptable.		30, 31, 32, 33, 34, 39, 42, 43, 44, 60, 61, 70, 71, 80, 81

Table G-4. Evaluation Criteria Test Applicability Table.

			Evaluation Criteria	Known Result	Analysis Result	Difference Relative/ Absolute	Agree?
		1	Test article should contain and redirect the vehicle; the vehicle should not penetrate, under-ride, or override the installation although controlled lateral deflection of the test article is acceptable. (Answer Yes or No)	Y	Y	$\left \right>$	Y
		2	Maximum dynamic deflection: - Relative difference is less than 20 percent or - Absolute difference is less than 6 inches	1.0 in	1.08 in	8.0% 0.08 in	Y
quacy		3	Maximum permanent deflection: - Relative difference is less than 20 percent or - Absolute difference is less than 6 inches	0.51 in	0.48 in	5.9% 0.03 in	Y
Structural Adequacy	А	4	Length of vehicle-barrier contact (at initial separation): - Relative difference is less than 20 percent or - Absolute difference is less than 6.6 ft	N.R. Posts 6-11	42 ft Posts 6-11		Y
Struct		5	Number of broken or significantly bent posts is less than 20 percent.	0	0		Y
		6	Did the rail element rupture or tear (Answer Yes or No)	No	No	\ge	Y
		7	Concrete curb/deck failure	No	No	\ge	Y
		8	Was there significant snagging between the vehicle wheels and barrier elements (Answer Yes or No).	N	N	\ge	Y
		9	Was there significant snagging between vehicle body components and barrier elements (Answer Yes or No).	N*	N	\ge	Y

Table G-5(a). Roadside Safety Phenomena Importance Ranking Table (Structural Adequacy).

* There was additional snagging between the bumper and the rail in the test that could not be captured in the FE model due to differences in bumper width.

N.R. – Not Reported

			Evaluation Criteria	Known Result	Analysis Result	Difference Relative/ Absolute	Agree?
	D		Detached elements, fragments or other debris from the test article should not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians or personnel in a work zone. (Answer Yes or No)	N	N		Y
		1	The vehicle should remain upright during and after the collision although moderate roll, pitching and yawing are acceptable. (Answer Yes or No)	Y	Y	\searrow	Y
	F	2	Maximum roll of the vehicle through 1.0 seconds: - Relative difference is less than 20 percent or - Absolute difference is less than 5 degrees.	*20.0 Deg	14.7 deg	26.5 % 5.3 deg	N
	F	3	Maximum pitch of the vehicle through 1.0 seconds: - Relative difference is less than 20 percent or - Absolute difference is less than 5 degrees.	*5.0 deg	5.4 deg	8.0 % 0.4 deg	Y
Occupant Risk		4	Maximum yaw of the vehicle through 0.446 seconds: - Relative difference is less than 20 percent or - Absolute difference is less than 5 degrees.	14.8 deg	16.2 deg	9.7 % 1.4 deg	Y
ccup	G	1	Did the vehicle remain upright during and after collision	Y	Y		Y
0		1	Occupant impact velocities: - Relative difference is less than 20 percent or - Absolute difference is less than 6.6 ft/s.				
			• Longitudinal OIV (ft/s)	5.4	5.9	9.1% 0.5 ft/s	Y
			• Lateral OIV (ft/s)	-9.5	-12.1	28% 2.7 ft/s	Y
	_		• THIV (ft/s)	N.R.	13.8		
	L		Occupant accelerations: - Relative difference is less than 20 percent or - Absolute difference is less than 4 g's.				
		2	Longitudinal ORA	8.95	4.95	44.7 % 4 g	Y
		2	Lateral ORA	14.3	12.1	15.4 % 2.2 g	Y
			• PHD	N.R.	12.8		
			• ASI	N.R.	0.42		

Table G-5(b). Roadside Safety Phenomena Importance Ranking Table (Occupant Risk).

N.R. – Not Reported

* Reported as "approximate"

			Evaluation Criteria	Known Result	Analysis Result	Difference Relative/ Absolute	Agree?
ry		1	The exit angle from the test article preferable should be less than 60 percent of test impact angle, measured at the time of vehicle loss of contact with test device.	1.3%	8.0%		Y
Trajectory	K	2	Exit angle at loss of contact: - Relative difference is less than 20 percent or - Absolute difference is less than 5 degrees.	4.1 deg	1.2 deg	2.9 deg	Y
Vehicle	М	3	Exit velocity at loss of contact: - Relative difference is less than 20 percent or - Absolute difference is less than 6.2 mph.	35.8 mph	40.3 mph	12.8 % 4.6 mph	Y
		4	Front axle disconnected from suspension	Y	Y		Y

Table C-5(c). Roadside Safety Phenomena Importance Ranking Table (Vehicle Trajectory).

Note: Additional phenomena can be added to the tables in deemed appropriate by the analyst.

Analysis solution passes <u>all</u> the criteria in Tables G-5(a) through G-5(c)

without exceptions.

 \square with exceptions as noted in Tables G-5(a) through G-5(c).

Does NOT pass <u>all</u> the criteria in Tables G-5(a) through 5(c).

Tables G-5(a) through G-5(c) does not contain sufficient information for assessment.

Tables G-5(a) through G-5(c) are not applicable because ____

Synchronized side-by-side views of the known and analysis solutions are attached on the following pages.

0.000 seconds

0.1 seconds

0.2 seconds

....

0.4 seconds

ATTACHDED IN THE OWNER OF THE OWNER OWNER

0.7 seconds

0.8 seconds

0.6 seconds

0.9 seconds

MANAGE MALLAND

0.7 seconds

0.9 seconds

Figure 1. [Continued] Sequential views from FEA and Test NETC-3 from an upstream viewpoint.

0.5 seconds

0.6 seconds

0.8 seconds

Figure 2. Sequential views of Test NETC-3 and FE analysis from downstream

viewpoint.

1.0 seconds

1.1 seconds

0.4 seconds

Figure 3. Sequential views of Test NETC-3 and FE analysis from overhead viewpoint.

0.5 seconds

0.7 seconds

0.8 seconds

Figure 3. [CONTINUED] Sequential views of Test NETC-3 and FE analysis from overhead viewpoint.

Soil Model Development and Calibration/Validation

Soil Model

- There are several approaches that may be used for modeling the soil in analyses of guardrail posts embedded in soil.
- Some common approaches include:
 - Posts embedded in a soil continuum of solid finite elements,
 - Posts embedded in a continuum of meshless finite elements, and
 - Subgrade reaction approach in which the post is supported by an array of uncoupled springs.
- Each of the methods mentioned above have been used by the research team with reasonable success.
 - Some advantages of the discrete element approach are that the soil model can undergo large deformations without effecting numerical accuracy and stability, and fewer calculations are required with discrete elements making the solution much more efficient.
 - The continuum method is reasonably accurate for low to moderate soil displacement but has the advantage of modeling soil interaction between neighboring posts.
- For the current study, two methods were used:
 - The discrete elements method (i.e., springs and dampers) was used to model the soil in the w-beam section (computational efficiency).
 - The soil continuum method (solid elements) was used in the impact region on the transition were the posts were closely spaced (i.e., thrie-beam and tube-rail sections).
 - The continuum soil model included a 2:1 slope starting just behind the thrie-beam posts.

Soil Continuum Model

Soil Model

- Soil continuum model
 - Length = 21.7 feet
 - Lateral width = 8.34 feet
 - Vertical depth = 7.1 feet
- The material was modeled using the Drucker-Prager material model. This material model was calibrated based on comparison to full-scale tests (see following slides).
- The post was modeled with solid elements with single integration point.
 - The soil in the immediate post region was meshed with element side lengths of approximately 1.3 1.6 inches.
 - The soil at the father extents was meshed with element side lengths of 2.5 3 inches.
 - The refined-mesh region was "tied" to the elements of the coarse-mesh region using the *Contact_Tied option in LS-DYNA.

- The soil model was qualitatively validated based on comparison with impact tests on wood guardrail posts performed at the Midwest Roadside Safety Facility (MwRSF) [Rosenbaugh11]
- The properties of the spring elements were defined using a soil density of 126 pcf.
- A total of five (5) test cases were simulated which are listed in the Table to the left.
- In all cases, the impact point was at 24.9 inches above ground on the face of the post with loading in the strong bending direction for the post.
- The striker that was used in the tests was the MwRSF bogie with rigid nose.
 - The mass and impact speed of the striker varied slightly from test to test with a nominal mass and speed of 1,835lb and 20 mph, respectively.
- A finite element model of the bogie vehicle was not available to the research team, so the striker was modeled as a simple rigid mass with a semi-rigid head.

Dynamic test cases used for model validation.

		Post Grade	Soil density	Embedment	Impact	Impact		
	Post Size	(as Modeled)	(as modeled) Depth		(as Modeled) (as modeled)		Mass	Speed
Test No.	(in. x in.)		(pcf)	(in.)	(lb)	(mph)		
MGSATB-13	8 x 10	Grade 1	126	48	1,812.0	20.24		
MGSATB-14	8 x 10	Grade 1	126	48	1,817.9	19.69		
MGSATB-18	6 x 10	Grade 1	126	52	1,835.0	20.98		
MGSATB-18	6 x 10	DS-65	126	52	1,835.0	20.98		
MGSATB-19	6 x 10	Grade 1	126	52	1,835.0	19.73		

- The response of the soil-spring model matched well with the test results.
- The upper part of each figure shows sequential views of the test, followed by sequential views of the FEA overlaid onto the test images.
- Comparisons of FEA and test results regarding force versus displacement and energy versus displacement for each case are also provided.
- Test cases MGSATB-13 and MGSATB-14 were very similar (i.e., 8x10 post, similar impact mass and similar impact speed).
- The results from the FEA, accordingly, were very similar for both cases. The results, however, differed somewhat for the two test cases, with MGSATB-14 being approximately 4 kips stronger than case MGSATB-13.
- The FEA results tended to match better with the results of Test MGSATB-13 over the first 5 inches of deflection, and tended to match better with Test MGASTB-14 at higher deflections (see next slide).

MGSATB-13 (Grade 1 Posts)

- The response of the soil-spring model matched well with the test results.
- The upper part of each figure shows sequential views of the test, followed by sequential views of ۲ the FEA overlaid onto the test images.
- Comparisons of FEA and test results regarding force versus displacement and energy versus displacement for each case are also provided.
- Test cases MGSATB-13 and MGSATB-14 were very similar (i.e., 8x10 post, similar impact mass and similar impact speed).
- The results from the FEA, accordingly, were very similar for both cases. The results, however, differed somewhat for the two test cases, with MGSATB-14 being approximately 4 kips stronger than case MGSATB-13.
- The FEA results tended to match better with the results of Test MGSATB-13 over the first 5 inches of deflection (see previous slide), and tended to match better with Test MGASTB-14 at higher deflections.

MGSATB-14 (Grade 1 Posts)

- Test cases MGSATB-18 and MGSATB-19 were also very similar (i.e., 6x10 post, identical impact mass, similar impact speed), but resulted in very different results.
- In the initial FEA simulation, using Grade 1 properties for the post, the post broke off at 16.4 inches below ground; whereas, the post did not break during the physical test for this case.

MGSATB-18 (Grade 1 Posts)

- The results of the model for Test MGSATB-18 (i.e., 6x10 post) matched well.
- DS-65 post (stronger than Grade 1) used in the analysis.

MGSATB-18 (DS-65 Posts)

- The results of the model for Test MGSATB-19 also matched reasonably well, with the post rupturing at 16.4 inches below grade.
- In the full-scale test, the post was split into three pieces with a break at 8 inches below grade.
- The overlay of the sequential views in Figure 35 show that the timing of the break and the overall speed of the striker throughout the event was similar for both FEA and test.

MGSATB-19 (Grade 1 Posts)

Soil Spring Model Limitations

- The effects of dynamic loading of the soil (e.g., inertial spikes) are not accounted for in this model.
- The springs only provide lateral resistance for the posts.
- For the soil-plate model described here, the vertical resistance to pullout comes from the vertical constraint on the plates.
- That is, the nodes of the soil-plates can move laterally but not vertically.
- It is assumed that this would become less of an issue as the vertical distance between springs is reduced (i.e., mesh refinement); however, accuracy in simulating large post rotation would likely be improved if the vertical response of the soil were included in the model.

Soil <u>Continuum</u> Model Validation

- Soil Continuum Model Compared with Tests MGSATB-13 and MGSATB-14
- Recall these test were very similar (i.e., 8x10 post, similar impact mass and similar impact speed).
- Sequential views of FEA vs. test is shown.
- The force-displacement and energydisplacement results are compared for the continuum model, soil spring model, and test.
- Soil spring model matches best for MGSATB-13.

MGSATB-13 (Grade 1 Posts)

Soil <u>Continuum</u> Model Validation

- Soil Continuum Model Compared with Tests MGSATB-13 and MGSATB-14
- Recall these test were very similar (i.e., 8x10 post, similar impact mass and similar impact speed).
- Sequential views of FEA vs. test is shown.
- The force-displacement and energydisplacement results are compared for the continuum model, soil spring model, and test.
- Continuum model matches best for MGSATB-14.

MGSATB-14 (Grade 1 Posts)

Soil <u>Continuum</u> Model Validation

- A secondary validation was performed for the continuum soil model based on a recent full-scale test of for the MGS stiffness transition with curb.[Winkelbaurer14]
- "During the installation of a soil dependent system, additional W6x16 posts are to be installed near the impact region utilizing the same installation procedures as used for the system itself. Prior to full-scale testing, a dynamic impact test must be conducted to verify a minimum dynamic soil resistance of 7.5 kips at post deflections between 5 and 20 in., as measured at a height of 25 in."
- The soil properties were the same as used in the previous comparison.
- Impact Conditions:
 - MwRSF bogie with rigid nose.
 - Mass = 1,843-lb
 - Impact Speed = 20 mph.
 - Impact Point = 24.9 inches above ground.

Dynamic Set up

Post-Test Photo of Post

Soil <u>Continuum</u> Model Validation

- The results show that the continuum model matches well for the first 15 inches of displacement.
- But then shows stiffer response.
- It should be noted that these tests correspond to calibration tests for the test-soil system.
- Actual stiffness on the day of testing varied for the three full-scale tests, with one case resulting in 67% stiffer soil conditions.

Baseline Soil Response Compared to Subsequent Test Soil Response

- MwRSF subsequently performed 3 full-scale tests on a transition design:
 - MWTC-1: MASH Test 4-20 (small car)
 - MWTC-2: MASH Test 4-20 (small car)
 - MWTC-3: MASH Test 4-21 (pickup)
- The preliminary <u>static</u> post-soil test for each of those test cases is shown here with comparison to baseline strength.
- The results show that the initial stiffness of the soil for the full-scale test cases was significantly higher than the baseline.
- The peak force for each cases was:
 - MWTC-1: 67% higher than baseline.
 - MWTC-2: Equal to baseline.
 - MWTC-3: 25% higher than baseline.

MGSATB-5 and MGSATB-6

			Soil Density	Embedment	Impact	Impact
			(as modeled)	Depth	Mass	Speed
Test No.	Post Size	Post Material	(pcf)	(inches)	(lb)	(mph)
MGSATB-1	W6x15	AASHTO M180	126	54	1810	19.22
MGSATB-2	W6x15	AASHTO M180	126	54	1810	19.71
MGSATB-5	W6x15	AASHTO M180	126	54	1816	21.9
MGSATB-6	W6x15	AASHTO M180	126	54	1816	21.7

Same test series as shown on <u>Slide 22</u> but with steel posts

Analysis of 6x8 inch Wood Post in Soil Time = 0

Validation Forms for 2-Bar Transition Model

Comparison to Test NETC-3

NCHRP Report 350 Test 4-12

(NCHRP Web Report 179 Forms)

FEA VALIDATION/VERIFICATION REPORT FORMS

Report 350 Test 3-21_____

Impact of the

NETC 2-Bar Transition

(Report 350 or MASH08 or EN1317 Vehicle Type)

(Roadside hardware type and name)

Report Date: <u>2/25/2019</u>

Type of Report (check one)

Verification (known numerical solution compared to new numerical solution).

Validation (physical test compared to a numerical solution).

Extrapolation (validated numerical solution compared to modified numerical solution).

General Information	Known Solution	Analysis Solution	
Performing Organization	Texas Transportaion Institute	Roadsafe LLC	
Analyst/Engineer	Dean Alberson	Chuck Plaxico	
Test/Run Number:	401181-1		
Vehicle:	2000 Chevrolet 2500	C2500D-V5b-R160309	
Reference:	Test 3-21	Test 3-21	
Impact Conditions			
Vehicle Mass:	4,706-lb	4,575-lb	
Speed:	63.6 mph	63.6 mph	
Angle:	24.9 degrees	24.9 degrees	
Impact Point:	5.36 ft upstream of Critical Post	15 inches upstream of Post 7	

Composite Validation/Verification Score

	List the Report 350/MASH08 or EN1317 Test Number: <u>3-21</u>	Pass?						
Part I	Part I Did all solution verification criteria in Table C-1 pass?							
Part II	Do all the time history evaluation scores from Table C-2 result in a satisfactory comparison (i.e., the comparison passes the criterion)? If all the values in Table C-2 did not pass, did the weighted procedure shown in Table C-3 result in an acceptable comparison. If all the criteria in Table C-2 pass, enter "yes." If all the criteria in Table C-2 pass, enter "yes."	Y						
Part III	All the criteria in Table C-4 (Test-PIRT) passed? Not Required for Component Tests	Y						
	Are the results of Steps I through III all affirmative (i.e., YES)? If all three steps result in a "YES" answer, the comparison can be considered validated or verified. If one of the steps results in a negative response, the result cannot be considered validated or verified.	Y						

The analysis solution (check one):

Is verified/validated against the known solution.

Is NOT verified/validated against the known solution.

PART I: BASIC INFORMATION

- 1. What type of roadside hardware is being evaluated (check one)?
 - Longitudinal barrier or transition
 - Terminal or crash cushion
 - Breakaway support or work zone traffic control device
 - Truck-mounted attenuator
 - Other hardware or component: ______
- What test guidelines were used to perform the full-scale crash test (check one)?
 NCHRP Report 350
 MASHOR

🔲 EN1317		
Other:		

- 3. Indicate the test level and number being evaluated (fill in the blank): <u>3-21</u>
- **4.** Indicate the vehicle type appropriate for the test level and number indicated in item 3 according to the testing guidelines indicated in item 2.

NCHRP	Report	: 350/MASH08	
	-		

700C 2270P 36000T	820C 8000S	1100C 10000S	2000P 36000V
<u>EN1317</u>			
Car (900 kg) Rigid HGV (10 ton) Bus (13 ton)	Car (1300 kg) Rigid HGV (16 to Articulated HGV	•	Car (1500 kg) Rigid HGV (30 ton)
Other:			

PART II: ANALYSIS SOLUTION VERIFICATION

Verification Evaluation Criteria	Change (%)	Pass
Total energy of the analysis solution (i.e., kinetic, potential, contact, etc.) must not vary more than 10 percent from the beginning of the run to the end of the run.	8.6%	Y
<i>Hourglass Energy</i> of the analysis solution at the end of the run is less than <i>five percent</i> of the total <i>initial energy</i> at the <i>beginning</i> of the run.	0%	Y
<i>Hourglass Energy</i> of the analysis solution at the end of the run is less than <i>ten percent</i> of the total <i>internal energy</i> at the <i>end</i> of the run.	0%	Y
The part/material with the highest amount of hourglass energy at the end of the run is less than twenty percent of the total internal energy of the part/material at the end of the run.	0%	Y
Mass added to the total model is less than five percent of the total model mass at the beginning of the run.	0%	Y
The part/material with the most mass added had less than 10 percent of its initial mass added.	0%	Y
The moving parts/materials in the model have less than five percent of mass added to the initial moving mass of the model.	0%	Y
There are no shooting nodes in the solution?	Y	Y
There are no solid elements with negative volumes?	Y	Y

Table I-1. Analysis Solution Verification Table.

Analysis solution passes <u>all</u> the criteria in Table C-1

without exceptions.

with exceptions as noted in Table C-1.

Analysis solution does NOT pass <u>all</u> the criteria in Table C-1.

Table C-1 is not applicable because

PART III: HISTORY EVALUTION TABLES

Table I-2.	Roadside Safety Validation Metrics Rating Table (single channel option).
------------	--

		Eva	aluation Crite	eria						
0	Sprague-Geers Met List all the data chai RSVVP and enter the	nnels being	•				0		Time interval [seconds]	
			RSVVP Curve	Preproc	essing Op	otions				
	Channel	Filter	Curre	Sh	lift	Dr	ift	М	Р	Pass?
	channel	Option	Sync. Option	True	Test	True	Test			
				Curve	Curve	Curve	Curve			
	x-acceleration	CFC 60	none	none	none	none	none	11.1	33.6	Y
	y-acceleration	CFC 60	none	none	none	none	none	19.4	34.4	Y
	z-acceleration	CFC 60	none	none	none	none	none	17	53.8	Ν
	Yaw-rate	CFC 60	none	none	none	none	none	7.3	10.9	Y
	Roll-rate	CFC 60	none	none	none	none	none	4.0	41.4	≈Y
	Pitch-rate	CFC 60	none	none	none	none	none	20.4	23.3	Y
Ρ	ANOVA MetricsList all the data channels being compared. Calculate the ANOVA metricsusing RSVVP and enter the results. Both of the following criteria must bemet:• The mean residual error must be less than five percent of the peakacceleration ($\overline{e} \leq 0.05 \cdot a_{Peak}$) and• The standard deviation of the residuals must be less than 35 percentof the peak acceleration ($\sigma \leq 0.35 \cdot a_{Peak}$).				be oeak	Mean Residual	Standard Deviation of Residuals	Pass?		
	x-acceleration						0.08	12.7	Y	
	y-acceleration					1.5	13.6	Y		
	z-acceleration				0.09	16.8	Y			
	Yaw-rate				4.1	11.2	Y			
	Roll-rate				3.74	52.8	Ν			
	Pitch-rate						2.91	32.1	Y	
X	ception Notes:									

Analysis solution passes <u>all</u> the criteria in Table I-2	without exceptions.
---	---------------------

with exceptions as noted in Table I-2.

\times	Analysis	solution	does NOT	pass <u>all</u>	the criteria	in Table I-2.
----------	----------	----------	----------	-----------------	--------------	---------------

Table I-2 is not applicable because _____

RSVVP Single-Channel Comparison Metric Values Screens for each channel are attached on the following pages.

X AccelerationY AccelerationZ AccelerationRoll ratePitch rateYaw rateMulti-Channel Weights - Area II method -X Channel: 0.053 Yaw Channel: 0.009 Pitch Channel: 0.065 0.45 0.053 Yaw Channel: 0.009 Pitch Channel: 0.065 0.45 0.009 0 xee yac yac 24.6 0.45 0 yac 24.6 0.45 0 yac yac 24.6 0.45 0 yac 24.6 0.45 0 yac <br< th=""><th>Evalı</th><th>ation Criteria (time interval [0</th><th></th><th>s])</th><th></th><th></th></br<>	Evalı	ation Criteria (time interval [0		s])							
Noll rateNoll rateNoll rateNoll rateNoll rateMulti-Channel Weights - Area II method -X Channel: V Channel: 0.426 Roll Channel: 0.009 Pitch Channel: 0.0650.426 Roll Channel: 0.4260.426 Roll Channel: 0.4260.426 Roll Channel: 0.4260.426 Roll Channel: 0.4260.426 Roll Channel: 0.4260.426 Roll Channel: 0.4260.426 Roll Channel: 0.4260.426 Roll Channel: 0.4260.426 Roll Channel: 0.4260.426 Roll Channel: 0.4260.426<	Channels (Select which were used) X Acceleration X Acceleration										
Multi-Channel Weights - Area II method -Y Channel: 0.053 Yaw Channel: 0.009 Pitch Channel: 0.009 Pitch Channel: 0.065 Y Channel: 0.009 Pitch Channel: 0.065 Y Channel: 0.009 Pitch Channel: 0.065 Y Channel: 0.009 Pitch Channel: 0.065 Y Channel: 0.065 Y Channel: 0.009 Pitch Channel: 0.065 Y Channel: 0.065 <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>											
MPPassValues less or equal to 40 are acceptable. M PPass 24.6 27.9 YANOVA Metrics Both of the following criteria must be met: • The mean residual error must be less than five percent of the peak acceleration $(\bar{e} \le 0.05 \cdot a_{Peak})$ • The standard deviation of the residuals must be less than 35 M PPass	_	acc Yacc	Zacc Yawrate R	oll rate Pitch rate							
ANOVA MetricsImage: Second state of the following criteria must be met:Image: Second state of the following criteria must be less than five percent of the peak acceleration $(\overline{e} \le 0.05 \cdot a_{Peak})$ Image: Second state of the following criteria must be less than 35Image: Second state of the peak acceleration of the residuals must be less than 35Image: Second state of the peak acceleration of the residuals must be less than 35Image: Second state of the peak acceleration of the residuals must be less than 35Image: Second state of the peak acceleration of the residuals must be less than 35Image: Second state of the peak acceleration of the residuals must be less than 35Image: Second state of the peak acceleration of the residuals must be less than 35Image: Second state of the peak acceleration of the residuals must be less than 35Image: Second state of the peak acceleration of the residuals must be less than 35Image: Second state of the peak acceleration of the residuals must be less than 35Image: Second state of the peak acceleration of the residuals must be less than 35Image: Second state of the peak acceleration of the residuals must be less than 35		acceptable.			-	Pass?					
percent of the peak acceleration ($\sigma \le 0.35 \cdot a_{Peak}$)	Both of the following criteria • The mean residual e peak acceleration ($\overline{e} \le 0.05 \cdot a_{Peak}$) • The standard deviat	Mean Residual	Standard Deviation of Residuals	Pass?							

 Table I-3.
 Roadside Safety Validation Metrics Rating Table (multi-channel option).

Analysis solution passes <u>all</u> the criteria in Table I-3 without exceptions

with exceptions as noted in Table I-3.

Analysis solution does NOT pass <u>all</u> the criteria in Table I-3.

Table I-3 does not contain sufficient information for assessment.

Table I-3 is not applicable because criteria were satisfied in Table I-2.

RSVVP Multi-Channel Comparison Metric Values Screen is attached on the following page.

PART IV: PHENOMENAA IMPORTANCE RANKING TABLES

Evaluation Factors			Evaluatio	on Criteria		Applicable Tests
Structural Adequacy	A	Test article should c should not penetrate controlled lateral de:	, under-ride, or ove	erride the installatio	n although	10, 11, 12, 20, 21, 22, 35, 36, 37, 38
	В	The test article shou breaking away, fract	uring or yielding.	-		60, 61, 70, 71, 80, 81
	С	penetration or control	olled stopping of th	ne vehicle.		30, 31, 32, 33, 34, 39, 40, 41, 42, 43, 44, 50, 51, 52, 53
Occupant Risk	D	Detached elements, should not penetrate compartment, or pre or personnel in a wo	or show potential sent an undue haza rk zone.	for penetrating the ard to other traffic, j	occupant oedestrians	
	E	Detached elements, vehicular damage sh cause the driver to lo	ould not block the	driver's vision or o	therwise	70, 71
	F	The vehicle should r although moderate r	lision	All except those listed in criterion G		
	G	It is preferable, althous upright during and a	12, 22 (for test level 1 – 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44)			
	Н	Occupant Component	bact velocities sho Impact Velocity I Preferred	uld satisfy the follo Limits (m/s) Maximum	wing:	10, 20, 30,31, 32, 33, 34, 36, 40, 41, 42, 43, 50, 51, 52, 53, 80, 81
		Longitudinal and Lateral Longitudinal	9	12		60, 61, 70, 71
	Ι	Occupant ridedo	-	hould satisfy the fol	lowing:	10, 20, 30,31, 32, 33, 34, 36, 40, 41, 42, 43, 50, 51, 52, 53, 60, 61, 70, 71, 80, 81
Vehicle Trajectory	K	After collision it is p into adjacent traffic	All			
	L	The occupant impac exceed 40 ft/sec and longitudinal directio	the occupant ride-	down acceleration		11,21, 35, 37, 38, 39
	Μ	The exit angle from percent of test impac contact with test dev	ct angle, measured		10, 11, 12, 20, 21, 22, 35, 36, 37, 38, 39	
	N	Vehicle trajectory b	behind the test artic	cle is acceptable.		30, 31, 32, 33, 34, 39, 42, 43, 44, 60, 61, 70, 71, 80, 81

Table I-4. Evaluation Criteria Test Applicability Table.

			Evaluation Criteria	Known Result	Analysis Result	Difference Relative/ Absolute	Agree?
		A1	Test article should contain and redirect the vehicle; the vehicle should not penetrate, under-ride, or override the installation although controlled lateral deflection of the test article is acceptable. (Answer Yes or No)	Y	Y		Y
		A2	Maximum dynamic deflection: - Relative difference is less than 20 percent or - Absolute difference is less than 6 inches	8.0 in	5.8 in (0.1 sec)	27.5% 2.2 in	Y
dequacy		A3	Maximum permanent deflection: - Relative difference is less than 20 percent or - Absolute difference is less than 6 inches	5.8 in	4.3 in	25.9% 1.5 in	Y
Structural Adequacy	A	A4	Length of vehicle-barrier contact (at initial separation): - Relative difference is less than 20 percent or - Absolute difference is less than 6.6 ft	14.4 ft	14.7 ft	1.5 % 0.22 ft	Y
		A5	Number of broken or significantly bent posts is less than 20 percent.	0	0	\ge	Y
		A6	Did the rail element rupture or tear (Answer Yes or No)	No	No	\mathbf{i}	Y
		A7	Was there significant snagging between the vehicle wheels and barrier elements (Answer Yes or No).	N	N	\ge	Y
		A8	Was there significant snagging between vehicle body components and barrier elements (Answer Yes or No).	N	N	\mathbf{X}	Y

Table I-5(a). Roadside Safety Phenomena Importance Ranking Table (Structural Adequacy).

			Evaluation Criteria	Known Result	Analysis Result	Difference Relative/ Absolute	Agree?		
	D		Detached elements, fragments or other debris from the test article should not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians or personnel in a work zone. (Answer Yes or No)	N	N		Y		
		F1	The vehicle should remain upright during and after the collision although moderate roll, pitching and yawing are acceptable. (Answer Yes or No)	Y	Y	$\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{$	Y		
		F2	Maximum roll of the vehicle through 1.0 seconds: - Relative difference is less than 20 percent or - Absolute difference is less than 5 degrees.	-19.4 deg	-17 deg	12.4% 2.4 deg	Y		
	F	F3	Maximum pitch of the vehicle through 1.0 seconds: - Relative difference is less than 20 percent or - Absolute difference is less than 5 degrees.	-13.7 deg	-16.5 deg	20.0 % 2.8 deg	Y		
		F4	Maximum yaw of the vehicle through 1.0 seconds: - Relative difference is less than 20 percent or - Absolute difference is less than 5 degrees.	55.6 deg	48.2 deg	13.3 % 7.4 deg	Y		
Risk		5	Did the vehicle remain upright during and after collision	Y	Y		Y		
Occupant Risk			Occupant impact velocities: - Relative difference is less than 20 percent or - Absolute difference is less than 6.6 ft/s.			15.2%			
		L1	Longitudinal OIV (ft/s)	17.1	19.7	2.6 ft/s	Y		
					•Lateral OIV (ft/s)	-24.6	-24.9	1.2% 0.3 ft/s	Υ
			●THIV (ft/s)	29.9	31.5	5.4% 1.6 ft/s	Y		
	L		Occupant accelerations: - Relative difference is less than 20 percent or - Absolute difference is less than 4 g's.						
		L2	•Longitudinal ORA	-8.3	-8.3	0% 0 g	γ		
			•Lateral ORA	10.0	7.5	25 % 2.5 g	Y		
			•PHD	11.9	9.1	23.5 % 2.8 g	Y		
			•ASI	1.74	1.48	14.9 % 0.26	γ		

Table I-5(b). Roadside Safety Phenomena Importance Ranking Table (Occupant Risk).

			Evaluation Criteria	Known Result	Analysis Result	Difference Relative/ Absolute	Agree?
2	к	M1	The exit angle from the test article preferable should be less than 60 percent of test impact angle, measured at the time of vehicle loss of contact with test device.	*33%	36%		Y
Vehicle Trajectory	M	M2	Exit angle at loss of contact: - Relative difference is less than 20 percent or - Absolute difference is less than 5 degrees.	*8.21 deg (0.375 sec)	8.95 deg (0.375 sec)	9.0% 0.74 deg	Y
Ň		M3	Exit velocity at loss of contact: - Relative difference is less than 20 percent or - Absolute difference is less than 6.2 mph.	*47.0 mph	44.6 mph	5.1 % 2.4 mph	Y

Table I-5(c). Roadside Safety Phenomena Importance Ranking Table (Vehicle Trajectory).

*Reported as 11.7 degrees. Test data showed the 8.21 degrees at 0.375 seconds in TRAP report. ** Reported as 52.9 mph. Test data showed 47 mph at 0.375 seconds in TRAP report.

 \square Analysis solution passes <u>all</u> the criteria in Tables G-5(a) through I-5(c)

Without exceptions.

with exceptions as noted in Tables G-5(a) through I-5(c).

Does NOT pass <u>all</u> the criteria in Tables I-5(a) through 5(c).

Tables I-5(a) through I-5(c) does not contain sufficient information for assessment.

Tables I-5(a) through I-5(c) are not applicable because _____

Synchronized side-by-side views of the known and analysis solutions are attached on the following pages.

Figure 1. Sequential views from FEA and Test 401181-1 from an overhead viewpoint.

Figure 1. [Continued] Sequential views from FEA and Test 401181-1 from an overhead viewpoint.

Figure 1. [Continued] Sequential views from FEA and Test 401181-1 from an overhead viewpoint.

Time = 0.1 seconds

Time = 0.3 seconds

Figure 2. Sequential views from FEA and Test 401181-1 from a downstream viewpoint.

Figure 2. [CONTINUED] Sequential views from FEA and Test 401181-1 from a downstream viewpoint.

Figure 2. [CONTINUED] Sequential views from FEA and Test 401181-1 from a downstream viewpoint.

Sequential Views for Test 4-10 on

Curb-Mounted NETC 3-Bar Bridge Rail

Figure J-1. Sequential views from analysis of MASH Test 4-10 for NETC 3-Bar bridge rail from an overhead viewpoint.

P ,	.	 F	P		🛱	.
	18	 	(I			

0.30 seconds

0.35 seconds

0.40 seconds

0.45 seconds

Figure J-1. [Continued] Sequential views from analysis of MASH Test 4-10 for NETC 3-Bar bridge rail from an overhead viewpoint.

0.55 seconds

0.60 seconds

0.65 seconds

Figure J-1. [Continued] Sequential views from analysis of MASH Test 4-10 for NETC 3-Bar bridge rail from an overhead viewpoint.

0.00 seconds

0.05 seconds

0.10 seconds

0.15 seconds

0.20 seconds

Figure J-2. Sequential views from analysis of MASH Test 4-10 for NETC 3-Bar bridge rail from upstream and downstream viewpoints.

0.30 seconds

0.35 seconds

0.40 seconds

0.45 seconds

Figure J-2. [Continued] Sequential views from analysis of MASH Test 4-10 for NETC 3-Bar bridge rail from upstream and downstream viewpoints.

0.55 seconds

0.60 seconds

0.65 seconds

0.70 seconds

Figure J-2. [Continued] Sequential views from analysis of MASH Test 4-10 for NETC 3-Bar bridge rail from upstream and downstream viewpoints.

0.30 seconds

0.35 seconds

Figure J-3. [Continued] Sequential views from analysis of MASH Test 4-10 for NETC 3-Bar bridge rail from from an oblique viewpoint.

0.50 seconds

0.55 seconds

Figure J-3. [Continued] Sequential views from analysis of MASH Test 4-10 for NETC 3-Bar bridge rail from an oblique viewpoint.

Sequential Views for Test 4-11 on

Curb-Mounted NETC 3-Bar Bridge Rail

0.00 seconds

0.05 seconds

0.10 seconds

0.15 seconds

Figure K-1. Sequential views from analysis of MASH Test 4-11 for NETC 3-Bar bridge rail from an overhead viewpoint.

2	1 20, 1	E.	77	P ,,		.	 F	F	P ,
					đ				
						Land I			
					6.4				

0.30 seconds

0.35 seconds

0.40 seconds

Figure K-1. [Continued] Sequential views from analysis of MASH Test 4-11 for NETC 3-Bar bridge rail from an overhead viewpoint.

0.55 seconds

0.60 seconds

0.65 seconds

Figure K-1. [Continued] Sequential views from analysis of MASH Test 4-11 for NETC 3-Bar bridge rail from an overhead viewpoint.

0.00 seconds 0.05 seconds 0.10 seconds 0.15 seconds 0.20 seconds

Figure K-2. Sequential views from analysis of MASH Test 4-11 for NETC 3-Bar bridge rail from upstream and downstream viewpoints.

Figure K-2. [Continued] Sequential views from analysis of MASH Test 4-11 for NETC 3-Bar bridge rail from upstream and downstream viewpoints.

Figure K-2. [Continued] Sequential views from analysis of MASH Test 4-11 for NETC 3-Bar bridge rail from upstream and downstream viewpoints.

Figure K-3. Sequential views from analysis of MASH Test 4-11 for NETC 3-Bar bridge rail from an oblique viewpoint.

Figure K-3. [Continued] Sequential views from analysis of MASH Test 4-11 for NETC 3-Bar bridge rail from from an oblique viewpoint.

Figure K-3. [Continued] Sequential views from analysis of MASH Test 4-11 for NETC 3-Bar bridge rail from an oblique viewpoint.

Sequential Views for Test 4-12 on

Curb-Mounted NETC 3-Bar Bridge Rail

(Case 1 – 47.5" Truck Bed)

Figure L-1. Sequential views from analysis of MASH Test 4-12 for NETC 3-Bar bridge rail from an overhead viewpoint – Case 1.

0.30 seconds

 	<u>~~~~</u>	*** *********************************

0.35 seconds

0.40 seconds

Figure L-1. [Continued] Sequential views from analysis of MASH Test 4-12 for NETC 3-Bar bridge rail from an overhead viewpoint – Case 1.

0.55 seconds

0.60 seconds

0.65 seconds

Figure L-1. [Continued] Sequential views from analysis of MASH Test 4-12 for NETC 3-Bar bridge rail from an overhead viewpoint – Case 1.

0.80 seconds

0.85 seconds

0.90 seconds

0.95 seconds

Figure L-1. [Continued] Sequential views from analysis of MASH Test 4-12 for NETC 3-Bar bridge rail from an overhead viewpoint – Case 1.

0.00 seconds 0.05 seconds 0.10 seconds 0.15 seconds

Figure K-2. Sequential views from analysis of MASH Test 4-12 for NETC 3-Bar bridge rail from upstream and downstream viewpoints – Case 1.

Figure K-2. [Continued] Sequential views from analysis of MASH Test 4-12 for NETC 3-Bar bridge rail from upstream and downstream viewpoints – Case 1.

Figure K-2. [Continued] Sequential views from analysis of MASH Test 4-12 for NETC 3-Bar bridge rail from upstream and downstream viewpoints – Case 1.

Figure K-2. [Continued] Sequential views from analysis of MASH Test 4-12 for NETC 3-Bar bridge rail from upstream and downstream viewpoints – Case 1.

Figure K-2. [Continued] Sequential views from analysis of MASH Test 4-12 for NETC 3-Bar bridge rail from upstream and downstream viewpoints – Case 1.

Figure K-3. Sequential views from analysis of MASH Test 4-12 for NETC 3-Bar bridge rail from an oblique viewpoint – Case 1.

Figure K-3. [Continued] Sequential views from analysis of MASH Test 4-12 for NETC 3-Bar bridge rail from an oblique viewpoint – Case 1.

Figure K-3. [Continued] Sequential views from analysis of MASH Test 4-12 for NETC 3-Bar bridge rail from an oblique viewpoint – Case 1.

Figure K-3. [Continued] Sequential views from analysis of MASH Test 4-12 for NETC 3-Bar bridge rail from an oblique viewpoint – Case 1. Sequential Views for Test 4-12 on

Curb-Mounted NETC 3-Bar Bridge Rail

(Case 2 – 50" Truck Bed)

Figure M-1. Sequential views from analysis of MASH Test 4-12 for NETC 3-Bar bridge rail from an overhead viewpoint – Case 2.

0.25 seconds

0.30 seconds

] .,
--	-------------

0.35 seconds

0.40 seconds

0.45 seconds

Figure M-1. [Continued] Sequential views from analysis of MASH Test 4-12 for NETC 3-Bar bridge rail from an overhead viewpoint – Case 2.

0.50 seconds

0.55 seconds

0.60 seconds

0.65 seconds

0.70 seconds

Figure M-1. [Continued] Sequential views from analysis of MASH Test 4-12 for NETC 3-Bar bridge rail from an overhead viewpoint - Case 2.

0.75 seconds

0.80 seconds

0.85 seconds

0.90 seconds

0.95 seconds

Figure M-1. [Continued] Sequential views from analysis of MASH Test 4-12 for NETC 3-Bar bridge rail from an overhead viewpoint – Case 2.

Figure M-2. Sequential views from analysis of MASH Test 4-12 for NETC 3-Bar bridge rail from upstream and downstream viewpoints – Case 2.

Figure M-2. [Continued] Sequential views from analysis of MASH Test 4-12 for NETC 3-Bar bridge rail from upstream and downstream viewpoints – Case 2.

Figure M-2. [Continued] Sequential views from analysis of MASH Test 4-12 for NETC 3-Bar bridge rail from upstream and downstream viewpoints – Case 2.

Figure M-2. [Continued] Sequential views from analysis of MASH Test 4-12 for NETC 3-Bar bridge rail from upstream and downstream viewpoints – Case 2.

Figure M-2. [Continued] Sequential views from analysis of MASH Test 4-12 for NETC 3-Bar bridge rail from upstream and downstream viewpoints – Case 2.

Figure M-3. Sequential views from analysis of MASH Test 4-12 for NETC 3-Bar bridge rail from an oblique viewpoint – Case 2.

Figure M-3. [Continued] Sequential views from analysis of MASH Test 4-12 for NETC 3-Bar bridge rail from an oblique viewpoint – Case 2.

Figure M-3. [Continued] Sequential views from analysis of MASH Test 4-12 for NETC 3-Bar bridge rail from an oblique viewpoint – Case 2.

Figure M-3. [Continued] Sequential views from analysis of MASH Test 4-12 for NETC 3-Bar bridge rail from an oblique viewpoint – Case 2.

Appendix N

Sequential Views for Test 4-20 on

AGT 3-Bar Transition

0.00 seconds

0.05 seconds

0.10 seconds

0.15 seconds

0.20 seconds

Figure N-1. Sequential views from analysis of MASH Test 4-20 for AGT 3-Bar transition from an overhead viewpoint.

0.25 seconds

0.30 seconds

0.35 seconds

0.40 seconds

0.45 seconds

Figure N-1. [Continued] Sequential views from analysis of MASH Test 4-20 for AGT 3-Bar transition from an overhead viewpoint.

Figure N-2. Sequential views from analysis of MASH Test 4-20 for AGT 3-Bar transition from upstream and downstream viewpoints.

Figure N-2. [Continued] Sequential views from analysis of MASH Test 4-20 for AGT 3-Bar transition from upstream and downstream viewpoints.

Figure N-3. Sequential views from analysis of MASH Test 4-20 for AGT 3-Bar transition from an oblique viewpoint.

0.20 seconds

0.25 seconds

0.30 seconds

0.35 seconds

Figure N-3. [Continued] Sequential views from analysis of MASH Test 4-20 for AGT 3-Bar transition from an oblique viewpoint.

Appendix O

Sequential Views for Test 4-21 on

AGT 3-Bar Transition

Figure O-1. [Continued] Sequential views from analysis of MASH Test 4-21 for AGT 3-Bar transition from an overhead viewpoint.

0.00 seconds

0.05 seconds

0.10 seconds

0.15 seconds

0.20 seconds

Figure O-2. Sequential views from analysis of MASH Test 4-21 for AGT 3-Bar transition from upstream and downstream viewpoints.

0.25 seconds 0.30 seconds 0.35 seconds 0.40 seconds 0.45 seconds

Figure O-2. [Continued] Sequential views from analysis of MASH Test 4-21 for AGT 3-Bar transition from upstream and downstream viewpoints. 0.50 seconds 0.55 seconds 0.60 seconds 0.65 seconds 0.70 seconds

Figure O-2. [Continued] Sequential views from analysis of MASH Test 4-21 for AGT 3-Bar transition from upstream and downstream viewpoints.

Figure O-3. Sequential views from analysis of MASH Test 4-21 for AGT 3-Bar transition from an oblique viewpoint.

Figure O-3. [Continued] Sequential views from analysis of MASH Test 4-21 for AGT 3-Bar transition from from an oblique viewpoint.

0.55 seconds

Figure O-3. [Continued] Sequential views from analysis of MASH Test 4-21 for AGT 3-Bar transition from an oblique viewpoint.

Appendix P

Sequential Views for Test 4-22 on

AGT 3-Bar Transition

from an overhead viewpoint.

Figure P-1. [Continued] Sequential views from analysis of MASH Test 4-22 for AGT 3-Bar transition from an overhead viewpoint.

0.00 seconds 0.05 seconds 0.10 seconds 0.15 seconds

Figure P-2. Sequential views from analysis of MASH Test 4-22 for AGT 3-Bar transition from upstream and downstream viewpoints.

Figure P-2. [Continued] Sequential views from analysis of MASH Test 4-22 for AGT 3-Bar transition from upstream and downstream viewpoints.

0.40 seconds

0.45 seconds

0.50 seconds

0.55 seconds

Figure P-2. [Continued] Sequential views from analysis of MASH Test 4-22 for AGT 3-Bar transition from upstream and downstream viewpoints.

Figure P-2. [Continued] Sequential views from analysis of MASH Test 4-22 for AGT 3-Bar transition from upstream and downstream viewpoints.

0.00 seconds

0.05 seconds

0.10 seconds

0.15 seconds

Figure P-3. Sequential views from analysis of MASH Test 4-22 for AGT 3-Bar transition from an oblique viewpoint.

Figure P-3. [Continued] Sequential views from analysis of MASH Test 4-22 for AGT 3-Bar transition from an oblique viewpoint.

Figure P-3. [Continued] Sequential views from analysis of MASH Test 4-22 for AGT 3-Bar transition from an oblique viewpoint.

Sequential Views for Test 4-10 on

Sidewalk-Mounted NETC 4-Bar Bridge Rail

0.00 seconds

0.05 seconds

0.10 seconds

0.15 seconds

0.20 seconds

Figure Q-1. Sequential views from analysis of MASH Test 4-10 for NETC 4-Bar bridge rail from an overhead viewpoint.

0.25 seconds

0.30 seconds

0.35 seconds

0.40 seconds

0.45 seconds

Figure Q-1. [Continued] Sequential views from analysis of MASH Test 4-10 for NETC 4-Bar bridge rail from an overhead viewpoint.

🛱	1	E E	E, 1	8	- 2		 E	e, i	7
				A LING		ļ			
			134	S and an					

0.55 seconds

0.60 seconds

0.65 seconds

0.70 seconds

Figure Q-1. [Continued] Sequential views from analysis of MASH Test 4-10 for NETC 4-Bar bridge rail from an overhead viewpoint.

0.00 seconds

0.05 seconds

0.10 seconds

0.15 seconds

0.20 seconds

Figure Q-2. Sequential views from analysis of MASH Test 4-10 for NETC 4-Bar bridge rail from upstream and downstream viewpoints.

0.25 seconds

0.30 seconds

0.35 seconds

0.40 seconds

0.45 seconds

Figure Q-2. [Continued] Sequential views from analysis of MASH Test 4-10 for NETC 4-Bar bridge rail from upstream and downstream viewpoints. 0.50 seconds

0.55 seconds

0.60 seconds

0.65 seconds

0.70 seconds

Figure Q-2. [Continued] Sequential views from analysis of MASH Test 4-10 for NETC 4-Bar bridge rail from upstream and downstream viewpoints.

Figure Q-3. Sequential views from analysis of MASH Test 4-10 for NETC 4-Bar bridge rail from an oblique viewpoint.

Figure Q-3. [Continued] Sequential views from analysis of MASH Test 4-10 for NETC 4-Bar bridge rail from from an oblique viewpoint.

Figure Q-3. [Continued] Sequential views from analysis of MASH Test 4-10 for NETC 4-Bar bridge rail from an oblique viewpoint.

Figure Q-3. [Continued] Sequential views from analysis of MASH Test 4-10 for NETC 4-Bar bridge rail from an oblique viewpoint.

Sequential Views for Test 4-11 on

Sidewalk-Mounted NETC 4-Bar Bridge Rail

0.05 seconds

0.10 seconds

0.15 seconds

Figure R-1. Sequential views from analysis of MASH Test 4-11 for NETC 4-Bar bridge rail from an overhead viewpoint.

0.25 seconds

0.30 seconds

0.35 seconds

0.40 seconds

Figure R-1. [Continued] Sequential views from analysis of MASH Test 4-11 for NETC 4-Bar bridge rail from an overhead viewpoint.

0.55 seconds

0.60 seconds

0.65 seconds

Figure R-1. [Continued] Sequential views from analysis of MASH Test 4-11 for NETC 4-Bar bridge rail from an overhead viewpoint.

0.00 seconds

0.05 seconds

0.10 seconds

0.15 seconds

0.20 seconds

Figure R-2. Sequential views from analysis of MASH Test 4-11 for NETC 4-Bar bridge rail from upstream and downstream viewpoints.

0.25 seconds

0.30 seconds

0.35 seconds

0.40 seconds

0.45 seconds

Figure R-2. [Continued] Sequential views from analysis of MASH Test 4-11 for NETC 4-Bar bridge rail from upstream and downstream viewpoints.

Figure R-2. [Continued] Sequential views from analysis of MASH Test 4-11 for NETC 4-Bar bridge rail from upstream and downstream viewpoints.

0.00 seconds

0.05 seconds

0.10 seconds

0.15 seconds

Figure R-3. Sequential views from analysis of MASH Test 4-11 for NETC 4-Bar bridge rail from an oblique viewpoint.

0.20 seconds

0.25 seconds

0.30 seconds

0.35 seconds

Figure R-3. [Continued] Sequential views from analysis of MASH Test 4-11 for NETC 4-Bar bridge rail from from an oblique viewpoint.

0.40 seconds

0.45 seconds

0.50 seconds

0.55 seconds

Figure R-3. [Continued] Sequential views from analysis of MASH Test 4-11 for NETC 4-Bar bridge rail from an oblique viewpoint.

0.60 seconds

0.65 seconds

0.70 seconds

0.75 seconds

Figure R-3. [Continued] Sequential views from analysis of MASH Test 4-11 for NETC 4-Bar bridge rail from an oblique viewpoint.

Sequential Views for Test 4-12 on

Sidewalk-Mounted NETC 4-Bar Bridge Rail

Figure S-1. Sequential views from analysis of MASH Test 4-12 for NETC 4-Bar bridge rail from an overhead viewpoint.

Figure S-1. [Continued] Sequential views from analysis of MASH Test 4-12 for NETC 4-Bar bridge rail from an overhead viewpoint.

Figure S-1. [Continued] Sequential views from analysis of MASH Test 4-12 for NETC 4-Bar bridge rail from an overhead viewpoint.

Figure S-1. [Continued] Sequential views from analysis of MASH Test 4-12 for NETC 4-Bar bridge rail from an overhead viewpoint.

Figure S-2. Sequential views from analysis of MASH Test 4-12 for NETC 4-Bar bridge rail from upstream and downstream viewpoints.

0.20 seconds

Figure S-3. Sequential views from analysis of MASH Test 4-12 for NETC 4-Bar bridge rail from an oblique viewpoint.

Figure S-3. [Continued] Sequential views from analysis of MASH Test 4-12 for NETC 4-Bar bridge rail from an oblique viewpoint.

Figure S-3. [Continued] Sequential views from analysis of MASH Test 4-12 for NETC 4-Bar bridge rail from an oblique viewpoint.

Figure S-3. [Continued] Sequential views from analysis of MASH Test 4-12 for NETC 4-Bar bridge rail from an oblique viewpoint.

Sequential Views for Test 4-20 on

Sidewalk-Mounted AGT 4-Bar Bridge Rail

0.25 seconds

0.30 seconds

0.35 seconds

0.40 seconds

0.45 seconds

Figure T-1. [Continued] Sequential views from analysis of MASH Test 4-20 for AGT 4-Bar bridge rail from an overhead viewpoint.

0.00 seconds

0.05 seconds

0.10 seconds

0.15 seconds

Figure T-2. Sequential views from analysis of MASH Test 4-20 for AGT 4-Bar bridge rail from upstream and downstream viewpoints.

0.20 seconds

0.25 seconds

0.30 seconds

0.35 seconds

Figure T-3. [Continued] Sequential views from analysis of MASH Test 4-20 for AGT 4-Bar bridge rail from an oblique viewpoint.

Sequential Views for Test 4-21 on

Sidewalk-Mounted AGT 4-Bar Bridge Rail

0.50 seconds

0.55 seconds

0.60 seconds

0.65 seconds

0.70 seconds

Figure U-1. [Continued] Sequential views from analysis of MASH Test 4-21 for AGT 4-Bar bridge rail from an overhead viewpoint.

0.00 seconds

0.05 seconds

0.10 seconds

0.15 seconds

Figure U-2. Sequential views from analysis of MASH Test 4-21 for AGT 4-Bar bridge rail from upstream and downstream viewpoints.

0.20 seconds

0.25 seconds

0.30 seconds

0.35 seconds

0.40 seconds

0.45 seconds

0.50 seconds

0.55 seconds

0.60 seconds

0.65 seconds

0.70 seconds

0.75 seconds

0.80 seconds

0.85 seconds

0.90 seconds

0.20 seconds

0.25 seconds

0.30 seconds

0.35 seconds

0.40 seconds

0.45 seconds

0.50 seconds

0.55 seconds

Sequential Views for Test 4-22 on

Sidewalk-Mounted AGT 4-Bar Bridge Rail

Figure V-1. Sequential views from analysis of MASH Test 4-22 for AGT 4-Bar bridge rail from an overhead viewpoint.

Figure V-1. [Continued] Sequential views from analysis of MASH Test 4-22 for AGT 4-Bar bridge rail from an overhead viewpoint.

Figure V-1. [Continued] Sequential views from analysis of MASH Test 4-22 for AGT 4-Bar bridge rail from an overhead viewpoint.

0.00 seconds

Figure V-2. Sequential views from analysis of MASH Test 4-22 for AGT 4-Bar bridge rail from upstream and downstream viewpoints.

0.20 seconds

Figure V-2. [Continued] Sequential views from analysis of MASH Test 4-22 for AGT 4-Bar bridge rail from upstream and downstream viewpoints.

0.40 seconds

0.45 seconds

0.50 seconds

0.55 seconds

Figure V-2. [Continued] Sequential views from analysis of MASH Test 4-22 for AGT 4-Bar bridge rail from upstream and downstream viewpoints.

0.60 seconds

0.65 seconds

0.70 seconds

0.75 seconds

Figure V-2. [Continued] Sequential views from analysis of MASH Test 4-22 for AGT 4-Bar bridge rail from upstream and downstream viewpoints.

Figure V-2. [Continued] Sequential views from analysis of MASH Test 4-22 for AGT 4-Bar bridge rail from upstream and downstream viewpoints.

0.00 seconds

0.05 seconds

0.10 seconds

0.15 seconds

Figure V-3. Sequential views from analysis of MASH Test 4-22 for AGT 4-Bar bridge rail from an oblique viewpoint.

0.20 seconds

0.25 seconds

0.30 seconds

B

0.35 seconds

Figure V-3. [Continued] Sequential views from analysis of MASH Test 4-22 for AGT 4-Bar bridge rail from an oblique viewpoint.

0.40 seconds

0.45 seconds

0.50 seconds

0.55 seconds

Figure V-3. [Continued] Sequential views from analysis of MASH Test 4-22 for AGT 4-Bar bridge rail from an oblique viewpoint.

0.60 seconds

0.65 seconds

0.70 seconds

0.75 seconds

Figure V-3. [Continued] Sequential views from analysis of MASH Test 4-22 for AGT 4-Bar bridge rail from an oblique viewpoint.

Figure V-3. [Continued] Sequential views from analysis of MASH Test 4-22 for AGT 4-Bar bridge rail from an oblique viewpoint.

Sequential Views for Test 3-10 on

Curb-Mounted NETC 2-Bar Bridge Rail

Figure W-1. Sequential views from analysis of MASH Test 3-10 for NETC 2-Bar bridge rail from an overhead viewpoint.

Figure W-1. [Continued] Sequential views from analysis of MASH Test 3-10 for NETC 2-Bar bridge rail from an overhead viewpoint.

Figure W-1. [Continued] Sequential views from analysis of MASH Test 3-10 for NETC 2-Bar bridge rail from an overhead viewpoint.

0.75 seconds

Figure W-1. [Continued] Sequential views from analysis of MASH Test 3-10 for NETC 2-Bar bridge rail from an overhead viewpoint.

0.00 seconds

0.05 seconds

0.10 seconds

0.15 seconds

Figure W-2. Sequential views from analysis of MASH Test 3-10 for NETC 2-Bar bridge rail from upstream and downstream viewpoints.

0.20 seconds

0.25 seconds

0.30 seconds

0.35 seconds

Figure W-2. [Continued] Sequential views from analysis of MASH Test 3-10 for NETC 2-Bar bridge rail from upstream and downstream viewpoints.

0.40 seconds

0.45 seconds

0.50 seconds

0.55 seconds

Figure W-2. [Continued] Sequential views from analysis of MASH Test 3-10 for NETC 2-Bar bridge rail from upstream and downstream viewpoints.

Figure W-3. Sequential views from analysis of MASH Test 3-10 for NETC 2-Bar bridge rail from an oblique viewpoint.

Figure W-3. [Continued] Sequential views from analysis of MASH Test 3-10 for NETC 2-Bar bridge rail from an oblique viewpoint.

Figure W-3. [Continued] Sequential views from analysis of MASH Test 3-10 for NETC 2-Bar bridge rail from an oblique viewpoint.

Figure W-3. [Continued] Sequential views from analysis of MASH Test 3-10 for NETC 2-Bar bridge rail from an oblique viewpoint.

Sequential Views for Test 3-11 on

Curb-Mounted NETC 2-Bar Bridge Rail

0.25 seconds

	-			-			F 3	-	-			
1.1	F	- -	P	17	1	P.,	. #P			8	1	P. P.
						1						1 1

0.30 seconds

0.35 seconds

0.40 seconds

Figure X-1. [Continued] Sequential views from analysis of MASH Test 3-11 for NETC 2-Bar bridge rail from an overhead viewpoint.

0.50 seconds

0.55 seconds

 F	ļ	-	7	æ.,	Ħ		Ħ	₽		Ŧ	1	F	93 ,	.	몀	Ħ		₽,,	I
					1	C. C	Ţ		<u></u>										

0.60 seconds

0.65 seconds

Figure X-1. [Continued] Sequential views from analysis of MASH Test 3-11 for NETC 2-Bar bridge rail from an overhead viewpoint.

0.75 seconds

0.80 seconds

0.85 seconds

Figure X-1. [Continued] Sequential views from analysis of MASH Test 3-11 for NETC 2-Bar bridge rail from an overhead viewpoint.

0.00 seconds

0.05 seconds

0.10 seconds

0.15 seconds

Figure X-2. Sequential views from analysis of MASH Test 3-11 for NETC 2-Bar bridge rail from upstream and downstream viewpoints.

0.20 seconds

0.25 seconds

0.30 seconds

0.35 seconds

Figure X-2. [Continued] Sequential views from analysis of MASH Test 3-11 for NETC 2-Bar bridge rail from upstream and downstream viewpoints.

0.40 seconds

0.45 seconds

0.50 seconds

0.55 seconds

Figure X-2. [Continued] Sequential views from analysis of MASH Test 3-11 for NETC 2-Bar bridge rail from upstream and downstream viewpoints.

0.60 seconds

0.65 seconds

0.70 seconds

0.75 seconds

Figure X-3. [Continued] Sequential views from analysis of MASH Test 3-11 for NETC 2-Bar bridge rail from an oblique viewpoint.

Figure X-3. [Continued] Sequential views from analysis of MASH Test 3-11 for NETC 2-Bar bridge rail from an oblique viewpoint.

Figure X-3. [Continued] Sequential views from analysis of MASH Test 3-11 for NETC 2-Bar bridge rail from an oblique viewpoint.

Sequential Views for Test 3-20 on

Curb-Mounted AGT 2-Bar Bridge Rail

0.00 seconds

0.05 seconds

0.10 seconds

0.15 seconds

0.20 seconds

0.25 seconds

0.30 seconds

0.35 seconds

0.40 seconds

0.45 seconds

0.50 seconds

0.55 seconds

0.60 seconds

0.65 seconds

0.70 seconds

Figure Y-1. [Continued] Sequential views from analysis of MASH Test 3-20 for AGT 2-Bar bridge rail from an overhead viewpoint.

0.00 seconds

0.05 seconds

0.10 seconds

0.15 seconds

0.20 seconds

0.25 seconds

0.30 seconds

0.35 seconds

0.40 seconds

0.45 seconds

0.50 seconds

0.55 seconds

0.60 seconds

0.65 seconds

0.70 seconds

0.75 seconds

Figure Y-2. [Continued] Sequential views from analysis of MASH Test 3-20 for AGT 2-Bar bridge rail from upstream and downstream viewpoints.

0.00 seconds

0.05 seconds

0.10 seconds

0.15 seconds

Figure Y-3. Sequential views from analysis of MASH Test 3-20 for AGT 2-Bar bridge rail from an oblique viewpoint.

0.20 seconds

0.25 seconds

0.30 seconds

0.35 seconds

Figure Y-3. [Continued] Sequential views from analysis of MASH Test 3-20 for AGT 2-Bar bridge rail from an oblique viewpoint.

0.40 seconds

0.45 seconds

0.50 seconds

0.55 seconds

Figure Y-3. [Continued] Sequential views from analysis of MASH Test 3-20 for AGT 2-Bar bridge rail from an oblique viewpoint.

0.60 seconds

0.65 seconds

0.70 seconds

0.75 seconds

Figure Y-3. [Continued] Sequential views from analysis of MASH Test 3-20 for AGT 2-Bar bridge rail from an oblique viewpoint.

Sequential Views for Test 3-21 on

Curb-Mounted AGT 2-Bar Bridge Rail

Figure Z-1. Sequential views from analysis of MASH Test 3-21 for AGT 2-Bar bridge rail from an overhead viewpoint.

Figure Z-1. [Continued] Sequential views from analysis of MASH Test 3-21 for AGT 2-Bar bridge rail from an overhead viewpoint.

0.00 seconds

0.05 seconds

0.10 seconds

0.15 seconds

0.20 seconds

0.25 seconds

0.30 seconds

0.35 seconds

0.40 seconds

0.45 seconds

0.50 seconds

0.55 seconds

0.60 seconds

0.65 seconds

0.70 seconds

0.75 seconds

0.80 seconds

0.85 seconds

0.90 seconds

0.95 seconds

0.00 seconds

0.05 seconds

0.10 seconds

0.15 seconds

Figure Z-3. Sequential views from analysis of MASH Test 3-21 for AGT 2-Bar bridge rail from an oblique viewpoint.

0.20 seconds

0.25 seconds

0.30 seconds

0.35 seconds

0.40 seconds

0.45 seconds

0.50 seconds

0.55 seconds

Figure Z-3. [Continued] Sequential views from analysis of MASH Test 3-21 for AGT 2-Bar bridge rail from an oblique viewpoint.

0.60 seconds

0.65 seconds

0.70 seconds

0.75 seconds

Figure Z-3. [Continued] Sequential views from analysis of MASH Test 3-21 for AGT 2-Bar bridge rail from an oblique viewpoint.

0.80 seconds

Figure Z-3. [Continued] Sequential views from analysis of MASH Test 3-21 for AGT 2-Bar bridge rail from an oblique viewpoint.