

NETC 20-3

Investigating Thermal Imaging Technologies and Unmanned Aerial Vehicles to Improve Bridge Inspections

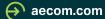
Project Close-Out Webinar August 8th, 2023

Kevin Ahearn, PE

Delivering a better world

Agenda

- 1. Project Team
- 2. Introduction and Research Objective
- 3. Field Testing and Data Analysis
- 4. Guidelines and Protocols for Implementation


Project Team

AECOM Research Team:

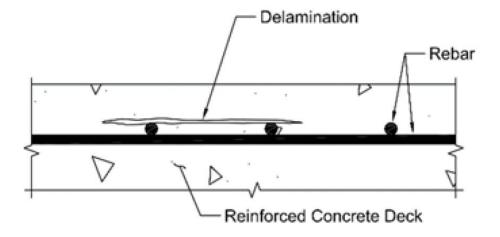
- Kevin Ahearn, PE, Principal Investigator
- Brady Seston, PE
- Reed Brockman, PE
- Ed Zhou, PE, PhD
- Zach Magee, EIT
- Tony Tieso

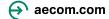
Technical Committee:

- John "Sam" Maxim, Maine Department of Transportation (Technical Committee Chair)
- Vitalij Staroverov, Connecticut Department of Transportation
- Bruce Sylvia, Massachusetts Department of Transportation
- Nicholas Goulas, New Hampshire Department of Transportation
- Colin Franco, Rhode Island Department of Transportation
- Evan Robinson, Vermont Agency of Transportation
- Dale Peabody, Maine Department of Transportation (Advisory Committee Liaison)

"Develop UAV-based inspection and analysis protocols using infrared thermal imaging to determine the existence and extent of concrete delamination, with emphasis on the underside of bridge decks"

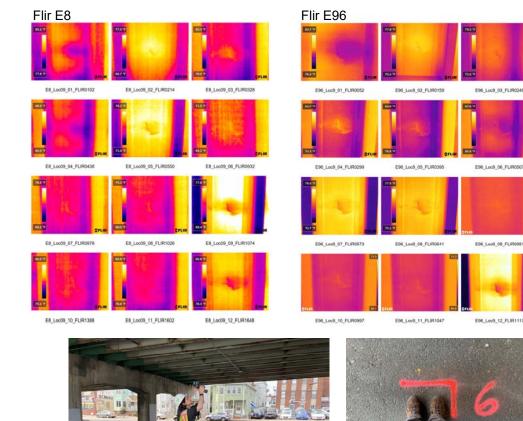
- Concrete delamination caused by expansion of corroding reinforcing steel
- Can be difficult to detect visually
- Presents critical safety hazard
 Direct impact
 - o Distraction of drivers




- Traditionally identified with manual methods:
 - $_{\odot}$ Hammer Sounding
 - \circ Chain Drag
 - o Rotary Percussion Tool
- Requires hands-on access
- Subjective documentation
- Relies on ability to hear sound that is produced

↔ aecom.com

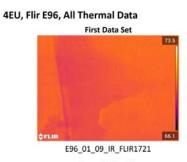
- Thermal imaging is a potential tool for identifying delaminations along the underside of bridge decks
- Delaminations cause voids or air pockets in the deck
- Air acts as an insulator causing the delamination to change temperature faster than the adjacent deck
- Relies on ambient air temperature changes for underside of bridges



Two Phases for Field Testing

Handheld Thermal Cameras

- Field tested Flir, Fluke, and Seek Shot Pro ٠ thermal cameras
- Repeated imagery to determine temperature ٠ and weather condition recommendations
- Repeated imagery to compare different ٠ thermal resolutions



Two Phases for Field Testing

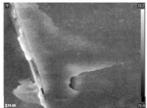
Handheld Thermal Cameras

- Determine whether traditional inspection findings could be verified
 - Beades Bridge All delaminations at least partially identified
 - Washington Bridge 64% at least partially identified

Flir E8

Second Data Set

E96_02_09_IR_FLIR1799

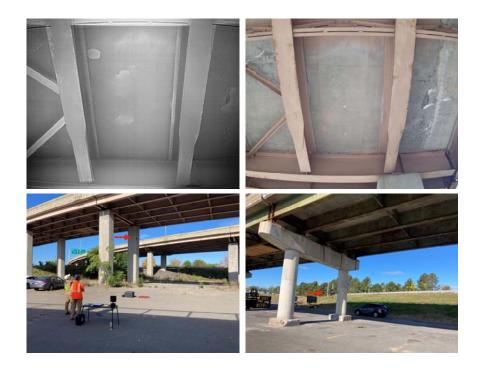

Flir E96

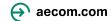
Deficiency 9

E96_01_09_RGB_FLIR1722


Second Data Set – Post Processed

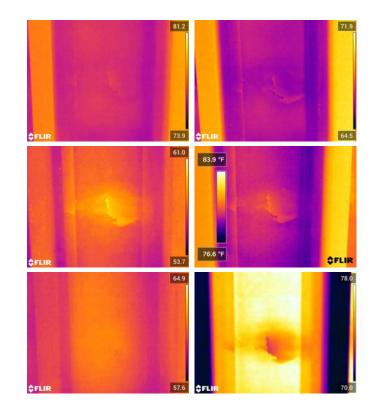
E96_02p_09_IR_FLIR1799





Two Phases for Field Testing

Drone-Mounted Thermal Cameras

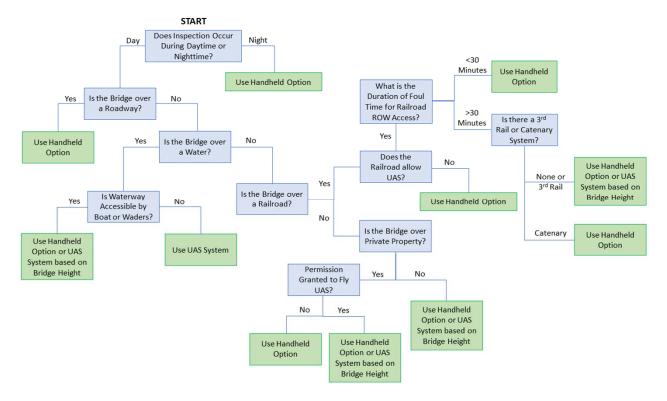

- Field tested Zenmuse XT2 mounted on DJI Matrice 210
- Two bridges
- Perform UAV-IR survey to identify delaminations for comparison to traditional rehabilitation level inspection
 - o Ramp K 78% of delaminations at least partially identified
 - o Ramp B 51% of delaminations at least partially identified
 - o Both thermal surveys included false positive identifications
 - Both identified more delamination than the previous routine inspection

Initial Conclusions

- Handheld thermal cameras offer more control of settings
- Increased thermal resolution improves likelihood of detection
- Limits of delamination do not always line up with limits determined by traditional methods and will vary based on temperature changes
- Not all delamination will be detected
- Potential for false positive identification

Thermal Imaging

Recommended Weather Conditions for Data Collection


- Temperature change for the preceding 6 hours
 0 10° F for handheld
 - \circ 15° F for drone-mounted
- Wind Speeds
 - \circ < 30 mph for handheld
 - \circ < 20 mph for drone-mounted
- No rain at least 48 hours prior

Thermal Imaging

Equipment Selection

Distance to Bridge Element		Flir E96	Zenmuse XT2	
	10mm	17mm	29mm	(640x480, 13mm)
10'	~			
15'	1			
20'	1			1
25'	~			✓
30'	~	~		~
35'	~	~		~
40'		~	~	✓
45'		1	~	~
50'		~	~	~
>50'			~	1

Distance to Bridge Element	Thermal Camera Resolution							
	160 x 120	320 x 240	336 x 256	464 x 348	640 x 480	640 x 512		
<10'	~	~	~	~	~	~		
10'	~	1	1	~	1	1		
15'	~	~	~	1	~	~		
20'	~	~	~	~	~	~		
25'		~	~	~	~	~		
30'		~	~	~	~	~		
35'				1	1	~		
40'				~	~	~		
45'					1	~		
50'					1	~		
>50'					1	1		



Thermal Imaging

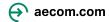
Camera Settings

- Radiometric JPEG files
- Thermal and visual image capture
- White hot color palette
- Set temperature limits to be 8° to 10° F apart

aecom.com

Thermal Imaging

Data Interpretation


- False positive identification is possible
- Numerous factors affect temperature readings
- Cross check with visual imagery

Drones / UAV / UAS

- Applications depend on numerous factors
- Potential to Improve Efficiency and Safety
 - Another "Tool in the Toolbox" based on Engineering Judgement
- Critical to understand capabilities and limitations of equipment

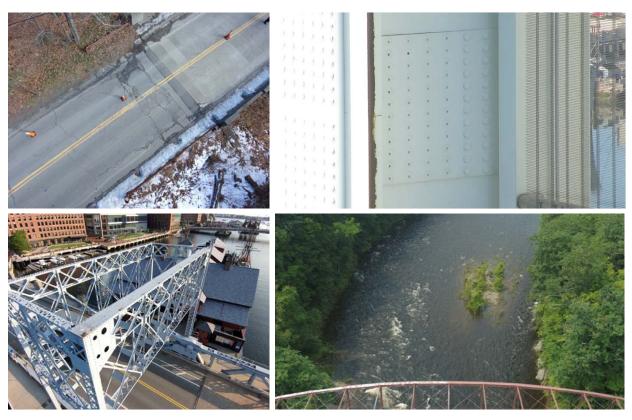
Drones / UAV / UAS

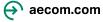
General Protocols

- Planning
 - o Determine needed authorizations and waivers
 - o Identify site hazards
 - o Perform risk assessment and hazard mitigation
 - o Schedule appropriate flight crew
 - Team Leader required for NBIS inspections

- Operational

- o Safety toolbox meeting
- o Inspect equipment and set up
- o Pre-flight and control checks
- o Perform operation
- o Review data
- o After action review

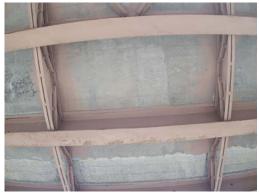



A aecom.com

Drones / UAV / UAS

Inspection Applications

- Inventory / Record Photos
- Aerial Imagery
- Visual Screening Tool
- Channel Inspection



Conclusion

- Thermal imaging is able to detect varying degrees of delamination under the right conditions (10°-15° F temperature swing)
- Even under ideal conditions, it is possible that not all delaminations will be detected by thermal imaging
- Limits of delamination do not always line up with limits determined by traditional methods and will vary based on temperature changes
- Proper interpretation of thermal images is essential to accurately identify delaminations and avoid false positive identification

Thank you.

Additional questions or comments can be directed to <u>kevin.ahearn2@aecom.com</u>

Delivering a better world

