

New England Transportation Consortium (NETC) NETC 20-3

Investigating Thermal Imaging Technologies and Unmanned Aerial Vehicles to Improve Bridge Inspections

Task 2 Interim Report

Field Demonstration and Data Analysis

DISCLAIMER: This report, prepared in cooperation with the New England Transportation Consortium, does not constitute a standard, specification, or regulation. The contents of this report reflect the views of the author(s) who is (are) responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the views of the New England Transportation Consortium or the Federal Highway Administration.

2/11/2022

ACKNOWLEDGEMENTS

The following are the members of the Technical Committee that developed the scope of work for this research project and provided technical oversight throughout the course of the research:

- John "Sam" Maxim, Maine Department of Transportation (Technical Committee Chair)
- Vitalij Staroverov, Connecticut Department of Transportation
- Bruce Sylvia, Massachusetts Department of Transportation
- Nicholas Goulas, New Hampshire Department of Transportation
- Colin Franco, Rhode Island Department of Transportation
- Evan Robinson, Vermont Agency of Transportation
- Dale Peabody, Maine Department of Transportation (Advisory Committee Liaison)

AECOM would also like to acknowledge Robin Grace, MassDOT Aeronautics Drone Pilot Program Senior Project Manager and the rest of the MassDOT Aeronautics Division for their assistance during this research project.

	1				
1. Report No.	2. Government Acce	ession No.	3. Recipien	t's Catalog No.	
N/A	N/A		N/A		
4. Title and Subtitle			5. Report D	ate	
Investigating Thermal Imaging Technologies and Unm		manned	February 11	l th, 2022	
Aerial Vehicles to Improve B	ridge Inspections		6. Performi	ng Organization Cod	le:
			N/A		
7. Author(s)			8. Performi	ng Organization Rep	ort No.
Kevin Ahearn, Brady Sesto	on, Ed Zhou, Reed Broch	kman	N/A		
9. Performing Organization N	lame and Address		10. Work U	Init No.	
AECOM			N/A		
Two City Center, Suite 200			11. Contrac	t or Grant No.	
Portland, ME 04101			N/A		
12. Sponsoring Agency Name	e and Address		13. Type of	Report and Period	
New England Transportation	Consortium		Task 2 Rep	ort	
Maine Department of Transpo	ortation		May 2021 t	o February 2022	
24 Child Street			14. Sponsor	ring Agency	
Augusta, ME 04330		-	NETC 20-3		
15. Supplementary Notes		·			
N/A					
16. Abstract					
The overall research objective	e is to focus on developi	ng UAV-bas	sed inspection	on and analysis proto	cols using
infrared (IR) thermal imaging to determine the existence		nce and exter	nt of concre	te delamination, with	n emphasis on
the underside of bridge decks.	•			,	1
The second task of this resear	ch project includes field	testing of ha	andheld and	UAV mounted them	nal cameras in
comparison to traditional insp	ection methods. The fie	ld testing wa	as performed	l at five bridge sites i	in
Massachusetts and Rhode Isla	nd. Handheld thermal c	ameras teste	d include th	e Flir E96, Flir E86,	Flir E8, Flir C5,
Seek Shot Pro, and Fluke TiX	580. Drone mounted the	ermal camera	as include th	ne DJI Matrice 210 w	vith Zenmuse
XT2, DJI Matrice 300 with Z	enmuse XT2, Parrot Ana	afi USA, and	l Skydio X2		
17. Key Words	,	18. Distrib	ution Staten	nent	
Unmanned aerial vehicles, UA	AV, Unmanned	No restricti	ions.		
aircraft systems, UAS, inspec	tion, infrared				
thermal imaging, IRTI, therm	ography, non-				
destructive evaluation, NDE,	bridge inspection				
19. Security Classif. (of this r	eport) 20. Security C	lassif. (of thi	is page)	21. No. of Pages	22. Price
Unclassified	Unclassified	,	10/	408	N/A
Form DOT F 1700.7 (8-72)	·		Repro	duction of complete	ed page authorized

TECHNICAL REPORT DOCUMENTATION PAGE

SI* (MODERN METRIC) CONVERSION FACTORS				
	AF	PROXIMATE CONVERSION	S TO SI UNITS	
Symbol	When You Know	Multiply By	To Find	Symbol
		LENGTH	•	
in	inches	25.4	millimeters	mm
ft	feet	0.305	meters	m
vd	vards	0.914	meters	m
mi	miles	1.61	kilometers	km
	miles		Kilometers	KIII
. 2		AREA 645.2		2
lin - 2	square inches	645.2	square millimeters	mm 2
ft	square feet	0.093	square meters	m
yd²	square yard	0.836	square meters	m²
ac	acres	0.405	hectares	ha
mi ²	square miles	2.59	square kilometers	km ²
	•••	VOLUME	•	
fl oz	fluid ounces	29.57	milliliters	ml
gal	gallons	3 785	liters	
£43	ganons	0.028		m ³
.3	cubic reet	0.028	cubic meters	3
yd°	cubic yard	0.765	cubic meters	m°
		MASS		
oz	ounces	28.35	grams	g
lb	pounds	0.454	kilograms	kg
т	short ton (2000 lb)	0.907	megagrams ("metric ton")	Mg ("t")
		TEMPERATURE (EXACT D	DEGREES)	
°F	Fahrenheit	5 (F-32) / 9	Celsius	°C
		or (F-32)/1.8		
		ILLUMINATION		
fc	foot-candles	10.76	lux	lv.
	foot-candles	10.70	anndolo (m ²	ad /m ²
TI	foot-Lamberts	3.426		cu/m
		FORCE AND PRESSURE O	RSIRESS	
lbf	poundforce	4.45	newtons	N
lbf/in ²	poundforce per square inch	6.89	kilopascals	kPA
	APP	ROXIMATE CONVERSIONS	FROM SI UNITS	
Symbol	When You Know	Multiply By	To Find	Symbol
		LENGTH		
mm	millimeters	0.039	inches	in
m	meters	3.28	feet	ft
m	meters	1.09	yards	yd
km	kilometers	0.621	miles	mi
		AREA		
mm ²				
m ²	square millimeters	0.0016	square inches	in ²
100	square millimeters	0.0016	square inches	in ² ft ²
m ²	square millimeters square meters	0.0016 10.764	square inches square feet	in ² ft ²
m²	square millimeters square meters square meters	0.0016 10.764 1.195	square inches square feet square yard	in ² ft ² yd ²
m² ha	square millimeters square meters square meters hectares	0.0016 10.764 1.195 2.47	square inches square feet square yard acres	in ² ft ² yd ² ac
m² ha km²	square millimeters square meters square meters hectares square kilometers	0.0016 10.764 1.195 2.47 0.386	square inches square feet square yard acres square miles	in ² ft ² yd ² ac mi ²
m² ha km²	square millimeters square meters square meters hectares square kilometers	0.0016 10.764 1.195 2.47 0.386 VOLUME	square inches square feet square yard acres square miles	in ² ft ² yd ² ac mi ²
m ² ha km ² mL	square millimeters square meters square meters hectares square kilometers milliliters	0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034	square inches square feet square yard acres square miles fluid ounces	in ² ft ² yd ² ac mi ² fl oz
m ² ha km ² mL L	square millimeters square meters square meters hectares square kilometers milliliters liters	0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264	square inches square feet square yard acres square miles fluid ounces gallons	in ² ft ² yd ² ac mi ² fl oz gal
m ² ha km ² mL L m ³	square millimeters square meters square meters hectares square kilometers milliliters liters cubic meters	0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314	square inches square feet square yard acres square miles fluid ounces gallons cubic feet	in ² ft ² yd ² ac mi ² fl oz gal ft ³
m ² ha km ² mL L m ³ m ³	square millimeters square meters square meters hectares square kilometers milliliters liters cubic meters cubic meters	0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307	square inches square feet square yard acres square miles fluid ounces gallons cubic feet cubic yard	in ² ft ² yd ² ac mi ² fl oz gal ft ³ yd ³
m ² ha km ² mL L m ³ m ³	square millimeters square meters square meters hectares square kilometers milliliters liters cubic meters cubic meters cubic meters	0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307	square inches square feet square yard acres square miles fluid ounces gallons cubic feet cubic yard	in ² ft ² yd ² ac mi ² fl oz gal ft ³ yd ³
m ² ha km ² mL L m ³ m ³	square millimeters square meters square meters hectares square kilometers milliliters liters cubic meters cubic meters cubic meters	0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307 MASS 0.035	square inches square feet square yard acres square miles fluid ounces gallons cubic feet cubic yard	in ² ft ² yd ² ac mi ² fl oz gal ft ³ yd ³
m ² ha km ² L M ³ m ³ g	square millimeters square meters square meters hectares square kilometers milliliters liters cubic meters cubic meters grams	0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307 MASS 0.035 2.202	square inches square feet square yard acres square miles fluid ounces gallons cubic feet cubic yard ounces	in ² ft ² yd ² ac mi ² fl oz gal ft ³ yd ³ oz
m ² ha km ² L L g kg	square millimeters square meters square meters hectares square kilometers milliliters liters cubic meters cubic meters grams kilograms	0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307 MASS 0.035 2.202 1.202	square inches square feet square yard acres square miles fluid ounces gallons cubic feet cubic yard ounces pounds	in ² ft ² yd ² ac mi ² fl oz gal ft ³ yd ³ oz lb
m ² ha km ² L m ³ m ³ g kg Mg ("t")	square millimeters square meters square meters hectares square kilometers milliliters liters cubic meters cubic meters cubic meters grams kilograms megagrams ("metric ton")	0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307 MASS 0.035 2.202 1.103	square inches square feet square yard acres square miles fluid ounces gallons cubic feet cubic yard ounces pounds short ton (2000 lb)	in ² ft ² yd ² ac mi ² fl oz gal ft ³ yd ³ oz lb T
m ² ha km ² L m ³ m ³ g kg Mg ("t")	square millimeters square meters square meters hectares square kilometers milliliters liters cubic meters cubic meters cubic meters grams kilograms megagrams ("metric ton")	0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307 MASS 0.035 2.202 1.103 TEMPERATURE (EXACT D	square inches square feet square yard acres square miles fluid ounces gallons cubic feet cubic yard ounces pounds short ton (2000 lb) EGREES	in ² ft ² yd ² ac mi ² fl oz gal ft ³ yd ³ oz Ib T
m ² ha km ² L m ³ m ³ g kg Mg ("t")	square millimeters square meters square meters hectares square kilometers milliliters liters cubic meters cubic meters cubic meters grams kilograms megagrams ("metric ton") Celsius	0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307 MASS 0.035 2.202 1.103 TEMPERATURE (EXACT DI 1.8C + 32	square inches square feet square yard acres square miles fluid ounces gallons cubic feet cubic yard ounces pounds short ton (2000 lb) DEGREES) Fahrenheit	in ² ft ² yd ² ac mi ² fl oz gal ft ³ yd ³ oz lb T
m ² ha km ² L M ³ g kg Mg ("t") °C	square millimeters square meters square meters hectares square kilometers milliliters liters cubic meters cubic meters cubic meters grams kilograms megagrams ("metric ton") Celsius	0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307 MASS 0.035 2.202 1.103 TEMPERATURE (EXACT D 1.8C + 32	square inches square feet square yard acres square miles fluid ounces gallons cubic feet cubic yard ounces pounds short ton (2000 lb) DEGREES) Fahrenheit	in ² ft ² yd ² ac mi ² fl oz gal ft ³ yd ³ oz lb T
m ² ha km ² L m ³ m ³ g kg Mg ("t") ℃	square millimeters square meters square meters hectares square kilometers milliliters liters cubic meters cubic meters cubic meters grams kilograms megagrams ("metric ton") Celsius	0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307 MASS 0.035 2.202 1.103 TEMPERATURE (EXACT DI 1.8C + 32 ILLUMINATION 0.0929	square inches square feet square yard acres square miles fluid ounces gallons cubic feet cubic yard ounces pounds short ton (2000 lb) DEGREES) Fahrenheit	in ² ft ² yd ² ac mi ² fl oz gal ft ³ yd ³ oz lb T °F
m ² ha km ² L L m ³ g kg Mg ("t") °C Ix cd/m ²	square millimeters square meters square meters hectares square kilometers milliliters liters cubic meters cubic meters cubic meters grams kilograms megagrams ("metric ton") Celsius	0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307 MASS 0.035 2.202 1.103 TEMPERATURE (EXACT D 1.8C + 32 ILLUMINATION 0.0929 0.2919	square inches square feet square yard acres square miles fluid ounces gallons cubic feet cubic yard ounces pounds short ton (2000 lb) DEGREES) Fahrenheit foot-candles foot-Lamberts	in ² ft ² yd ² ac mi ² fl oz gal ft ³ yd ³ oz lb T °F fc fl
m ² ha km ² L m ³ m ³ g kg Mg ("t") °C Ix cd/m ²	square millimeters square meters square meters hectares square kilometers inters cubic meters cubic meters cubic meters grams kilograms megagrams ("metric ton") Celsius lux candela/m ²	 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307 MASS 0.035 2.202 1.103 TEMPERATURE (EXACT DE 1.8C + 32 ILLUMINATION 0.0929 0.2919 FORCE AND PRESSURE O 	square inches square feet square yard acres square miles fluid ounces gallons cubic feet cubic yard ounces pounds short ton (2000 lb) Fahrenheit foot-candles foot-Lamberts	in ² ft ² yd ² ac mi ² fl oz gal ft ³ yd ³ oz lb T °F fc fl
m ² ha km ² L m ³ m ³ g kg Mg ("t") °C lx cd/m ² N	square millimeters square meters square meters hectares square kilometers milliliters liters cubic meters cubic meters cubic meters grams kilograms megagrams ("metric ton") Celsius lux candela/m ² newtons	0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307 MASS 0.035 2.202 1.103 TEMPERATURE (EXACT DE 1.8C + 32 ILLUMINATION 0.0929 0.2919 FORCE AND PRESSURE O 0.225	square inches square feet square yard acres square miles fluid ounces gallons cubic feet cubic yard ounces pounds short ton (2000 lb) Fahrenheit foot-candles foot-Lamberts R STRESS poundforce	in ² ft ² yd ² ac mi ² fl oz gal ft ³ yd ³ oz lb T °F fc fl

* SI is the symbol for the International System of Units. Appropriate rounding should be made to comply with Section 4 of ASTM E380

(Revised March 2003)

TABLE OF CONTENTS

Introduction	1
General Discussion of Handheld Thermal Cameras	1
Flir E96 and E86	1
Flir E8	3
Flir C5	4
Seek Shot Pro	5
Fluke TiX580	6
General Discussion of Drone Mounted Thermal Cameras	7
Parrot Anafi USA	7
Skydio X2	11
DJI Matrice 210 RTK V2 with Zenmuse XT2	14
DJI Matrice 300 RTK with Zenmuse XT2	17
Considerations for Thermal Data Capture and Analysis	19
Thermal Data Basics	19
Color Palettes	22
Data Capture Considerations	23
Data Processing	24
Data Analysis for Defect Identification	25
Data Collection and Analysis on Five Bridges	
Bridge S-17-039 (BIN 4E5)	
Determination of Optimal Conditions for Data Collection	
Comparison of Different Thermal Resolutions	
Cross Check of Traditional Inspection Results with Thermal Imagery	40
Bridge B-16-033 (BIN 4EU)	43
Verification of Previous Inspection Findings with Thermal Imagery	43
Review of Weather Conditions and Temperatures	46
Bridge 07001 (Washington Bridge)	47
Verification of Previous Inspection Findings with Thermal Imagery	47
Review of Weather Conditions and Temperatures	50
Bridge S-24-083 (BIN 114)	51
Perform UAV-IR Survey to Identify Delaminations	51
Review of Weather Conditions and Temperatures	61

Bridge B-16-369 (BIN 4RT)	62
UAV-IR Surveys with No Pre-Existing Deficiency Locations	63
Thermal Data of Delaminations Identified during Traditional Inspection Findings	68
Review of Weather Conditions and Temperatures	70
Conclusions	71

LIST OF APPENDICES

Appendix A: Bridge S-17-039 (BIN 4E5) A.1
A-1: Traditional Inspection Findings A.2
A-2: Locations for Repeated Data Collection A.3
A-3: Thermal Camera Contact Sheets A.15
A-3-1: Flir E96 A.15
A-3-2: Flir E86 A.50
A-3-3: Flir E8 A.73
A-3-4: Flir C5 A.96
A-3-5: Fluke TiX 580 A.119
A-3-6: Seek Shot ProA.130
A-4: Time, Temperature, and Atmospheric Conditions during Flir E96 Data Collection A.142
A-5: Identification of Delamination for Determining Optimal Conditions A.143
A-6: Identification of Delamination for Comparison of Thermal Resolutions A.145
A-7: Comparison of Thermal Camera Imagery A.149
A-8: Cross Check of Traditional Inspection Results with Thermal Imagery A.173
A-8-1: Thermal Survey Sketch and Follow up Inspection Findings
A-8-2: Thermal Survey Areas of Interest A.174
A-8-3: Compiled Inspection Findings A.181
Appendix B: Bridge B-16-033 (BIN 4EU) B.1
B-1: Flir E8 Thermal Imagery B.2
B-2: Flir E96 Thermal ImageryB.18
Appendix C: Bridge 07001 C.1
C-1: Traditional Inspection Findings Chart C.2
C-2: Flir E96 Thermal ImageryC.4

Appendix D: Bridge S-24-083 (BIN 114) D.1	L
D-1: Span K4 Data D.2	2
D-1-1: Span K4 Traditional Inspection Findings Sketch	2
D-1-2: Span K4 UAV-IR Survey SketchD.4	1
D-1-3: Span K4 Thermal Imagery D.5	5
D-2: Span K5 Data D.2	21
D-2-1: Span K5 Traditional Inspection Findings Sketch	21
D-2-2: Span K5 UAV-IR Survey SketchD.2	23
D-2-3: Span K5 Thermal Imagery D.2	24
D-3: Pier K3 South Column Data D.4	12
D-3-1: Pier K3 South Column Traditional Inspection Findings Sketch	12
D-3-2: Pier K3 South Column UAV-IR Survey Sketch	13
D-3-3: Pier K3 South Column Thermal ImageryD.4	14
Appendix E: Bridge B-16-369 (BIN 4RT) E.1	L
E-1: Traditional Inspection Findings Sketch E.2) -
E-2: UAV-IR Survey Sketch and Thermal Imagery E.4	ł
E-2-1: First Data Set E.4	1
E-2-2: Second Data Set E.8	3
E-2-3: Third Data Set E.1	2
E-3 Thermal Imagery of Delaminations identified during Traditional Inspection E.1	.8
E-3-1: First Data Set E.1	8
E-3-2: Second Data Set E.2	4
E-3-3: Third Data Set E.3	30

LIST OF FIGURES

Figure 1 – Views of Flir E96 Thermal Camera (Flir E86 Similar)	1
Figure 2 – Views of Flir E8 Thermal Camera	3
Figure 3 - Views of Flir C5 Thermal Camera	4
Figure 4 - Views of Seek Shot Pro Thermal Camera	5
Figure 5 - Views of Fluke TiX580 Thermal Camera	6
Figure 6 - Views of Parrot Anafi USA	7
Figure 7 - Relative Mode Screenshot	9
Figure 8 - Spot Mode Screenshot	9
Figure 9 - Picture-in-Picture Thermal Image	9
Figure 10 - Zoomed in Thermal Image	9
Figure 11 - Parrot Anafi USA Sample Imagery	10
Figure 12 - Parrot Anafi USA Sample Imagery	10
Figure 13 - Views of Skydio X2	11
Figure 14 – Skydio X2 Sample Imagery	13
Figure 15 - Skydio X2 Sample Imagery	13
Figure 16 - Skydio X2 Sample Imagery	13
Figure 17 - Views of DJI Matrice 210 and Zenmuse XT2	14
Figure 18 - Zenmuse XT2 Sample Imagery	15
Figure 19 - Zenmuse XT2 Sample Imagery	16
Figure 20 - M210 & XT2 Settings Screen	16
Figure 21 - Views of DJI Matrice 300 and Zenmuse XT2	17
Figure 22 - Example Overlay for Flir Cameras	19
Figure 23 - Thermal Image	20
Figure 24 - Visual RGB Image	20
Figure 25 - Thermal Image with MSX Overlay	20
Figure 26 - Picture in Picture Image	20
Figure 27 – Thermal MSX Image (Left) and Thermal Only Image (Right) of Deck with Visible Cracking	21
Figure 28 - Misalignment of MSX Overlay	21
Figure 29 - Misalignment of Seek Fusion	21
Figure 30 - Color Palettes for Flir E96	22
Figure 31 - Select Color Palettes for Zenmuse XT2	22
Figure 32 - Lighting Fixture affecting Thermal Span	23
Figure 33 - Pigeon affecting Thermal Span	23
Figure 34 - Water Leakage affecting Thermal Span	23
Figure 35 - Visible Sky affecting Thermal Span	23
Figure 36 - Concrete, Steel, and Timber along Underside of Bridge Deck	25
Figure 37 – Temperature Differentials along Girders and Abutment	25
Figure 38 – Temperature Differential due to Reflection in SIP Forms	26
Figure 39 - Temperature Differential at Edge of Pier Cap caused by Angle of Data Capture	26
Figure 40 - Temperature Differential where Paint is Missing	26
Figure 41 - Temperature Differential caused by Paint Failure along Top Flange	27
Figure 42 - Temperature Differential caused by Paint Overspray	27
Figure 43 – Temperature Differential caused by Shadow	27

Figure 44 – Temperature Differential caused by Texture of Gravel	28
Figure 45 – Temperature Differential caused by Leakage along Joint	28
Figure 46 - Temperature Differentials caused by Internal Deviation Blocks and Drain Pipes)	28
Figure 47 - Temperature Differential caused by Voids and Internal Diaphragms	29
Figure 48 - Sun Glare obscuring Deck	29
Figure 49 - Underexposed Deck	29
Figure 50 - Overexposed Surface Removing Detail	29
Figure 51 - Minor Delamination	30
Figure 52 - Delamination with Cracking	30
Figure 53 - Delamination without Visible Separation	31
Figure 54 - Delamination with Cracking and Visible Separation	31
Figure 55 - Delamination with Visible Separation	31
Figure 56 - Delamination along Repair due to Void / Overpour	32
Figure 57 - Sound Patches and Delaminated Patches	32
Figure 58 - Delamination within Otherwise Sound Patch	32
Figure 59 - Layout for BIN 4E5	33
Figure 60 - Underside of Span L-M	34
Figure 61 - Hatched Delamination	34
Figure 62 - Span L-M Traditional Inspection Findings	34
Figure 63 - Marked Location for Repeated Data Collection	35
Figure 64 - Span L-M Locations for Data Collection	35
Figure 65 - Areas of Interest from Thermal Survey	41
Figure 66 - False Positive from Thermal Survey	42
Figure 67 - Minor Delamination from Thermal Survey	42
Figure 68 - Delamination from Thermal Survey	42
Figure 69 - Layout of BIN 4EU	43
Figure 70 – East Elevation of Span 5	43
Figure 71 - Underside of Arch for Span 5	44
Figure 72 - Layout of Bridge 07001	47
Figure 73 - Underside of Span 2	47
Figure 74 - Delamination at Top of Vertical Face of Cantilever	49
Figure 75 - Layout of BIN 114	51
Figure 76 - Field Testing Location	51
Figure 77 - UAS Pilot and Sensor Operator during Data Collection	52
Figure 78 - Thermal Imagery captured Perpendicular to Deck near Center of Bridge Span	52
Figure 79 - Thermal Imagery Captured at Angle to avoid Pier Columns	52
Figure 80 - Aerial Lift used for Inspection	53
Figure 81 - Span K4 Traditional Inspection Findings	54
Figure 82 - Span K4 UAV-IR Survey Findings	54
Figure 83 - Span K5 UAV-IR Survey Findings	56
Figure 84 - Span K5 Traditional Inspection Findings	56
Figure 85 - Pier K3 South Column Traditional Inspection Findings	58
Figure 86 - Pier K3 South Column UAV-IR Survey Findings	
Figure 87 - Lavout of BIN 4RT	62

Figure 88 - BIN 4RT Traditional Inspection	62
Figure 89 - Data Collection with MassDOT	63
Figure 90 - BIN 4RT, Span 6, Traditional Inspection Findings	64
Figure 91 - BIN 4RT, Span 6, First UAV-IR Data Set	64
Figure 92 - BIN 4RT, Span 6, Second UAV-IR Data Set	65
Figure 93 - BIN 4RT, Span 6, Third UAV-IR Data Set	65

LIST OF TABLES

Table 1 - Flir E96 and E86 Specifications	2
Table 2 - Flir E96 and E86 Observations	2
Table 3 - Flir E8-XT Specifications	3
Table 4 - Flir E8 Observations	3
Table 5 - Flir C5 Specifications	4
Table 6 - Flir C5 Observations	4
Table 7 - Seek Shot Pro Specifications	5
Table 8 - Seek Shot Pro Observations	5
Table 9 - Fluke TiX580 Specifications	6
Table 10 - Fluke TiX580 Observations	6
Table 11 - Parrot Anafi USA Specifications	7
Table 12 - Parrot Anafi USA Observations	8
Table 13 – Skydio X2 Specifications	11
Table 14 – Skydio X2 Observations	12
Table 15 - DJI Matrice 210 with Zenmuse XT2 Specifications	14
Table 16 - DJI Matrice 210 with Zenmuse XT2 Observations	15
Table 17 - DJI Matrice 300 with Zenmuse XT2 Specifications	17
Table 18 - DJI Matrice 300 with Zenmuse XT2 Observations	18
Table 19 - Thermal Camera Processing Information	24
Table 20 – 4E5: Summary of Repeated Location for Data Collection	36
Table 21 – 4E5: Summary of Identification of Delaminations	37
Table 22 – 4E5: Summary of Temperature during Most Successful Data Collection Periods	38
Table 23 – 4E5: Summary of Atmospheric Conditions for Most Successful Data Collection Periods	38
Table 24 – 4E5: Comparison of Delamination Identification by Location	39
Table 25 – 4E5: Summary of Delamination Identification by Camera	40
Table 26 – 4E5: Follow Up Inspection Findings	41
Table 27 – 4EU: Times for Data Collection	44
Table 28 – 4EU: Identification of Delamination by Deficiency	45
Table 29 – 4EU: Summary of Findings	46
Table 30 - 4EU: Time, Temperature, and Atmospheric Conditions	46
Table 31 – 07001: Time of Data Collection	48
Table 32 – 07001: Identification of Delamination by Deficiency	48
Table 33 – 07001: Summary of Findings	49
Table 34 – 07001: Summary of Findings by Element	49

Table 35 – 07001: Time, Temperature, and Atmospheric Conditions during Data Collection	50
Table 36 – 114: Span K4, Traditional Inspection versus Thermal Data	55
Table 37 – 114: Span K5, Traditional Inspection versus Thermal Data	57
Table 38 – 114: Pier K3 South Column, Traditional Inspection versus Thermal Data	59
Table 39 – 114: Summary of Findings by Field Test Location	59
Table 40 – 114: Identified Deficiencies during Inspections	60
Table 41 – 114: Time, Temperature, and Atmospheric Conditions during Data Collection	61
Table 42 – 4RT: Span 6, Comparison of Traditional Inspection versus Thermal Data	66
Table 43 – 4RT: Span 6, Summary of Findings	67
Table 44 – 4RT: Identified Deficiencies during Inspections	67
Table 45 – 4RT: Identification Based on Thermal Data of Delaminations	68
Table 46 – 4RT: Summary of Findings for Thermal Data of Delaminations	69
Table 47 - 4RT: Time, Temperature, and Atmospheric Conditions during Data Collection	70

LIST OF ABBREVIATIONS

Avg = Average BIN = Bridge Identification Number CS = Condition State Delam = Delamination DOT = Department of Transportation EMI = Electromagnetic Interference FAA = Federal Aviation Administration FOV = Field of View Hr = Hour HSA = Hollow Sounding Area Hz = Hertz IR = Infrared Lb = Pound LF = Linear Feet LWIR = Long Wave Infrared MassDOT = Massachusetts Department of Transportation mK = milliKelvin mm = millimeter MP = Megapixels mph = Miles per hour MSX – Multi-Spectral Dynamic Imaging n/a = Not applicableNBE = National Bridge Element NETC = New England Transportation Consortium NBIS = National Bridge Inspection Standards NDE = Non-destructive Evaluation RGB = Red, Green, Blue SF = Square Feet Temp = Temperature UAV = Unmanned Aerial Vehicle UAS = Unmanned Aircraft System

This page intentionally left blank

Introduction

This report was developed as part of New England Transportation Consortium (NETC) research project 20-3 Investigating Thermal Imaging Technologies and Unmanned Aerial Vehicles (UAV) to Improve Bridge Inspections. The overall research objective is to focus on developing UAV-based inspection and analysis protocols using infrared (IR) thermal imaging to determine the existence and extent of concrete delamination, with emphasis on the underside of bridge decks.

Task 2 for this research project includes field demonstration of commercially available handheld long wave infrared (LWIR) thermal cameras and drone technologies recommended as part of the Task 1 Interim Report dated 6/4/2021. The handheld thermal camera equipment included as part of Task 2 included the Flir E96, Flir E86, Flir E8, Flir C5, Fluke TiX580, and Seek Shot Pro. The drones included the Parrot Anafi USA, Skydio X2, DJI Matrice 210 V2 with Zenmuse XT2, and DJI Matrice 300 with Zenmuse XT2. The field testing of these technologies was performed at five bridge sites located in Massachusetts and Rhode Island. The specific methodologies varied per bridge and will be discussed later in this report. Guidance is provided in thermal image processing and analysis for defect identification and validation based on test results at five bridges. The intent was to determine the effectiveness of potential implementation methods without the need for specialized staff or software to perform the analysis.

General Discussion of Handheld Thermal Cameras

Several models of handheld thermal cameras were utilized for this research project. This section will discuss several of the traits and characteristics of the cameras that were utilized. The discussion is limited to the use of the cameras and does not include discussion on the specific field-testing sites and associated data of this research project. The data analysis will be discussed later in this report.

Flir E96 and E86

The Flir E96 and E86 are handheld pistol grip style thermal cameras (Figure 1). These cameras are very similar with only minor differences in sensor resolution between the two Table 1 provides specifications and Table 2 provides observations made during field testing.

Figure 1 – Views of Flir E96 Thermal Camera (Flir E86 Similar)

Both thermal cameras utilize different interchangeable lenses in 24-degree (17-millimeter (mm)), 42degree (10 mm), and 14-degree (29 mm) fields of view (FOV). For this research project, the Flir E96 was outfitted with the 42-degree (10 mm) lens and the Flir E86 was outfitting with the 24-degree (17 mm) lens.

Attributes	Flir E96	Flir E86
Cost*	\$12,239	\$11,219.00
Thermal Resolution (pixels)	640x480	464x348
RGB Resolution (MP)	5 MP	5 MP
FOV (degrees)	Variable (42°, 24°, or 14°)	Variable (42°, 24°, or 14°)
Frame Rate (Hz)	30	30
Thermal Sensitivity (mK)	<30 mK	<30 mK

Table 1 - Flir E96 and E86 Specifications

* Cost based on purchase of the camera with the 42° lens as of 12/8/21. The cost does not include additional lenses or accessories.

Table 2 - Flir E96 and E86 Observations

Flir E96 and E86 Observations				
Positive	Negative			
Best thermal resolution and quality	Higher cost than other tested models			
Swappable lenses allow flexibility to choose best	Additional lenses cost extra			
field of view based on bridge height				
Touch screen and manual tactile controls allow	Swapping lenses in field can result in dirt/debris			
for easy modification of settings	entering sensor and degrading image quality			
1-Touch Level/Span allows automatic adjustment	Size of camera means that it would not be able to			
of level to provide best possible data by touching	be used simultaneously with other inspection			
the screen	tasks			
Pistol-grip allows for one handed operation	Camera can get heavy for extended periods			
Laser distance measure helps improve focus of				
images and can be used to verify what is being				
viewed since the red dot is visible				
Laser distance measure allows better data quality				
capture during night and low light conditions				
Swappable batteries allow for extended use				
R_JPEG (editable radiometric jpeg) files are				
viewable by standard computer software				

Note that the positive and negative observations included in Table 2, and similar tables later in this report, are not intended to be direct comparisons to each other but are intended to simply be a list of observations.

Flir E8

The Flir E8 is a handheld pistol grip style thermal camera (Figure 2). It should be noted that the Flir E8 has been discontinued and is no longer available for purchase. The Flir E8-XT is the replacement model and has similar specifications. Per the equipment vendor, the E8-XT can detect a higher temperature range than the E8 but otherwise is similar. Table 3 provides specifications and Table 4 provides observations made during field testing.

Figure 2 – Views of Flir E8 Thermal Camera

Table 3 - Flir E8-XT Specifications

Attributes	Flir E8-XT		
Cost*	\$3,059.99		
Thermal Resolution (pixels)	320x240		
RGB Resolution (pixels)	640x480		
FOV (degrees)	45°x34°		
Frame Rate (Hz)	9		
Thermal Sensitivity (mK)	<50 mK		

* Cost based on purchase of the camera as of 12/8/21. The cost does not include additional accessories.

Table 4 - Flir E8 Observations

Flir E8 Observations			
Positive	Negative		
More affordable than some other higher end	Fixed lens/focal length results in less detail when at		
models	a distance		
Lighter than some other higher end models	Thermal resolution is 320x240 which captures less		
	detailed compared to higher end models		
Manual tactile controls are easy to use	Internal memory only		
Swappable batteries allow for extended use	Can be difficult to know where it is being aimed		
Easy to use with one hand	Size of camera means that it would not be able to		
	be used simultaneously with other inspection tasks		
R_JPEG (editable radiometric jpeg) files are	Focus is based on image contrast which may result		
viewable by standard computer software	in out of focus images during nighttime or in low		
	light		

Flir C5

The Flir C5 is a compact style thermal camera (Figure 3). Table 5 provides specifications and Table 6 provides observations made during field testing.

Figure 3 - Views of Flir C5 Thermal Camera

Table 5 - Flir C5 Specifications

Attributes	Flir C5		
Cost*	\$719.99		
Thermal Resolution (pixels)	160x120		
RGB Resolution (MP)	5 MP		
FOV (degrees)	54°x 42°		
Frame Rate (Hz)	8.7		
Thermal Sensitivity (mK)	<70 mK		

* Cost based on purchase of the camera as of 12/8/21. The cost does not include additional accessories.

Table 6 - Flir C5 Observations

Flir C5 Observations			
Positive	Negative		
More affordable than most other thermal	Fixed lens/focal length results in less detail when		
cameras	at a distance		
Compact and lightweight option that is easy to	Thermal resolution is 160x120 which captures		
carry on your person and is portable	less detailed compared to other models		
Easy to use with one hand	Internal memory only		
R_JPEG (editable radiometric jpeg) files are	Controls are touch screen and can be hard to		
viewable by standard computer software	manipulate if wearing gloves or have dirty fingers		
	Internal battery only		
	Focus is based on image contrast and low light		
	performance is limited – blurry and out-of-focus		
	images are possible in the dark		

Seek Shot Pro

The Seek Shot Pro is a compact style thermal camera (Figure 4). Table 7 provides specifications and Table 8 provides observations made during field testing. This camera was not utilized for regular field testing but was rather intended to provide some additional imagery and provide experience with other thermal camera manufacturers.

Figure 4 - Views of Seek Shot Pro Thermal Camera

Table 7 - Seek Shot Pro Specifications

Attributos	Sook Shot Dro		
Attributes	Seek Shot Pro		
Cost*	\$699		
Thermal Resolution (pixels)	320x240		
RGB Resolution (MP)	3		
FOV (degrees)	57°		
Frame Rate (Hz)	<9		
Thermal Sensitivity (mK)	<70 mK		

* Cost based on purchase of the camera as of 12/8/21. The cost does not include additional accessories.

Table 8 - Seek Shot Pro Observations

Seek Shot Pro Observations				
Positive	Negative			
More affordable than most other thermal cameras	Fixed lens/focal length results in less detail when at			
	a distance			
Compact and lightweight option that is easy to carry	IR sensor produces noise and grain which obscures			
on your person and is portable	data			
Mobile application (Seek View) can edit images and	No desktop software available for post processing.			
has "LiveView" feature for connected phone to view	Photos can only be processed in camera or mobile			
thermal image	application (Seek View)			
Easy to use with one hand	Internal battery only			
	Controls are touch screen and can be hard to			
	manipulate if wearing gloves or have dirty fingers			
	Controls to lock thermal span our very small and			
	difficult to use			
	Can be difficult to tell where the camera is aimed			

Fluke TiX580

The Fluke TiX580 is an expert series thermal camera (Figure 5). It should be noted that this thermal camera was not recommended as part of the Task 1 Interim Report. This camera was substituted as an alternative to the Fluke Ti480 Pro since the specific model was not available for rental during the trial period. The use of a TiX580 provided similar thermal resolution and specifications to the Ti480 Pro and provided the opportunity to test a different style of camera. Table 9 provides specifications and Table 10 provides observations made during field testing. This camera was not utilized for regular field testing but was rather intended to provide some additional imagery and provide experience with other thermal camera manufacturers and software.

Figure 5 - Views of Fluke TiX580 Thermal Camera Table 9 - Fluke TiX580 Specifications

Attributes	Fluke TiX580		
Cost*	\$19,000		
Thermal Resolution (pixels)	640x480		
RGB Resolution (MP)	5		
FOV (degrees)	32°x24°		
Frame Rate (Hz)	60		
Thermal Sensitivity (mK)	<50 mK		

* Cost based on purchase of the camera as of 12/8/21. The cost does not include additional accessories.

Table 10 - Fluke TiX580 Observations

Fluke TiX580 Observations			
Positive	Negative		
Swappable batteries	Most expensive of tested models		
MicroSD card allows for easy transfer of data	Camera is heavier than other tested models		
Camera is capable of adding interchangeable lenses	Sensor image quality did not appear to be		
	consistent during field testing		
240° rotating screen allows for more comfortable	Numerous settings can be adjusted which can result		
data capture	in the camera being less user friendly		
Laser distance measure helps improve focus of	Size of camera means that it would not be able to		
images and can be used to verify what is being	be used simultaneously with other inspection tasks		
viewed since the red dot is visible			
Laser distance measure allows better data quality	Fluke editable thermal images (.IS2 format) are not		
capture during night and low light conditions	viewable outside of Fluke Connect Software		
Radiometric files (.IS2 format) can be post	Relatively new camera which means vendors don't		
processed using Fluke Connect desktop software	have experience to assist with issues, need to		
	communicate directly with Fluke customer support		

General Discussion of Drone Mounted Thermal Cameras

Several models of drone mounted thermal cameras were utilized for this research project. This section will discuss several of the traits and characteristics of the drones and thermal cameras that were utilized. This section is limited to discussion on the use of the drones and cameras and does not include discussion on the specific field-testing sites and associated data of this research project. The data analysis will be discussed later in this report.

Parrot Anafi USA

The Parrot Anafi USA is a compact ruggedized drone equipped with integrated 21 megapixel (MP) wide angle sensor, 16 MP zoom sensor, and Flir Boson 320x256 thermal camera (Figure 6). Table 11 provides specifications and Table 12 provides observations made during field testing.

Figure 6 - Views of Parrot Anafi USA

Attributes	Parrot Anafi USA		
Order of Magnitude Base Cost	\$7,500		
Weight (lb)	1.00		
Size	11.10" x 14.69" x 3.30"		
Max Wind Speed Resistance (mph)	32.88		
Max Flight Time (minutes)	32		
Launch Capabilities	Hand Launch Capable		
IR Sensor Resolution (pixels)	320x256		
IR Field of View (degrees)	50°		
Frame Rate (Hz)	60		
Thermal Sensitivity (mK)	<60		
Visual Sensor Resolution (MP)	Wide = 21 MP, Tele=16 MP		
Gimbal Pitch Range	-140° to +90°		

Table 1	12 -	Parrot	Anafi	USA	Observations
---------	------	--------	-------	-----	--------------

Parrot Anafi USA Observations	
Positive	Negative
Compact and light weight drone that is easy to transport	Drone had major control issue during testing – see write up below
Capable of GPS denied flight navigation	Drone has numerous warning alerts for "magnetic perturbations" when flying near steel bridges.
Gimbal can look straight up (+90°) at the underside of bridge decks	Control software had limited control of thermal camera settings, specifically for control of thermal span (temperature range)
High quality (21 MP) visual sensor	Thermal imagery is overlaid onto the visual image as a picture-in-picture which prevents other applications for imagery (i.e. stitching or photogrammetry)
Drone capable of stable flights in high winds	Thermal camera is non-radiometric and cannot be post processed
Controller can be used with phone or tablet which provides more flexibility in the field	Drone does not have any obstacle detection and avoidance technology
	Drone screen can be difficult to see in the field due to sun glare

The Parrot Anafi USA had a major control issue during field testing. The intent was to capture thermal data at four of the five bridges included as part of field testing. However, during the second day of test flights of the drone, the control signal completely cut out and was unable to be re-established. The drone was hovering in place while the flight crew attempted to reconnect. After approximately 15 minutes without success, one of the flight crew grabbed the drone out of the air and manually disconnected the battery with the props in motion. The alternative would have been to let the drone enter return-to-home mode after the battery reached critical levels, which would have resulted in the drone flying up into the bridge deck and the loss of the drone. At the time of the disconnect, the drone was approximately 20 feet away from the controller with no objects in between. The flight was being performed beneath a steel bridge, so electromagnetic interference (EMI) may have been a contributing factor.

Following the incident, AECOM submitted a support ticket to Parrot with the flight logs and applicable forms. Parrot support did not identify anything out of the ordinary regarding the Wi-Fi connection between the drone and control. The drone rental vendor has since sent the physical controller to Parrot support so that the physical hardware could be tested and evaluated. At the time of this report submission, AECOM did not have any additional information regarding the controller. Overall, the incident resulting in a lack of confidence and trust in the drone. For this reason, additional use of this drone was very limited during the research project.

A few flights were performed with the drone within 5 feet of the ground and some imagery was capture with the drone on the ground in order to have some thermal imagery for review. With the drone flights

near ground level, magnetic perturbation errors still occurred. Due to safety concerns related to the control signal and EMI interference, the drone was not flown in order to collect data for the research project.

The Anafi USA thermal has two viewing modes – relative mode and spot mode. Relative mode displays a general view of the thermographic of a scene, on a colored scale, graduated from 0 to 100 (Figure 7). Spot mode allows the user to reduce the span so that only the coldest or hottest spots of an image are colorized. This mode only allows the user to modify one end of the span (Figure 8). Neither mode allowed the user to set a custom span for viewing and capturing the thermal data. Using the existing modes did not seem very intuitive for thermal tuning for concrete delamination identification.

Figure 7 - Relative Mode Screenshot

Figure 8 - Spot Mode Screenshot

The default image for thermal data capture is a picture-in-picture (Figure 9). The unmerged visual and thermal images are unable to be obtained. This prevents an unaltered visual image from being used as a visual cross check to the thermal data. Additionally, the picture-in-picture is a bit limiting in that the default imagery is unable to be used to develop a 3d model or orthomosaic image. The user can adjust the level of zoom in the image to trim out portions of the visible RGB image, however, there is still a sliver of the visual image that is visible along the left edge (Figure 10).

Figure 9 - Picture-in-Picture Thermal Image

Figure 10 - Zoomed in Thermal Image

Some additional sample imagery from the Parrot Anafi USA is included as Figure 11 and Figure 12.

Figure 11 - Parrot Anafi USA Sample Imagery

Figure 12 - Parrot Anafi USA Sample Imagery

Skydio X2

The Skydio X2 is a compact ruggedized drone equipped with integrated 12.3 MP wide angle sensor and Flir 320x256 thermal camera (Figure 13). Table 13 provides specifications and Table 14 provides observations made during field testing.

The Skydio X2 is a relatively new drone with limited supply which made it difficult to procure for field testing. The drone was unable to be procured for field testing in October 2021. However, AECOM was able to procure one in January 2022 to field test at one bridge site. However, due to high winds and limited wind resistance for the drone model, full data collection was not performed (see discussion on the following page).

Figure 13 - Views of Skydio X2

Table 13 – Skydio X2 Specifications

Attributes	Skydio X2
Order of Magnitude Base Cost	\$14,499
Weight (lb)	2.92
Size	26.1" x 22.4" x 8.3"
Max Wind Speed Resistance (mph)	23
Max Flight Time (minutes)	35
Launch Capabilities	Hand launch and recovery
IR Sensor Resolution (pixels)	320x256
IR Field of View (degrees)	46°
Frame Rate (Hz)	60
Thermal Sensitivity (mK)	<60
Visual Sensor Resolution (MP)	12
Gimbal Pitch Range	-110° to +45° (see discussion below)

Table 14 – Skydio X2 Observations

Skydio X2 Observations	
Positive	Negative
Drone has robust obstacle avoidance system	Drone gimbal is limited to +45° with default
based on six visual cameras located around the	software. Subscription enterprise software can
drone	increase gimbal range to +90°
Drone is capable of hand launch and recovery	Drone can bounce a few feet in each direction
which allows operations for more terrains	during wind (see discussion below)
Capable of GPS denied flight navigation	Control software had extremely limited control of
	thermal camera settings (see discussion below)
Compact drone that is easy to transport	Thermal camera is non-radiometric and cannot
	be post processed
	Thermal camera field of view is relative narrow
	(more telephoto) which makes low clearance
	bridges more time consuming to survey
	Drone screen can be difficult to see in the field
	due to sun glare

The drone wind speed resistance is listed as 23 mph by the manufacturer. However, during field testing, the drone was bouncing around a few feet in each direction resulting in unstable flight at wind speeds lower than the listed limits. A handheld anemometer measured the wind speeds during field testing. The readings generally ranged between 5 mph and 15 mph but did hit 18 mph during strong gusts. The drone flight was erratic with the bottom of the drone constantly tilting approximately 90 degrees back and forth. This movement was prohibitive for landing the drone. The drone was flown behind a building on the site to block the winds and safely land. Due to the unstable flight in the wind and inability to land in the wind, it was decided to cease further flights for safety reasons. Unfortunately, this meant that full data collection was not performed. However, the brief flights still provided some limited thermal imagery and insights into the drone itself. Refer to Figure 14 through Figure 16 on the following page for thermal imagery from the Skydio X2.

The Skydio X2 gimbal system is only capable of +45° upward views using the default Skydio control software. The gimbal is capable of +90° views if the pilot opts to purchases an annual enterprise software subscription, which is approximately \$2500 per year. For the purposes of performing an underside of deck survey, the 45° upward view can be a bit limiting.

The thermal camera is limited in terms of control and features. The pilot is unable to set a manually temperature span and there are no modes to adjust how that span is created with automatic settings. However, delaminations were visible with the default automatic settings during field testing (Figure 15). There is no temperature scale included as part of the imagery, only the gradient thermal image is provided. The drone provides four color palettes (white hot, black hot, rainbow, and iron bow). Additionally, the imagery is non-radiometric which means it is unable to be post processed after collection. The thermal camera focal range is more of a telephoto view than anticipated, which can limit the effectiveness of the drone for this application for low vertical clearance bridges.

Figure 14 – Skydio X2 Sample Imagery

Figure 15 - Skydio X2 Sample Imagery

Figure 16 - Skydio X2 Sample Imagery

DJI Matrice 210 RTK V2 with Zenmuse XT2

The DJI Matrice 210 is an established commercial drone capable of performing a wide variety of tasks (Figure 17). The drone features interchangeable payloads which allow a wide flexibility of applications. This research project featured the use of the Zenmuse XT2 thermal camera. The XT2 has multiple versions with 640x512 or 336x256 thermal resolution, 9mm, 13mm, 19mm, or 25mm focal lengths, and 9 Hz or 30 Hz frame rates. For the research project, the 640x512, 13mm, 30 Hz version was used. The XT2 also features a 12-megapixel visual RGB camera. There are a variety of additional visual camera sensor payloads that can be mounted on the Matrice 210. Table 15 provides specifications and Table 16 provides observations made during field testing.

Figure 17 - Views of DJI Matrice 210 and Zenmuse XT2

Table 15 - DJI Matrice 210 with Zenmuse XT2 Specifications

Attributes	M210 with XT2
Order of Magnitude Base Cost	\$27,000 +/-
Weight (lb)	10.82
Size	25.32" (diagonal)
Max Wind Speed Resistance (mph)	26.86
Max Flight Time (minutes)	33
Launch Capabilities	Ground Launch Only
IR Sensor Resolution (pixels)	640x512
IR Field of View (degrees)	45°
Frame Rate (Hz)	30
Thermal Sensitivity (mK)	<50
Visual Sensor Resolution (MP)	12 MP
Gimbal Pitch Range	-45° to +130° (for upward mounting)

Table 16 - DJI Matrice 210 with Zenmu	se XT2 Observations
---------------------------------------	---------------------

DJI Matrice 210 with Zenmuse XT2 Observations	
Positive	Negative
Drone allows for two controllers (one for pilot	Sensor needs to be mounted to face upward or
and one for sensor operator)	downward – less flexibility during individual flights
Interchangeable sensors allow for flexibility	Size of drone makes flights under low clearance
based on operational needs	bridges (<18') high risk and more prohibitive
Weatherproof (capable of flying in the rain) and	DJI geofencing can cause additional steps during
capable of flying in high winds	planning and coordination phases
XT2 camera is radiometric and can be post	Drone is large and bulky, making transportation
processed	more difficult
Drone controller is capable of displaying sensor	Matrice 210 is no longer being supported by DJI
feed to television screen through HDMI	with no new sensors being made for this model of
	drone and existing sensors becoming hard to find
Obstacle avoidance sensors along front,	XT2 sensor does not allow manual setting of the
bottom, and top of drone which offer some	temperature span but it can be adjusted after flight
collision avoidance	operations on the computer
	Drone needs clear, flat surface to launch and land

The Matrice 210 is a very robust commercial drone capable of performing flights in the challenging environments for this application. The drone can be controlled with two controllers; one to pilot the drone and the other to control the sensor, which allows the pilot to focus on flying the drone. This drone is capable of flights in high winds and precipitation. Due to the size of the drone, it will not be the most effective method of data capture for bridges with low vertical clearances. The drone also must have flat space in order to take off and land, which could cause operational limits for some bridges where these flat spaces are not readily available without traffic closures.

The Zenmuse XT2 is able to simultaneously capture both thermal and visual imagery which is necessary to visually cross check the thermal data. The drone controller is capable of displaying both images at once allowing the cross check to be performed live during data capture. Some sample imagery of the Zenmuse XT2 can be seen in Figure 18 and Figure 19.

Figure 18 - Zenmuse XT2 Sample Imagery

Figure 19 - Zenmuse XT2 Sample Imagery

The biggest drawback to the XT2 sensor is the difficulty in manually setting a temperature span. In the settings, contrast (span) and brightness (level) can be adjusted as a slider (Figure 20). However, these are not portrayed as temperature values but rather numbers ranging from 0 to 10,000 with the slider

Figure 20 - M210 & XT2 Settings Screen

being difficult to set to a specific value as it occupies a small portion of the screen. The span and level can be also adjusted using the "Sky Exclude" setting which are intended to de-emphasize the impact of the sky horizon in the imagery, however, the feature was intended for imagery that is looking downward. Neither of these methods are particularly intuitive and do not give the user any significant control. However, the XT2 is radiometric, so the user can adjust the span and level using Flir Tools and Flir Thermal Studio. This does add extra steps for data processing, which increases the amount of time needed for data analysis.

The DJI Matrice 210 is at the end of its service life and is no longer being supported by DJI which makes replacement parts, batteries, and sensors difficult to find. DJI has shifted production to the Matrice 300, which is the replacement model for this specific drone. While the Matrice 210 is a very capable drone, it would be very difficult to obtain all of the necessary equipment for this drone if it was not already owned and being operated. The Zenmuse XT2 sensor is in a similar situation where it is also at the end of its service life and is no longer being produced making it difficult to find to purchase. The Zenmuse XT2 is being replaced by the Zenmuse H20T.

DJI Matrice 300 RTK with Zenmuse XT2

The DJI Matrice 300 is the replacement model for the Matrice 210 and is intended to be a commercial drone work horse similar to the Matrice 210 (Figure 21). The Zenmuse XT2 thermal camera was also used in conjunction with the Matrice 300 for this research project. The XT2 used with the Matrice 300 was also the 640x512, 13mm, 30 Hz version was used. Table 17 provides specifications and Table 18 provides observations made during field testing.

MassDOT Aeronautics Division provided the use of their DJI Matrice 300 RTK and Zenmuse XT2 for data collection at one of the bridge sites in January 2022.

Figure 21 - Views of DJI Matrice 300 and Zenmuse XT2

Attributes	M300 with XT2
Order of Magnitude Base Cost	\$29,800 +/-
Weight (lb)	13.89 lb
Size	31.89" x 26.38" x 16.93"
Max Wind Speed Resistance (mph)	33.55
Max Flight Time (minutes)	55 min
Launch Capabilities	Ground Launch Only
IR Sensor Resolution (pixels)	640x512
IR Field of View (degrees)	45°
Frame Rate (Hz)	30
Thermal Sensitivity (mK)	<50
Visual Sensor Resolution (MP)	12 MP
Gimbal Pitch Range	-45° to +130° (for upward mounting)

DJI Matrice 300 with Zenmuse XT2 Observations	
Positive	Negative
Drone allows for two controllers (one for pilot	Sensor needs to be mounted to face upward or
and one for sensor operator). Pilot control and	downward – less flexibility during individual flights
roles can be swapped during flight	
Interchangeable sensors allow for flexibility	Size of drone makes flights under low clearance
based on operational needs	bridges (<18') high risk and more prohibitive
Weatherproof (capable of flying in the rain) and	DJI geofencing can cause additional steps during
can fly stable in high winds	planning and coordination phases
XT2 camera is radiometric and can be post	Drone is large and bulky, making transportation
processed	more difficult
Long battery life (+/- 45 minutes with XT2)	Drone needs clear, flat surface to launch and land
Drone has directional obstacle sensors on each	XT2 sensor does not allow manual setting of the
side of the drone that can be customized to set	temperature span but it can be adjusted after flight
minimum distances	operations on the computer
Drone controller is capable of displaying sensor	Drone controller screen can be difficult to see in
feed to television screen through HDMI	the field with glare

Table 18 - DJI Matrice 300 with Zenmuse XT2 Observations

The Matrice 300 is the replacement model for the Matrice 210. Similar to the Matrice 210, it is a very robust commercial drone. The drone can be controlled with two controllers; one to pilot the drone and the other to control the sensor, which allows the pilot to focus on flying the drone. The control system for this drone allows the pilots to swap roles mid-flight, which can be used to ensure visual line of sight by the pilot. This drone also offers a battery life of approximately 45 minutes with the XT2, which far exceeds comparable drones.

This drone is capable of flights in high winds and precipitation. Due to the size of the drone, it will not be the most effective method of data capture for bridges with low vertical clearances. The drone also must have flat space in order to take off and land, which could cause operational limits for some bridges where these flat spaces are not readily available without traffic closures.

Comments related to the Zenmuse XT2 are the same as previously discussed with the Matrice 210 drone. Refer to the section "DJI Matrice 210 RTK V2 with Zenmuse XT2."

Considerations for Thermal Data Capture and Analysis

Thermal Data Basics

Thermal cameras capture infrared radiation being emitted by objects and converts the data into temperature measurements. This information is portrayed visually using colors, generally with darker colors representing cooler temperatures and brighter colors representing warmer temperatures. Some terminology that will be used within this report includes:

- Temperature Range: The maximum and minimum temperatures within the camera's field of view.
- Temperature Span: The portion of the temperature range that is being viewed. Temperatures outside the limits of the span will be colored the same as the maximum and minimum values. The span is chosen automatically by the camera software based on the maximum and minimum temperatures in the field of view or manually selected by the user. However, not all thermal cameras are capable of having a manually selected span.
- Level: The mid-point or "center" of the span.

Thermal cameras are capable of displaying different items as overlays on the camera screen and final image. The most common displays include the temperature scale, span maximum/minimum temperatures, date and time, GPS coordinates, distance to focus point, emissivity, and measurement toolboxes and temperatures. These can be adjusted in the camera settings as well as with post processing analysis software. See Figure 22 below for a typical thermal image overlay for Flir.

Thermal data is primarily portrayed as thermal only, visual RGB image, a thermal image with blended visual components (varies by specific manufacturer), and picture-in-picture (Figures 23 through 26). The blended thermal and visual imagery is typically patented by manufacturers and is as follows for the field-tested thermal cameras:

- Flir: Multi-Spectral Dynamic Imaging (MSX) This mode adds visual light details, specifically edge and outline details without decreasing the thermal image transparency.
- Fluke: IR-Fusion This mode blends the visual and thermal images. The user can adjust the transparency between the thermal and visual images.
- Seek: SeekFusion This mode blends the visual and thermal images. The user can adjust the transparency between the thermal and visual images.

Figure 24 - Visual RGB Image

<u>j</u>

Figure 25 - Thermal Image with MSX Overlay

Figure 26 - Picture in Picture Image

While the blended thermal and visual images may provide the most context, it can create an image that includes excessive details that could make the thermal data harder to interpret. Figure 27 below shows a thermal only image and a thermal MSX image of the underside of a deck with extensive cracking and efflorescence. These details can affect the coloring of the temperature gradient and make an image harder to interpret. It is also possible that MSX will make an out of focus thermal image look to have proper focus because the visual image is in focus.

Figure 27 – Thermal MSX Image (Left) and Thermal Only Image (Right) of Deck with Visible Cracking

The user of the thermal camera should be aware that the thermal and visual blended imagery has the potential for misalignment as separate cameras are being used to develop these. Depending on the manufacturer and specific product, the alignment can be adjusted automatically by the camera or manually by the user. For products with interchangeable lenses, like the Flir E86 and E96, the lens needs to be calibrated properly or the misalignment is unable to be corrected. While these misalignments will cause the blended images to be improperly aligned, the misalignment will not affect the quality of the thermal data. Refer to Figures 28 and 29 for examples of misalignment.

Figure 28 - Misalignment of MSX Overlay

Figure 29 - Misalignment of Seek Fusion

Color Palettes

Thermal cameras offer different color palettes for viewing thermal data. The specific number and naming will differ by manufacturer and specific thermal camera model. Color palettes are a user setting that can be changed in the field. For thermal cameras that capture radiometric data, the color palette is able to be changed during post processing with thermal analysis software. For non-radiometric cameras, the palette will not be able to be changed after the image is captured. Refer to Figure 30 for color palette samples for the Flir E96. Other Flir thermal cameras will have similar color palettes. Refer to Figure 31 for some select color palette samples for the Zenmuse XT2. The XT2 has additional color palettes available beyond those shown in the figure.

Additional discussion on the selection of color palette will be included as part of Task 3 of this research project.

Figure 30 - Color Palettes for Flir E96

Figure 31 - Select Color Palettes for Zenmuse XT2

Data Capture Considerations

Thermal camera sensors can be damaged by intensive energy sources, such as the sun. The sun can cause permanent burn-in effects, which appear as light trails. These types of damage are generally not covered by vendor warranties. The use of thermal cameras for concrete delamination detection along the underside of bridges requires the camera to be pointed upward; inspectors need to be aware of the sun's position relative to the bridge and must exercise caution.

Thermal camera automatic settings will generally cause the thermal span to automatically adjust based on the objects visible for the sensor. This can cause the thermal span to increase in size which would make delamination detection more difficult. Some of the factors that can cause this increase in span include:

- Adjacent utilities or light fixtures that generate heat (Figure 32)
- Nearby wildlife, such as roosting pigeons (Figure 33)
- Moisture and water leakage (Figure 34)
- Visible sky along the edge of bridges or through joints (Figure 35)

Figure 32 - Lighting Fixture affecting Thermal Span

Figure 34 - Water Leakage affecting Thermal Span

Figure 33 - Pigeon affecting Thermal Span

Figure 35 - Visible Sky affecting Thermal Span
In order to avoid potential issues with an automatic temperature span, the thermal cameras should be set to use manual temperature spans wherever possible. However, this is not possible for some thermal cameras. Additional guidance will be provided in the Task 3 Interim Report.

Data Processing

Thermal data can be post processed after data collection for radiometric imagery. Radiometric imagery stores the temperature data within the image which allows it to be edited after capture. Non-radiometric imagery captures the gradient image without any temperature data. Table 19 provides processing information for the field-tested thermal cameras.

Thermal Camera	Radiometric / Non-radiometric	Processing Software
Flir C5	Radiometric	
Flir E8	Radiometric	Elir Tools, Elir Thormal Studio
Flir E86	Radiometric	
Flir E96	Radiometric	
Fluke TiX580	Radiometric	Fluke Connect
Seek Shot Pro	Radiometric	Seek View (mobile app only)
Parrot Anafi USA	Non-radiometric	None
Skydio X2 Non-radiometric		None
Zenmuse XT2 Radiometric		Flir Tools, Flir Thermal Studio

Table 19 - Thermal Camera Processing Information

Thermal processing software can modify settings in order to post process thermal imagery. This includes changing the type of image (thermal only, visual only, blended thermal/visual), adding or removing measurement spots or boxes, changing color palettes, and adjusting the temperature span.

Beyond thermal analysis software, photo editing and manipulation software, such as Adobe Lightroom, could be a potential tool as well. Lightroom can edit images to edit contrast, highlights, shadows, blacks, whites, and midtones which may assist in identify delaminations within thermal images. Additionally, Lightroom has a transform tool, which can be used to resize, scale, and warp images vertically and horizontally to change the perspective of the image. This tool can be useful for straightening the image so that the shapes of delamination can be more easily determined and translated into sketches.

Some of the thermal imagery for Bridge 07001 has been processed using Lightroom to see if editing photo properties can assist with identification of delamination. Refer to Data Collection and Analysis discussion of Bridge 07001 later in this report.

In-depth discussion on processing software, file types, and analysis protocols are not included as part of the scope of this Task 2 Interim Report. Additional discussion on specific file types and processing software will be included as part of the Task 3 Interim Report.

Data Analysis for Defect Identification

It is important to note that the user must have some experience with thermal data in order to properly analyze the imagery for defect identification. Temperature readings are affected by many factors which can cause false positive identification. Thermal data should be cross checked against visual imagery whenever possible to ensure that there are no false positives for defects. Factors that affect temperature readings include:

- Type of material (Figure 36)
- Thickness of material (Figure 37)
- Reflective materials (Figure 38)
- Angle of data capture (Figure 39)
- Paint or other protective coatings (Figures 40 through 42)
- Shadows (Figure 43)
- Surface texture (i.e. honeycombing, scaling, etc.) (Figure 44)
- Dirt and debris that may be present along the surface
- Moisture or water leakage (Figure 45)
- Internal voids (box beam and box girder superstructures) (Figures 46 and 47)

Figure 36 - Concrete, Steel, and Timber along Underside of Bridge Deck

Figure 37 – Temperature Differentials along Girders and Abutment

Figure 38 – Temperature Differential due to Reflection in SIP Forms

Figure 39 - Temperature Differential at Edge of Pier Cap caused by Angle of Data Capture

Figure 40 - Temperature Differential where Paint is Missing

Figure 41 - Temperature Differential caused by Paint Failure along Top Flange

Figure 42 - Temperature Differential caused by Paint Overspray

Figure 43 – Temperature Differential caused by Shadow

Figure 44 – Temperature Differential caused by Texture of Gravel

Figure 45 – Temperature Differential caused by Leakage along Joint

Figure 46 - Temperature Differentials caused by Internal Deviation Blocks and Drain Pipes)

Figure 47 - Temperature Differential caused by Voids and Internal Diaphragms

However, there were still limitations for this visual cross check, especially near the edges of the deck. Depending on the conditions, the visual image of the deck could be washed out from sun glare (Figure 48) or under exposed due to the adjacent sky (Figure 49). Contrast caused by shadows can also result in overexposure of portions of the visible image removing needed detail (Figure 50).

Figure 48 - Sun Glare obscuring Deck

Figure 49 - Underexposed Deck

Figure 50 - Overexposed Surface Removing Detail

Data analysis for the five bridges will be discussed in depth in the "Data Collection and Analysis on Five Bridges" section. The thermal imagery collected for each bridge will be included within the related appendices. Based on the data analysis, thermal imagery was able to detect the following types of deficiencies:

- Minor delaminations detected only through manual sounding (Figure 51)
- Minor delaminations with cracking (Figure 52)
- Delamination without visible separation (Figure 53)
- Delaminations with cracking and visible separation (Figures 54 and 55)
- Delaminations along previous repairs due to voids / overpour (Figure 56)
- Both sound patches and delaminations with patches (Figures 57 and 58)

Figure 51 - Minor Delamination

Figure 52 - Delamination with Cracking

Figure 53 - Delamination without Visible Separation

Figure 54 - Delamination with Cracking and Visible Separation

Figure 55 - Delamination with Visible Separation

Figure 56 - Delamination along Repair due to Void / Overpour

Figure 57 - Sound Patches and Delaminated Patches

Figure 58 - Delamination within Otherwise Sound Patch

Data Collection and Analysis on Five Bridges

Five bridges were identified for field testing and data collection for this research project. The research project identified one or two spans per bridge to use for this research project. These bridges include:

- Bridge S-17-039 (BIN 4E5) carrying Route 28 in Somerville, MA
- Bridge B-16-033 (BIN 4EU) carrying Morrissey Boulevard in Boston, MA
- Bridge 07001 carrying I-195 Westbound in Providence, RI
- Bridge S-24-083 (BIN 114) carrying I-291 Line K Ramp in Springfield, MA
- Bridge B-16-369 (BIN 4RT) carrying I-90 Eastbound Off-Ramp in Boston, MA

The specific limits of each bridge and general methodology for the field testing are discussed in the individual bridge sections below.

Bridge S-17-039 (BIN 4E5)

Bridge S-17-039 (Bridge Identification Number (BIN) 4E5) is a nine-span structure carrying State Route 28 (McGrath Highway) over Washington Street, turn-arounds, and relief areas in the City of Somerville (Figure 59). The structure carries northbound and southbound traffic with a closed southbound off-ramp

Figure 59 - Layout for BIN 4E5

There were three approaches for this bridge as follows:

at the south end of the bridge. The bridge is composed of simply supported steel multi-beams, some of which frame into steel cross girders and some of which bear on reinforced concrete piers and abutments, supporting a reinforced concrete deck.

The bridge was originally built in 1951, rebuilt in 1983, and recently underwent a rehabilitation in 2015. The 2015 rehabilitation included several areas of full depth deck repairs as well as replacement of the deck along the longitudinal joint. According to the January 2020 Routine Inspection Report, the deck condition was rated 6 – Satisfactory. The National Bridge Element (NBE) quantities within the report indicated that Element 12 – Reinforced Concrete Deck had 2,774 square feet (SF) rated as Condition State (CS) 2 for the defect "Delamination/Spall/Patched Area."

- 1. Collect repeated thermal imagery of several locations over time to determine optimal weather and temperature conditions for data collection
- 2. Compare imagery of different handheld thermal cameras and thermal resolutions
- 3. Survey the underside of the deck using handheld thermal cameras to perform a cross check of the traditional inspection and thermal imagery

NETC 20-3 Task 2 Interim Report

Figure 60 - Underside of Span L-M

The first step for this bridge was to perform an inspection of the bridge using traditional methods, specifically hammer sounding for delamination detection. The traditional inspection was performed on 9/3/21 using a 35' bucket truck to access the underside of the deck. The mainline portion of Span L-M (Beams 6 through 16) was selected to receive a hands-on inspection to map existing delaminations and spalls (Figure 60). This span was chosen because it crosses an unoccupied relief area allowing for easy access for repeated data collection.

The traditional inspection was performed without any existing references of previously documented deficiencies. One trained bridge inspector performed an inspection of the underside of the deck. The inspector boomed up in each diaphragm bay to take a close look at the deck and sounded suspect areas (I.e. areas with efflorescence, rust staining, or adjacent to cracking). It should be noted that the deck

Figure 61 - Hatched Delamination

was not sounded 100% and that the bridge inspector used experience and judgement for the inspection. Identified areas were marked with an outline and hatch marks with lumber crayon (Figure 61). These areas were then documented onto a framing plan of the span. Twenty-six deficiencies consisting of delamination and/or spalling were identified within this span, (Figure 62). The full deficiencies and measurements for the traditional inspection findings sketch can be found in Appendix A-1. The traditional inspection of this span took approximately 2 hours.

Figure 62 - Span L-M Traditional Inspection Findings

Additionally, the inspectors reviewed the 2020 Routine Inspection report to identify previously identified deficiencies along the underside of the deck outside of Span L-M that could be used for repeated thermal data capture. The list was initially surveyed on foot to eliminate locations that did not include delamination or were directly above or adjacent to the roadways below. The remaining spots received a hands-on inspection using the bucket truck to identify the limits of delamination. The identified delaminations were also marked with an outline and hatch marks and the inspector updated the existing deficiency text description and dimensions.

Figure 63 - Marked Location for Repeated Data Collection

Eleven locations of identified delamination were selected for repeated data collection. In the middle of the data collection, an additional 12th location that was sound was added to serve as a control. In order to ensure consistency with data collection, each location was numbered sequentially with pink spray paint used to mark standing locations during data collection (Figure 63). The locations of delamination were selected to represent varying severity. These locations are shown in Figure 59 and Figure 64. Table 20 on the following page provides a summary of the repeated locations. Measurements and imagery of each repeated location can be found in Appendix A-2.

Figure 64 - Span L-M Locations for Data Collection

Location	Span	Вау	Brief Description	
1	L-M	7	Hollow sounding area	
2	L-M	9	Spall with adjacent hollow sounding area	
3	L-M	14	Minor hollow sounding area	
4	L-M	13	Hollow sounding area	
5	L-M	13	Spall with adjacent hollow sounding area	
6	L-M	14	Minor hollow sounding area	
7	L-M	15	Hollow sounding area containing hollow patches	
8	L-M	15	Hollow sounding area and hollow sounding previous repair	
9	P-R	13	Spall with adjacent hollow sounding area	
10	R-S	13	Hollow sounding area	
11	S-T	11	Hollow sounding area	
12	L-M	9	None	

Table 20 – 4E5: Summary of Repeated Location for Data Collection

These locations were used to perform consistent repeated data capture. AECOM performed 16 site visits between 9/13/21 and 10/7/21 in order to capture thermal data at different temperatures, times of day, and weather conditions. The repeated data capture was performed for all locations, with exceptions for technical issues with the cameras or skipping locations at times of days where the camera would end up looking towards the sun which would damage the sensor. This repeated data collection was performed using the Flir C5, Flir E8, Flir E86, and Flir E96. The Fluke TiX580 and Seek Shot Pro were used to perform limited data collection in order to include some data from other manufacturers for comparison. Refer to Appendix A-3 for the captured thermal imagery for each location. It should be noted that the contact sheets used for portraying the images did reduce the image quality. The thermal imagery within this appendix is named as follows: Camera_Location_Field Visit_Original Image Name. For example, E8_Loc02_01_FLIR0032 is the image taken with the Flir E8 at Location 2 during the first data set.

In general, the thermal cameras were left on the default settings and input parameters (i.e. emissivity and reflected temperature) were not modified to attempt to obtain true temperature values. True temperature values are not required for this application since the identification of concrete delamination is based on temperature differences between the concrete and not on the specific temperature itself.

Determination of Optimal Conditions for Data Collection

The Flir E96 thermal data was used to determine the optimal weather and atmospheric conditions for data collection. The weather temperature and conditions for each field visit were documented in Appendix A-4. The weather data was taken from the General Edward Lawrence Logan International Airport Weather Station, which is approximately 4 miles from the bridge site.

Two AECOM staff members reviewed the imagery for the E96 camera. The data was compiled into charts to identify each location as a simple yes or no. In cases, where no thermal image was taken, it was identified as not applicable (n/a). The two sets of data were compiled to identify which data sets had the most identified delaminations between the two AECOM staff members. The maximum number possible was 24 (11 delaminations and 1 sound control location with two AECOM staff). Refer to Appendix A-5 for charts identifying which delaminations were identified by each AECOM staff member and Table 21 on the following page for a summary chart.

Data Sat		Staff 1			Staff 2			Co	ombined Tot	als
Data Set	# Yes	# No	# n/a	# Yes	# No	# n/a		# Yes	# No	# n/a
1	10	1	1	10	1	1		20	2	2
2	1	10	1	4	7	1		5	17	2
3	3	8	1	4	7	1		7	15	2
4	10	1	1	9	2	1		19	3	2
5	9	2	1	9	2	1		18	4	2
6	6	5	1	8	3	1		14	8	2
7	7	4	1	7	4	1		14	8	2
8	6	5	1	6	5	1		12	10	2
9	0	11	1	1	10	1		1	21	2
10	4	7	1	6	5	1		10	12	2
11	3	8	1	4	7	1		7	15	2
12	10	1	1	11	0	1		21	1	2
13	4	7	1	5	6	1		9	13	2
14	3	8	1	5	6	1		8	14	2
15	5	6	1	3	8	1		8	14	2
16	11	0	1	11	0	1		22	0	2
17	11	0	1	11	0	1		22	0	2
18	5	6	1	4	7	1		9	13	2
19	0	12	0	3	8	0		3	20	0
20	0	12	0	3	9	0		3	21	0
21	11	1	0	11	1	0		22	2	0
22	11	1	0	11	1	0		22	2	0
23	11	1	0	11	1	0		22	2	0
24	3	9	0	4	8	0		7	17	0
25	3	9	0	2	10	0		5	19	0
26	3	9	0	4	8	0		7	17	0
27	10	1	1	8	3	1		18	4	2
28	10	2	0	8	4	0		18	6	0
29	11	1	0	11	1	0		22	2	0
30	10	2	0	10	2	0		20	4	0
31	11	1	0	8	4	0		19	5	0
32	3	9	0	8	4	0	ļ	11	13	0

Table 21 – 4E5: Summary of Identification of Delaminations

Data sets with approximately 90% (19 of 22) identified delaminations were considered to be successful for data collection. Eleven data sets met this criterion; specifically, 1, 4, 12, 16, 17, 21, 22, 23, 29, 30, and 31. Refer to Table 22 and Table 23 for Temperature and Atmospheric Conditions for these data sets.

Data Set	Time	Temp. at Time of Testing (°F)	Temp. 1 Hour Prior (°F)	Temp. 2 Hours Prior (°F)	Temp. 3 Hours Prior (°F)	Temp. 6 Hours Prior (°F)
1	1:40 to 2:02 pm	82	79	78	78	70
4	10:38 to 10:46 am	83	82	80	76	71
12	7:49 to 7:55 pm	64	64	65	67	71
16	7:47 to 7:55 pm	70	72	72	76	81
17	8:45 to 8:50 pm	70	70	72	72	80
21	6:52 to 6:59 pm	65	65	66	68	73
22	7:34 to 7:51 pm	65	65	66	68	72
23	7:59 to 8:06 pm	67	68	69	71	75
29	9:36 to 9:51 am	63	59	55	52	51
30	10:59 to 11:05 am	66	64	61	57	51
31	9:24 to 9:45 am	64	63	62	59	56

Table 22 _ AEE · Summary	v of Tomporatur	o durina Mod	+ Succossful Data	Collection Deriods
TUDIE ZZ = 4LJ. JUIIIIIUI	y of remperature	e uuring iviosi	. Successful Ducc	Conection Ferious
		2		

Based on the temperatures for these data sets, it can be inferred that a temperature change of at least 7 degrees Fahrenheit over a 6-hour period is necessary for detection of delamination. These data sets have between 7- and 15-degree temperature swings over a 6-hour period.

The time of day and whether the temperature is increasing or decreasing does not seem to have a significant impact. Five of these data sets have increasing temperatures and six of these data sets have decreasing temperatures.

Data Set	Dew Point (°F)	Humidity (%)	Wind Speed (mph)	Last Rainfall
1	57	45	9	6 hours prior
4	71	67	13	2 days prior
12	55	72	5	16 hours prior
16	66	87	13	7 hours prior
17	66	87	10	8 hours prior
21	61	87	7	Rain during data collection
22	61	87	7	Rain during data collection
23	46	47	13	13 hours prior
29	45	50	15	3 days prior
30	44	45	10	3 days prior
31	52	64	0	30 hours prior

Table 23 – 4E5: Summary of Atmospheric Conditions for Most Successful Data Collection Periods

The dew point, humidity, and wind speed did not appear to have an impact on successful delamination detection. The values range greatly during within these data sets. These data sets were primarily collected within 72 hours of rainfall. It should be noted that in several data sets, the delaminated areas did not appear as anticipated. Generally, during morning hours, delaminations will heat up quicker and

be warmer than the adjacent deck. However, in several data sets, delaminated areas actually were cooler than the adjacent deck during the morning hours. It is believed that this was caused by water collecting and being trapped within the deck at these locations. Since destructive methods were not included within the scope of the research project, it was unable to be confirmed if water was trapped in the deck at these locations.

Comparison of Different Thermal Resolutions

The thermal imagery taken repeatedly at the locations provides direct comparison imagery for the different Flir thermal cameras. The intent was to compare the imagery based on a real-world situation, in this case, an inspector surveying the bridge deck from the ground below. The quality of the thermal imagery in terms of detail and quality will not be able to be directly compared, as the distances from the object being captured were not adjusted to compensate for the differences in field of view.

For this activity, the captured imagery for the E96, E86, E8, and C5 cameras was reviewed by one AECOM staff member to identify whether the delamination was visible within each thermal image. The data was compiled into charts to identify each location as a simple yes or no. In cases, where no thermal image was taken, it was identified as not applicable (n/a). Refer to Appendix A-6 – Identification of Delamination charts. For the E96 camera, only one of the AECOM staff member results were used. The results of the identification are included as Tables 24 and 25 below.

e	Totals		Location									
Came	per Location	1	2	3	4	5	6	7	8	9	10	11
	Yes (#)	17	20	12	20	18	15	24	14	23	21	21
	Yes (%)	53.1%	62.5%	37.5%	62.5%	56.3%	46.9%	75.0%	45.2%	71.9%	65.6%	65.6%
E96	No (#)	15	12	20	12	14	17	8	17	9	11	11
	No (%)	46.9%	37.5%	62.5%	37.5%	43.8%	53.1%	25.0%	54.8%	28.1%	34.4%	34.4%
	Yes (#)	11	12	10	14	15	11	12	11	16	18	18
	Yes (%)	52.4%	57.1%	45.5%	63.6%	68.2%	50.0%	54.5%	50.0%	72.7%	81.8%	81.8%
E80	No (#)	10	9	12	8	7	11	10	11	6	4	4
	No (%)	47.6%	42.9%	54.5%	36.4%	31.8%	50.0%	45.5%	50.0%	27.3%	18.2%	18.2%
	Yes (#)	9	12	7	12	11	9	11	6	10	14	15
₋₀	Yes (%)	45.0%	57.1%	33.3%	57.1%	52.4%	42.9%	52.4%	30.0%	47.6%	66.7%	71.4%
	No (#)	11	9	14	9	10	12	10	14	11	7	6
	No (%)	55.0%	42.9%	66.7%	42.9%	47.6%	57.1%	47.6%	70.0%	52.4%	33.3%	28.6%
	Yes (#)	7	6	6	8	10	8	6	6	10	10	10
	Yes (%)	36.8%	31.6%	31.6%	42.1%	52.6%	42.1%	31.6%	31.6%	55.6%	55.6%	55.6%
	No (#)	12	13	13	11	9	11	13	13	8	8	8
	No (%)	63.2%	68.4%	68.4%	57.9%	47.4%	57.9%	68.4%	68.4%	44.4%	44.4%	44.4%

Table 24 – 4E5: Comparison of Delamination Identification by Location

The percentage in the table are adjusted to account for any n/a identification in the charts. Location 12 is omitted because no delamination was present at that location.

Summary of Delamination Identification										
Camera	Total # of Data Points	Dela Ide	Total mination entified	Dela Not I	Total mination dentified					
		Qty	%	Qty	%					
E96	351	205	58.4%	146	41.6%					
E86	240	148	61.7%	92	38.3%					
E8	229	116	50.7%	113	49.3%					
C5	206	87	42.2%	119	57.8%					

Table 25 – 4E5:	Summarv of	Delamination	Identification	bv	Camera
10010 20 1201	Sammary Oj	Derammation	racingication	~ y	cunicia

The E86 has the highest percentage of delaminations identified followed by the E96, E8, and C5. It is important to note that the data does not provide an even comparison of the thermal cameras. Each camera had a different number of data collection periods. The Flir E96 was used to collect imagery more frequently, often with data collection at the beginning and end of each field visit. This could have caused more data to be captured during less ideal periods compared to the other thermal cameras. Additionally, the Flir E86 and E96 were equipped with different lenses. The E96 used the 42-degree (10 mm) lens and the E86 used the 24-degrees (17 mm) lens. The E86 lens provides a more telephoto or zoomed in view, which would provide higher quality imagery of the delamination and may have improved the likelihood of delamination detection.

In addition to the data provided in this section above, some comparison imagery was developed for visual comparison. Refer to Appendix A-7 – Comparison of Camera Imagery. Twelve sets of images; one for each location; were compiled randomly from the collected data. The imagery includes one set based on the automatic camera settings and another set based on manual settings to try to get similar temperature spans in the imagery.

Cross Check of Traditional Inspection Results with Thermal Imagery

During the field visit the evening of 9/26/21, a thermal survey of the deck was performed using the traditional field inspection deficiency sketch in order to check for additional delaminations that may have been missed. Areas of interest, meaning locations with temperature differentials, were marked on the sketch. This was limited to areas that did not correspond with identified delaminations; data was not collected for the already identified locations. Seventeen additional areas of interest, labeled A through Q, were identified.

A follow up inspection using a bucket truck was performed on 10/25/2021. The intent of the follow up inspection was to check the areas of interest that were identified from thermal survey of the underside of the bridge. See Figure 65 for the location of these areas of interest. Only the areas of interest were checked, and hammer sounded to ascertain whether the areas of interest were delamination that were missed during the traditional inspection. Refer to Appendices A-8-1 and A-8-2 for the sketch of the thermal survey and follow up inspection and for thermal and visual imagery of each area of interest. The results are summarized in Table 26.

<u>SPAN L-M</u> Thermal Survey and Follow up Inspection Figure 65 - Areas of Interest from Thermal Survey

Table 26 –	- 4E5: Fo	llow Up	Inspection	Findings
		,	'	

Area of Interest	Follow up Insp. Description	Comment(s)
A	No Delamination Found	No apparent cause for differential
В	No Delamination Found	No apparent cause for differential
С	No Delamination Found	No apparent cause for differential
D	Minor delamination	
E	Delamination in deck and haunch	
F	No Delamination Found	No apparent cause for differential
G	No Delamination Found	Minor discoloration of deck at location
Н	No Delamination Found	Discoloration and poor consolidation at location
I	No Delamination Found	Discoloration and poor consolidation at location
J	Minor delamination	
К	Minor delamination	
L	No Delamination Found	Patches, discoloration, and poor consolidation at location
М	No Delamination Found	Patches, discoloration, and poor consolidation at location
N	Minor delamination with hollow	
	sounding patches	
0	Minor delamination	
Р	Minor delamination	
Q	Minor delamination	

Nine of the areas of interest were false positives with no delamination present; some of these temperature differentials may have been caused by discoloration and poor consolidation of the concrete but not all false positives had an obvious cause (Figure 66). Seven areas of interest were minor delaminations that were hard to distinguish by sounding. Some of these areas may not have been true delaminations caused by corrosion of rebar but caused by poor quality repairs as several were located adjacent to patches, contained hollow sounding patches, and/or had poor consolidation (Figure 67). One location, area of interest E, was a delamination that likely should have been identified during the traditional inspection (Figure 68). The initial traditional inspection and follow up inspection findings are compiled in Appendix A-8-3. The compiled findings have thirty-five deficiencies, which is an increase from the twenty-six identified during the initial traditional inspection.

Figure 66 - False Positive from Thermal Survey

Figure 67 - Minor Delamination from Thermal Survey

Figure 68 - Delamination from Thermal Survey

Bridge B-16-033 (BIN 4EU)

Figure 69 - Layout of BIN 4EU

Bridge B-16-033 (BIN 4EU) is a five-span bridge which carries Morrissey Boulevard over Dorchester Bay in the City of Boston (Figure 69). The bridge is comprised of four reinforced concrete arch spans with a triple double-leaf bascule main span. The arch spans consist of longitudinal and transverse spandrel walls forming a spandrel vault that supports a reinforced concrete deck with bituminous concrete wearing surface. The bridge was originally built in 1927, widened in 1955, rebuilt in 1978, and rehabilitated in 2002.

According to the June 2021 Routine Inspection Report, the arch condition was rated 4 – Poor, which was governed by the condition of the underside of the arches. The National Bridge Element (NBE) quantities within the report indicated that Element 144 – Reinforced Concrete Arch (total quantity 280 linear feet (LF)) had 26 LF in Condition State 2 and 254 LF in Condition State 3 for delamination/spall/patched area.

The approach for this bridge was as follows:

- 1. Determine whether handheld thermal cameras could verify previous inspection findings
- 2. Review weather conditions and temperatures against the effectiveness of the thermal data

Verification of Previous Inspection Findings with Thermal Imagery

For the purposes of this research project, the field testing of this bridge was limited to Span 5, which is in the tidal range and accessible during low tide (Figure 70). The vertical clearance beneath this span ranges from approximately 15'-0" along the fascia to 8'-0" near midspan. Since the bridge was recently inspected

Figure 70 – East Elevation of Span 5

in June 2021 and included a detailed inspection of the underside of the arch, a full hands-on inspection was not performed of this area. The field testing was for this bridge performed on 9/23/2021. Existing limits of delamination previously marked along the underside of the bridge were spot checked with hammer sounding in several locations to verify that the drawn limits matched the actual limits of the delamination. The Flir E96 and Flir E8 were each used to collect two sets of data. Table 27 provides approximate times of data collection.

Table 27 – 4EU: Times for Data Collection

Data Set	Camera	Start Time	End Time
First	E8	8:19 am	8:41 am
Second	E8	9:40 am	9:53 am
First	E96	7:35 am	8:14 am
Second	E96	9:18 am	9:38 am

The existing underside of arch sketch for span 5 from the 2019 routine inspection report was used as a starting point in the field. Existing deficiencies were reviewed to establish locations for the collection of thermal data. Sixteen locations of delamination were chosen for data collection (Figure 71).

Figure 71 - Underside of Arch for Span 5

The second data set for each camera was post processed using Flir Tools to see if adjusting the color palette and thermal span would increase the detection capabilities. The thermal imagery for the Flir E8 and Flir E96 included as part of Appendix B-1 and Appendix B-2, respectively. The appendix includes one page for each deficiency with the first data set thermal image, first data set visual image, second data set thermal image, and post processed second data set thermal image. The thermal imagery within this appendix is named as follows: Camera_Data Set_Deficiency Number_Type of Image_Original Image Name. The type of image is either IR for a thermal image or RGB for visual image. The post processed images include the letter p following the data set number. For example, E8_02p_01_FLIR0032 is the post processed image taken with the Flir E8 at Deficiency 1 during the second data set.

The thermal imagery for each data set was reviewed to identify whether the delamination was able to be detected from the imagery and further classified as either detected, partially detected, or not detected. These findings are included as Table 28. A summary table is included as Table 29. For the purposes of this report, these terms are defined as the following:

- Identified = The delamination roughly matches the limits identified during the traditional inspection
- Partially Identified = The delamination is visible but is noticeably smaller than the limits identified during the traditional inspection
- Not Identified = No delamination was identified

	Flir E8						Flir E96					
ciency mber	First Data SetSecond Data SetSecond Data SetAutomatic SettingsAutomatic SettingsPost Processed		First Data SetSecond Data SetAutomatic SettingsAutomatic Settings			d Data Set atic Settings	Second Data Set Post Processed					
Defi	IR Image #	Delam. Detected?	IR Image #	Delam. Detected?	IR Image #	Delam. Detected?	IR Image #	Delam. Detected?	IR Image #	Delam. Detected?	IR Image #	Delam. Detected?
1	1404	No	1482	Yes	1482	Yes	1685	Yes	1749	Yes	1749	Yes
2	1410	No	1492	Yes	1492	Yes	1695	No	1753	Yes	1753	Yes
3	1416	No	1486	Yes	1486	Yes	1691	Yes	1767	Yes	1767	Yes
4	1422	No	1504	Yes	1504	Yes	1713	Yes	1773	Yes	1773	Yes
5	1430	Yes	1494	Yes	1494	Yes	1697	No	1755	Yes	1755	Yes
6	1432	No	1496	Yes	1496	Yes	1699	No	1759	Yes	1759	Yes
7	1434	No	1498	Yes	1498	Yes	1701	No	1783	Yes	1783	Yes
8	1444	No	1508	Yes	1508	Yes	1717	Yes	1789	Yes	1789	Yes
9	1446	No	1520	Yes	1520	Yes	1721	Yes	1799	Yes	1799	Yes
10	1452	No	1514	Yes	1514	Yes	1725	No	1803	Yes	1803	Yes
11	1470	No	1522	Yes	1522	Yes	1743	No	1791	Yes	1791	Yes
12	1454	No	1516	No	1516	No	1727	No	1805	Partial	1805	Partial
13	1462	Yes	1538	Yes	1538	Yes	1737	No	1811	Yes	1811	Yes
14	1456	No	1532	Partial	1532	Partial	1731	No	1807	Partial	1807	Partial
15	1458	Yes	1536	No	1536	No	1733	Yes	1809	Yes	1809	Yes
16	1474	No	1540	Yes	1540	Yes	1745	Yes	1815	Yes	1815	Yes

Table 28 – 4EU: Identification of Delamination by Deficiency

Table 29 – 4EU: Summary of Findings

Camera	Data Set	# Detected	% Detected	# Partially Detected	% Partially Detected	# Not Detected	% Not Detected
	1st	3	18.8	0	0.0	13	81.3
E8	2nd	13	81.3	1	6.3	2	12.5
	2nd - Processed	13	81.3	1	6.3	2	12.5
	1st	7	43.8	0	0.0	9	56.3
E96	2nd	14	87.5	2	12.5	0	0.0
	2nd - Processed	14	87.5	2	12.5	0	0.0

The E96 was able to successfully identify more delaminations for both the first and second data collection periods. For both the E96 and E8 data sets, the post processing did not increase the ability to detect delamination. However, it should be noted that the second data set provided positive results with easily identified delamination. Post process might improve detection ability for data collected during less than ideal periods.

Review of Weather Conditions and Temperatures

The weather conditions during the second data set yielded good results with both cameras detected over 80% of the delaminations. The temperature for these data sets had an approximately 10-degree increase starting 6 hours before data collection. Table 30 provides the Time, Temperature, and Atmospheric Conditions during Data Collection.

Camera	E96	E8	E96	E8
Date	9/23/2021	9/23/2021	9/23/2021	9/23/2021
Name	First Run	First Run	Second Run	Second Run
Start Time	7:35 AM	8:19 AM	9:18 AM	9:39 AM
End Time	8:14 AM	8:41 AM	9:38 AM	9:53 AM
Temp at Start (°F)	72	74	78	78
Temp at End (°F)	72	76	78	79
Avg. Temp. (°F)	72	75	78	78.5
Temp 6 Hr Prior (°F)	68	68	68	68
Δ Temp 6 Hr (°F)	4	7	10	10.5
Temp 3 Hr Prior (°F)	68	68	70	70
Δ Temp 3 Hr (°F)	4	7	8	8.5
Temp 2 Hr Prior (°F)	69	70	71	72
∆ Temp 2 Hr (°F)	3	5	7	6.5
Temp 1 Hr Prior (°F)	70	72	74	76
∆ Temp 1 Hr (°F)	2	3	4	2.5
Dew Point (°F)	67	67	67	66
Humidity (%)	84	79	79	64
Wind Speed (mph)	8	9	12	13
Date of Last Rainfall	9/19/2021	9/19/2021	9/19/2021	9/19/2021

Table 30 - 4FU: Time	Temnerature	and Atmospheric	Conditions
	remperature,	unu Aunospherie	conuntions

Figure 72 - Layout of Bridge 07001

Bridge 07001 (Washington Bridge)

Bridge 07001, more commonly referred to as Washington Bridge, is a twenty-one-span bridge which carries I-195 Westbound over the Seekonk River and local streets in the City of Providence (Figure 72). The bridge has a few different types of superstructures but is primarily comprised of post-tensioned concrete cantilevers with prestressed concrete drop-in girders. The bridge was built in 1969, rebuilt in 1998, and partially rehabilitated in 2018.

According to the July 2020 Inspection Report, the superstructure was rated 4 – Poor. The National Bridge Element (NBE) quantities within the report indicated that Element 109 Prestressed Open Concrete Girder/Beam (total quantity 14,543 LF) has 1,290 LF in CS2, 1,468 LF in CS3, and 135 LF in CS4. Element 12 – Reinforced Concrete Deck (total quantity 142,880) has 3,572 square feet in CS2, and 714 square feet in CS3.

The approach for this bridge was as follows:

- 1. Determine whether handheld thermal cameras could verify previous inspection findings
- 2. Review weather conditions and temperatures against the effectiveness of the thermal data

Verification of Previous Inspection Findings with Thermal Imagery

Figure 73 - Underside of Span 2

For the purposes of this research project, the field testing of this bridge was limited to Span 2, which spans an unoccupied relief area (Figure 73). This included the reinforced concrete bridge deck, post-tensioned concrete cantilevers, and prestressed concrete drop-in beams. The reinforced concrete fascia arch panels were not included due limited accessibility to the interior faces based on the bridge geometry and adjacent cantilevers and beams. The traditional inspection was performed using a 35' bucket truck on 9/28/21.

Previous inspection deficiency charts were used as a starting point in the field and updated during the traditional inspection (refer to Appendix C-1). Deficiencies were reviewed to establish locations for the collection of thermal data with locations of spalls, cracking, and obscured delaminations removed so that only delaminations remained. Twenty-two delaminations along the bridge deck and cantilevers were used for data collection. No locations of delamination were identified along the drop-in beams.

The Flir E96 was used to collect two sets of data on 10/7/21. Table 31 provides approximate times of data collection. The second data set was captured with the E96 outfitted with a 24-degree (17mm) lens instead of the 42-degree (10 mm) wide angle lens that was used for the first data set. This was done because the wide-angle lens did not provide adequate detail for the vertical faces at the ends of the cantilevers.

Table 31 – 07001: Time of Data Collection

Data Set	Camera	Start Time	End Time
First	E96	9:18 am	9:54 am
Second	E96	10:00 am	10:13 am

The thermal imagery for the Flir E96 is included as part of Appendix C-2. The appendix includes one page for each deficiency with the first data set visual image, close-up of the deficiency from the traditional inspection, first data set thermal image, second data set thermal image, second data post processed in Flir Tools, and second data post processed in Adobe Lightroom thermal image. The thermal imagery within this appendix is named as follows: Bridge_Camera_Data Set_Deficiency Number_Type of Image_Original Image Name. The type of image is either IR for a thermal image or RGB for visual image. The post processed images include either p1 (for Flir Tools processing) or p2 (for Flir Tools and Lightroom processing) following the type of image. For example, 07001_E96_02_03_IRp2_FLIR0032 is the thermal image processed in Flir Tools and Lightroom taken with the Flir E96 at Deficiency 3 during the second data set.

The thermal imagery for each data set was reviewed to identify whether the delamination was able to be detected from the imagery and further classified as either detected, partially detected, or not detected. These findings are included as Table 32. Summary tables are included as Tables 33 and 34 on the follow page.

Deficiency # for	First Dat Automatic	a Set Settings	Second Da Automatic	Second Data Set Automatic Settings		ita Set essed	Second Data Set Post Processed (Flir + Lightroom)	
Thermal Survey	Delam. Identified with IR?	IR Image #	Delam. Identified with IR?	IR Image #	Delam. Identified with IR?	IR Image #	Delam. Identified with IR?	IR Image #
1	No	202	Partial	256	Partial	256	Partial	256
2	No	226	No	280	No	280	No	280
3	No	204	No	258	No	258	No	258
4	No	206	Partial	260	Yes	260	Yes	260
5	No	208	Yes	262	Yes	262	Yes	262
6	No	210	Partial	264	Partial	264	Partial	264
7	No	238	Yes	290	Yes	290	Yes	290
8	No	238	Partial	290	Partial	290	Partial	290
9	No	228	No	282	No	282	No	282
10	No	244	No	294	No	294	No	294
11	Partial	242	Partial	292	Partial	292	Partial	292
12	No	214	Partial	268	Partial	268	Partial	268
13	No	212	No	266	No	266	No	266
14	No	234	No	284	No	284	No	284
15	No	220	Yes	274	Yes	274	Yes	274
16	Yes	218	Yes	272	Yes	272	Yes	272
17	No	246	Partial	296	Partial	296	Partial	296
18	Partial	224	Partial	278	Partial	278	Partial	278
19	No	222	Partial	276	Partial	276	Partial	276
20	No	232	No	288	No	288	No	288
21	Partial	236	Yes	286	Yes	286	Yes	286
22	No	250	No	300	No	300	No	300

Table 32 – 07001: Identification of Delamination by Deficiency

The second data set was processed in two different ways to see if additional manipulation of the data could improve the thermal imagery and increase detection. The first method of post processing included adjusting the color palette and thermal span. The second method of post processing built on the first and ran the post processed data through Adobe Lightroom to adjust the image. The color adjustments in Lightroom varied for each image; the adjustments included a variation of increase or decreasing the image contrast, highlights, shadows, whites, and blacks. The specific adjustments varied for each image. Both processed images are included in Appendix C-2.

Data Sat	#	%	# Partially	% Partially	# Not	% Not
Data Set	Detected	Detected	Detected	Detected	Detected	Detected
1st	1	4.5	3	13.6	18	81.8
2nd	5	22.7	9	40.9	8	36.4
2nd - Processed * (FL)	6	27.3	8	36.4	8	36.4
2nd - Processed * (FL, LR)	6	27.3	8	36.4	8	36.4

Table 33 – 07001: Summary of Findings

* FL = Flir Tools, LR = Adobe Lightroom

Table 34 – 07001: Summary of Findings by Element

Data Set	Element	# Detected	% Detected	# Partially Detected	% Partially Detected	# Not Detected	% Not Detected
1st	Deck	1	9.1	1	9.1	9	81.8
1st	Cantilever	0	0.0	2	18.2	9	81.8
2nd	Deck	3	27.3	5	45.5	3	27.3
2nd	Cantilever	2	18.2	2	18.2	7	63.6
2nd - Processed* (FL)	Deck	4	36.4	4	36.4	3	27.3
2nd - Processed* (FL)	Cantilever	2	18.2	2	18.2	7	63.6
2nd - Processed* (FL, LR)	Deck	4	36.4	4	36.4	3	27.3
2nd - Processed* (FL, LR)	Cantilever	2	18.2	2	18.2	7	63.6

* FL = Flir Tools, LR = Adobe Lightroom

Neither data collection period was very successful in identifying delaminations. The limited effectiveness

Figure 74 - Delamination at Top of Vertical Face of Cantilever

is partially due to the bridge configuration and geometry created a challenging environment for the thermal data collection. The post-tension concrete cantilevers have embedded anchorage plates at the top of the vertical faces which had several locations of spalling and delamination due to corrosion of the anchorage plates (Figure 74). These areas were difficult to observe from the ground with the Flir E96. The delaminations along the underside of the deck were more likely to be identified than those along the cantilevers.

Post processing the data did not significantly change the results. As previously discussed, this is partially due to the bridge configuration and geometry. Only one deficiency had improved detection when processed in Flir Tools. The post processing in Adobe Lightroom did not improve detection of delamination for this data set although the adjustments to the image contrast did make the delaminations easier to identify in each image.

Review of Weather Conditions and Temperatures

The weather conditions during the data collection did not yield very positive results despite the larger temperature swing (approximately 16.5 to 18 degrees starting 6 hours prior to data collection). The delamination detection was only able to detect, either fully or partially, approximately 64% of the delamination. Table 35 provides the Time, Temperature, and Atmospheric Conditions during Data Collection.

Date	10/7/2021	10/7/2021
Start Time	9:18 AM	10:00 AM
End Time	9:54 AM	10:13 AM
Temp at Start (°F)	68	71
Temp at End (°F)	71	71
Avg. Temp. (°F)	69.5	71
Temp 6 Hr Prior (°F)	53	53
Δ Temp 6 Hr (°F)	16.5	18
Temp 3 Hr Prior (°F)	54	54
Δ Temp 3 Hr (°F)	15.5	17
Temp 2 Hr Prior (°F)	57	60
Δ Temp 2 Hr (°F)	12.5	11
Temp 1 Hr Prior (°F)	63	66
Δ Temp 1 Hr (°F)	6.5	5
Dew Point (°F)	57	57
Humidity (%)	61	61
Wind Speed (mph)	0	0
Date of Last Rainfall	10/5/2021	10/5/2021

Table 35 – 07001: Time,	Temperature,	, and Atmospheric	Conditions during	Data Collection

NETC 20-3 Task 2 Interim Report

Figure 75 - Layout of BIN 114

Bridge S-24-083 (BIN 114)

S-24-083 (BIN 114) is a two-lane ramp (Ramp K) that carries traffic from I-91 Southbound to I-291 Eastbound over Main Street, a parking lot area, various ramps, I-91, and other relief in the City of Springfield (Figure 75). The bridge is an eighteen-span structure consisting of steel stringers with built-up welded cross girders supporting a reinforced concrete deck with asphalt wearing surface.

The bridge was originally built in 1969, rehabilitated in 1998 which included demolition and replacement of the existing traffic barriers, and had structural steel repairs performed in 2000. According to the August 2021 Routine Inspection report, the deck condition was rated 5 – Fair. The NBE quantities within the report indicated that Element 12 – Reinforced Concrete Deck had 700 square feet rated as Condition State 2 for the defect "Delamination/Spall/Patched Area."

This bridge was selected based on the amount of concrete deterioration to the deck and pier columns, vertical clearance of the bridge (approximately 35 feet to 40 feet for the selected spans), and ease of access since portions of the bridge span MassDOT lots. Spans K4 and K5 were chosen because they span an unused parking lot (Figure 76). This allowed for easy access to the site and prevented unauthorized pedestrians from interfering with the operation. The Pier K3 South Column is also located within this vicinity.

The approach for this bridge follows:

- 1. Perform UAV-IR survey to identify delaminations along the underside of the deck for two spans and one of the pier columns with no pre-existing deficiency locations for comparison with traditional inspection findings.
- 2. Review weather conditions and temperatures against the effectiveness of the thermal data

Perform UAV-IR Survey to Identify Delaminations

The UAV-IR survey for this bridge was performed prior to the traditional inspection so that the field

Figure 76 - Field Testing Location

team would not have pre-existing knowledge of the location of delaminations. Data collection for Span K4 and the Pier K3 South Column was performed on 10/20/21 and data collection for Span K5 was performed on 10/21/21. The DJI Matrice 210 with Zenmuse XT2 sensor was utilized for data collection. The Parrot Anafi USA was used to capture some imagery with the drone on the ground on 10/20/21. However, it was not used for full data collection because of the control issue discussed earlier in the report. The Skydio X2 was not available at the time of field testing and was not used for data collection.

NETC 20-3 Task 2 Interim Report

Figure 77 - UAS Pilot and Sensor Operator during Data Collection

Three AECOM staff members were present for field testing. The field team was comprised of one non-destructive evaluation (NDE) specialist with extensive experience analyzing top of bridge deck thermal imagery, one NBIS qualified Team Leader / Part 107 commercial UAS pilot, and one bridge inspection team member / Part 107 commercial UAS pilot. Part 107 is the commercial UAS license established by the Federal Aviation Administration (FAA).

The data collection was performed using dual flight controllers; one dedicated to flying the drone and the other functioning as the sensor operator (Figure 77). The third staff member was present in order to take the field notes which were transcribed onto blank framing plan sketches for the bridge spans.

The drone was flown at an altitude such that the length of one diaphragm bay was able to be captured at a time. The XT2 sensor was positioned to capture imagery as close to perpendicular to the deck as possible (Figure 78). This was easy to accomplish for the interior bays, however, near the ends of the span, the imagery was captured at an angle in order to avoid flying too close to the bridge pier columns (Figure 79). For the data collection, the drone control settings were adjusted to show the thermal image and visual image side-by-side. This allowed the team to cross check the visual data during collection to help identify possible false positive identifications of delamination.

Figure 78 - Thermal Imagery captured Perpendicular to Deck near Center of Bridge Span

Figure 79 - Thermal Imagery Captured at Angle to avoid Pier Columns

For the underside of the spans, the drone was incrementally flown along the diaphragm bays, momentarily stopping at each bay to allow the field staff to identify any delaminations. For the pier column, the drone flew one face of the column at a time, with the drone starting near the top and working downwards. The drone was flown perpendicular to the pier for three of the sides (east, south, and west). The remaining side (north) was captured at an angle since there was limited space between the columns.

When a delamination was identified, the rough shape and approximate location of the delamination were hand drawn onto the framing plan sketches. The thermal image and visual image from the XT2 sensor were captured and also noted on the field sketches. The field sketches were drawn up in AutoCAD with the captured imagery being used to refine the information from the field sketches. In some instances, the limits of the delaminations were traced from the captured imagery.

Figure 80 - Aerial Lift used for Inspection

The traditional inspection was performed on 11/3/21. Two trained bridge inspectors performed an inspection of the underside of the deck with an aerial lift (Figure 80). The inspectors boomed up to each diaphragm bay and sounded suspect areas (i.e. areas with efflorescence, rust staining, or adjacent to cracking). The inspectors marked identified delaminations with an outline and hatch marks with lumber crayon. The traditional inspection for the underside of each span took approximately 2.5 to 3 hours for a total of 6 hours.

The traditional inspection findings, UAV-IR survey findings, and thermal imagery is included in Appendix D. The appendices are grouped by section of bridge; Appendix D-1 is Span K4, Appendix D-2 is Span K5, and Appendix D-3 is the Pier K3 South Column.

The traditional inspection findings were compared against the thermal data that was collected. Figures 81 through 86 on the following pages provide the abridge Traditional Inspection Finding Sketches and UAV-IR Survey Finding Sketches. It should be noted that the traditional inspection sketches include locations of spalling, which were not captured as part of the UAV-IR surveys.

The traditional inspection and UAV-IR survey finding sketches were compared to identify the amount of delaminations that were properly identified. As part of this, each location of delamination was categorized as either identified, partially identified, misidentified, not identified or false positive. These terms are defined below:

- Identified = The delamination roughly matches the limits identified during the traditional inspection
- Partially Identified = The delamination is visible but is noticeably smaller than the limits identified during the traditional inspection
- Misidentified = A location of spalling or sound patch was incorrectly identified as a delamination
- Not Identified = No delamination was identified
- False Positive = A temperature differential was incorrectly identified as a delamination.

This information was compiled into comparison charts are included as Tables 36 through 38. The summary of findings is presented in Table 39.

Figure 81 - Span K4 Traditional Inspection Findings

Figure 82 - Span K4 UAV-IR Survey Findings

Table 36 – 114: Span K4, Traditional Inspection versus Thermal Data

Traditional Inspection Deficiency Number*	Type of Deficiency	Delamination Identified with Thermal?	Thermal Sketch Number**	IR Image #	Comment(s)
1	HSA	Partially	15	676	
2	HSA	No	None	-	
3	Spall	Misidentified	16	680	Spall misidentified as delamination
4	HSA	Yes	19	694	
5	HSA	Yes	18	694	
6	HSA	Partially	13	696	
7	HSA & Spall	Yes	12	696	
8	HSA	Yes	11	696	
9	HSA	Yes	9	682	
10	HSA	Yes	8	682	
11	Spall	n/a	-	-	
12	HSA	Yes	7	674	
13	Spall	n/a	-	-	
14	HSA	No	None	-	
15	HSA	Yes	4	696	
16	HSA	Yes	6	696	
17	HSA	Yes	5	696	
18	Spall	n/a	-	-	
19	Spall	n/a	-	-	
20	HSA	Yes	3	684	
21	Spall	n/a	-	-	
22	Spall	n/a	-	-	
23	HSA	No	None	-	
24	HSA & Spall	Yes	2	684	
25	HSA	Yes	1	682	
26	HSA	No	None	-	
27	HSA	Yes	22	688	
28	HSA	Yes	23	688	
29	HSA	No	None	-	
None		False Positive	17	680	Paint overspray
None	_	False Positive	10	686	Paint overspray
None	-	False Positive	14	700	Discoloration of deck
None	-	False Positive	20	702	Discoloration of deck
None	-	False Positive	21	678	Paint overspray, discoloration of deck
None	-	False Positive	24	692	Discoloration of deck
None	-	False Positive	25	704	

Figure 84 - Span K5 Traditional Inspection Findings

Figure 83 - Span K5 UAV-IR Survey Findings

_

Traditional Inspection Deficiency Number*	Type of Deficiency	Delamination Identified with Thermal?	Thermal Sketch Number**	IR Image #	Comment(s)
1	HSA	No	None	-	
2	Spall	n/a	-	-	
3	HSA	Yes	23	163	
4	HSA	Yes	22	161	
5	HSA	Partially	21	161	Thermal shows 5 & 6 as one larger combined area
6	HSA	Partially	21	161	Thermal shows 5 & 6 as one larger combined area
7	HSA	Yes	20	161	
8	HSA	Yes	19	167	
9	Spall	n/a	-	-	
10	HSA	Partially	18	167	
11	n/a	n/a	-	-	
12	HSA	Yes	7	189	
13	Spall	n/a	-	-	
14	Spall	n/a	-	-	
15	HSA	Yes	2	187	
16	HSA	No	None	-	
17	Spall	n/a	-	-	
18	HSA	Yes	3	183	
19	HSA	No	None	-	
20	HSA	Yes	4	171	
21	Spall	n/a	-	-	
22	Spall	n/a	-	-	
23	HSA	Yes	5	157	
24	HSA	Yes	14	159	
25	Spall	n/a	-	-	
26	HSA	Yes	12	169	Thermal area is larger than actual
27	HSA	Yes	13	169	
28	Spall	n/a	-	-	
29	HSA & Spall	Yes	11	169	
30	HSA	Yes	8	181	
31	HSA	Yes	9	181	Thermal area is larger than actual
32	Spall	n/a	-	-	
33	HSA	Partially	10	173	
34	HSA	Yes	16	175	
None	-	False Positive	1	185	
None	-	False Positive	6	155	
None	-	False Positive	15	179	Paint overspray
None	-	False Positive	17	177	
None	-	False Positive	24	165	

Table 37 – 114: Span K5, Traditional Inspection versus Thermal Data

Figure 85 - Pier K3 South Column Traditional Inspection Findings

Figure 86 - Pier K3 South Column UAV-IR Survey Findings

Table 38 – 114: Pier K3	South Column.	Traditional Inspe	ction versus Therm	al Data
10010 00 111110110	South conunny	in a antion an inspec		ar D'ata

Traditional Inspection Deficiency Number*	Type of Deficiency	Delamination Identified with Thermal?	Thermal Sketch Number**	IR Image #	Comment(s)
1	HS Patch	Yes	1	736	
2	HSA	Yes	2, 3	736	
3	Sound patch	Misidentified	4	736	Patch at location
4	Sound patch	n/a	-	736	
5	Sound patch	Misidentified	5	730	Patch at location
6	HS Patch	Partially	6	730	
7	HS Patch	No	None	732	
8	HSA	Yes	7	732	
9	Spall	n/a	-	732	
10	HSA & Spall	Partially	8	8	
11	HSA	Yes	9	734	
12	HS Patch	Yes	10	722	
13	HSA & Spall	No	None	722	
14	HSA	Yes	11, 12	724	
15	HSA	Yes	13	724, 726	
16	HSA	Yes	14	726	
None	-	False Positive	15	728	

Table 39 – 114: Summary of Findings by Field Test Location

Span / Pier	Span K4	Span K5	Pier K3 South
# Delamination	22	23	14
# Detected	15	16	8
% Detected	68.18	69.57	57.14
# Partially Detected	2	4	2
% Partially Detected	9.09	17.39	14.29
# Not Detected	5	3	2
% Not Detected	22.73	13.04	14.29
# Misidentified	1	0	2
% Misidentified	4.55	0.00	14.29
# False Positives	7	5	1
% False Positives	31.82	21.74	7.14
Based on the summary of findings, the mean percentages for detection and partial detection follow:

- Full Detection = 64.96%
- Partial Detection = 13.59%
- Combined Full and Partial Detection = 78.55%

Despite the large temperature swing, thermal imaging was unable to identify all of the delaminations along the portions of the bridge selected for field testing. However, it did identify more locations of delamination than were specifically identified in the most recent National Bridge Inspection Standards (NBIS) Routine inspection. It should be noted that Routine Inspection aren't intended to capture every specific deficiency but rather focus on the more severe deficiencies. Table 40 provides the number of identified deficiencies (spalls and delaminations) and delaminations for each inspection.

Inspection	Component	Total # of Deficiencies Noted	Deficiencies with Delamination
2021 NBIS Routine Inspection	Span 4	9	7
	Span 5	13	8
	K3 South	8	8
NETC Traditional Cross	Span 4	29	22
Check Inspection	Span 5	34	22
	K3 South	16	14
NETC UAV-IR Survey	Span 4	-	17
	Span 5	-	19
	K3 South	-	12

Table 40 – 114: Identified Deficiencies during Inspections

False positives were still present, even with staff experienced in interpreting thermal imagery. A visual cross check of the thermal data will help reduce the number of false positives. However, in some cases, the visual cross check imagery is limited due to various conditions such as sun glare, large contrast due to shadows, or low light levels reducing visibility.

Review of Weather Conditions and Temperatures

The temperature for these data sets had an approximately 20-degree increase starting 6 hours before data collection which provided a large temperature differential which resulted in approximately 80% of the delaminations being either fully or partially identified using thermal imagery. Table 41 provides the Time, Temperature, and Atmospheric Conditions during Data Collection.

Date	10/20/2021	10/21/2021
Span / Pier	Span K4, K3 South	Span K5
Start Time	10:58 AM	12:12 PM
End Time	12:01 PM	12:29 PM
Temp at Start (°F)	71	74
Temp at End (°F)	74	74
Avg. Temp. (°F)	72.5	74
Temp 6 Hr Prior (°F)	52	53
Δ Temp 6 Hr (°F)	20.5	21
Temp 3 Hr Prior (°F)	61	64
Δ Temp 3 Hr (°F)	11.5	10
Temp 2 Hr Prior (°F)	63	70
Δ Temp 2 Hr (°F)	9.5	4
Temp 1 Hr Prior (°F)	67	73
Δ Temp 1 Hr (°F)	5.5	1
Dew Point (°F)	51	50
Humidity (%)	49	43
Wind Speed (mph)	5	12
Date of Last Rainfall	10/17/2021	10/17/2021

Table 41 – 114: Time,	Temperature, and	Atmospheric Conditions	during Data Collection

NETC 20-3 Task 2 Interim Report

Figure 87 - Layout of BIN 4RT

Bridge B-16-369 (BIN 4RT)

B-16-369 (BIN 4RT) carries Interstate I-90 Eastbound off- ramp B (Exit 131) over I-90 westbound, a MassDOT yard, and Ramps F, D, and L in the City of Boston (Figure 87). The bridge is a fourteen-span structure consisting of steel girders supporting a composite reinforced concrete deck with an integral concrete wearing surface.

The bridge was originally built in 1964 and has not been rehabilitated. Several of the bridge piers had concrete repairs performed in 2020. According to the August 2020 Routine Inspection report, the deck condition was rated 4 – Poor. The NBE quantities within the report indicated that Element 12 – Reinforced Concrete Deck had 5,194 square feet rated as Condition State 2 and 1,345 square feet rated as Condition State 3 for the defect "Delamination/Spall/Patched Area."

This bridge was selected based on the amount of concrete deterioration to the deck, vertical clearance of the bridge (approximately 20 feet for the selected span), and ease of access since portions of the bridge span a mostly unused MassDOT lot.

The approach for this bridge follows:

- 1. Perform multiple UAV-IR surveys to identify delaminations along the underside of the deck for one span with no pre-existing deficiency locations for comparison with traditional inspection findings.
- 2. Capture multiple sets of IR imagery of all the delaminations identified during the traditional inspection for comparison.
- 3. Review weather conditions and temperatures against the effectiveness of the thermal data.

Figure 88 - BIN 4RT Traditional Inspection

The traditional inspection was performed on 9/21/21. Two trained bridge inspectors performed an inspection of the underside of the deck with a bucket truck (Figure 88). The inspectors boomed up to each diaphragm bay and sounded the deck with emphasis on areas suspected of being delaminated (i.e. areas with efflorescence, rust staining, or adjacent to cracking). The inspectors marked identified delaminations with an outline and hatch marks with lumber crayon. The traditional inspection for the underside of the span took approximately 1 1/2 hours. The full traditional inspection findings can be found in Appendix E-1.

The traditional inspection was performed prior to data collection with UAV mounted thermal cameras so that the inspectors would be able to capture thermal imagery of each delamination. The UAV-IR data collection was performed on 10/19/21, 10/22/21, and 1/19/22.

Field testing on 10/19/21 and 10/22/21 was performed by AECOM staff using a DJI Matrice 210 and Zenmuse XT2 thermal camera. The field team for these two dates was comprised of one non-destructive evaluation (NDE) specialist with extensive experience analyzing top of bridge deck thermal imagery, one NBIS qualified Team Leader / Part 107 commercial UAS pilot, and one bridge inspection team member /

Part 107 commercial UAS pilot. The data collection was performed using dual flight controllers; one dedicated to flying the drone and the other functioning as the sensor operator. The third staff member was present in order to take the field notes which were transcribed onto blank framing plan sketches for the bridge spans. The determination of delaminations from the visible temperature differential was made by AECOM's NDE specialist.

Figure 89 - Data Collection with MassDOT

Field testing on 1/19/22 was performed by AECOM staff and MassDOT Aeronautics staff using MassDOT's DJI Matrice 300 and Zenmuse XT2 thermal camera. The data collection was performed similar to the previous field testing with two MassDOT UAS pilots functioning as the pilot and sensor operator. An AECOM bridge inspector served as the third staff member for note taking (Figure 89). The determination of delaminations from the visible temperature differential was made by one of AECOM's bridge inspectors that has been involved in this research project.

UAV-IR Surveys with No Pre-Existing Deficiency Locations

For the underside of the spans, the drone was incrementally flown along the diaphragm bays, momentarily stopping at each bay to allow the field staff to identify any delaminations. Due to the height of the bridge, the sensor was angled upward between +45 and +75 degrees to capture the full length of a diaphragm bay rather than perpendicular to the deck. For the data collection, the drone control settings were adjusted to show the thermal image and visual image side-by-side. This allowed the team to cross check the visual data during collection to help identify any false positive identifications of delamination.

When a delamination was identified, the rough shape and approximate location of the delamination were hand drawn onto the framing plan sketches. The thermal image and visual image from the XT2 sensor were captured and also noted on the field sketches. The field sketches were drawn up in AutoCAD with the captured imagery being used to refine the information from the field sketches. In some instances, the limits of the delaminations were traced from the captured imagery. These sketches were drawn up from the original raw thermal imagery and not with post processed imagery (although imagery was post processed for reference). The sketches from the thermal survey as well as the associated thermal imagery are included in Appendices E-2.

The traditional inspection findings were compared against the thermal data that was collected. Figures 90 through 93 on the following pages provide the UAV-IR Survey Finding Sketches and abridged Traditional Inspection Sketches. It should be noted that the traditional inspection sketches include locations of spalling, which were not captured as part of the UAV-IR surveys.

The traditional inspection and UAV-IR survey finding sketches were compared to identify the amount of delaminations that were properly identified. As part of this, each location of delamination was categorized as either identified, partially identified, misidentified, not identified or false positive. The definitions for these terms can be found in the discussion for Bridge S-24-083 (BIN 114). This information was compiled in Table 42. The summary of findings is presented in Table 43.

Figure 90 - BIN 4RT, Span 6, Traditional Inspection Findings

Figure 91 - BIN 4RT, Span 6, First UAV-IR Data Set

Figure 92 - BIN 4RT, Span 6, Second UAV-IR Data Set

Figure 93 - BIN 4RT, Span 6, Third UAV-IR Data Set

Tue ditie and		First Data Set (10/19/2021)		Second Data Set (10/22/2021)			Third Data Set (1/19/2022)			
Iraditional Inspection Deficiency Number*	Type of Deficiency	Delam. Identified with Thermal?	Thermal Sketch Number **	Comment(s)	Delam. Identified with Thermal?	Thermal Sketch Number **	Comment(s)	Delam. Identified with Thermal?	Thermal Sketch Number **	Comment(s)
1	HSA & Spall	No	-		Yes	1		No	-	
2	HSA	Yes	1		No	-		Partial	1	
3	Spall	n/a	-		n/a	-		n/a	-	
4	Spall	n/a	-		n/a	-		n/a	-	
5	HSA	No	-		No	-		No	-	
6	HSA	No	-		No	-		No	-	
7	HSA	Partial	2		No	-		No	-	
8	Spall	n/a	-		Mis- identified	2	Spall identified as delam	No	-	
9	HSA	No	-		No	-		No	-	
10	n/a	n/a	-		n/a	-		n/a	-	
11	HSA	No	-		No	-		No	-	
12	HSA	Partial	3		Yes	3		Partial	4	
13	HSA & Spall	No	-		No	-		Yes	5	
14	HSA	Yes	5		Yes	6		Yes	6	
15	HSA	Yes	4		Yes	5		Partial	8	
16	HSA & Spall	Yes	4		Yes	5		Yes	9	
17	HSA	Yes	4		Yes	5		Yes	9	
None	-	False Positive	2		False Positive	4		False Positive	2	
None	-	False Positive	6		-	-		False Positive	3	
-	-	-	-		-	-		False Positive	7	

Table 42 – 4RT: Span 6, Comparison of Traditional Inspection versus Thermal Data

* Deficiency number corresponds to the traditional inspection findings sketch. ** Thermal sketch number corresponds to the UAV-IR data set sketches.

10010 45 - 461. 30011 0, 301111101 0 0 11101103	Table 43 – 4R1	: Span	6, Summa	ary of Finding
---	----------------	--------	----------	----------------

Data Set	First (10/29/21)	Second (10/22/21)	Third (1/19/22)
# Detected	5	6	4
% Detected	38.46%	46.15%	30.77%
# Partially Detected	2	0	3
% Partially Detected	15.38%	0.00%	23.08%
# Not Detected	6	7	7
% Not Detected	46.15%	53.85%	53.85%
# Misidentified	0	1	0
% Misidentified	0.00%	7.69%	0.00%
# False Positives	2	1	3
% False Positives	15.38%	7.69%	23.08%

Based on the summary of findings, the mean percentages for detection and partial detection follow:

- Full Detection = 38.46%
- Partial Detection = 12.82%
- Combined Full and Partial Detection = 51.28%

It should be noted that the majority of the delaminations along the span that was field tested were relatively minor and small which may have contributed to the limited detection. While thermal imaging was unable to identify all of the delaminations along the portions of the bridge selected for field testing, it did identify more locations of delamination than were specifically identified in the most recent NBIS Routine inspection. However, the Routine Inspection general deficiency description for the deck indicated that that area numerous delaminations throughout the bridge. Table 44 provides the number of identified deficiencies (spalls and delaminations) and delaminations for each inspection.

Inspection	Total # of Deficiencies Noted	Deficiencies with Delamination
2020 NBIS Routine Inspection	4	1
NETC Traditional Cross Check	16	13
NETC UAV-IR Survey, First Data Set	-	7
NETC UAV-IR Survey, Second Data Set	-	6
NETC UAV-IR Survey, Third Data Set	-	7

Table	44 –	4RT:	Identified	Deficiencies	durina	Inspections
, apic			racincijica	Deficiencies	aarnig	mopeetions

Thermal Data of Delaminations Identified during Traditional Inspection Findings

As part of the data collection, thermal imagery of each delamination identified during the traditional inspection was captured with the thermal camera. The thermal imagery was compiled into sketches which are included as Appendix E-3. The thermal imagery was reviewed to identify the amount of delaminations that could be identified. This includes the original raw thermal imagery as well as thermal imagery post processed in Flir Tools. Each location of delamination was categorized as either identified, partially identified, or not identified. This information was compiled in Table 45. The summary of findings is presented in Table 46.

	First Data Set	(10/19/2021)	Second Data Set (10/22/2021)		Third Data Set (1/19/2022)		
Deficiency	Original Image	Post Processed	Original Image	Post Processed	Original Image	Post Processed	
Number*	Delamination Identified?	Delamination Identified?	Delamination Identified?	Delamination Identified?	Delamination Identified?	Delamination Identified?	
1	No	Partial	No	Partial	No	Partial	
2	No	Yes	partial	Partial	No	Partial	
3	n/a	n/a	n/a	n/a	n/a	n/a	
4	n/a	n/a	n/a	n/a	n/a	n/a	
5	No	No	No	No	No	No	
6	No	Partial	No	Partial	No	No	
7	Partial	Yes	partial	Yes	No	Yes	
8	n/a	n/a	n/a	n/a	n/a	n/a	
9	No	Partial	No	Partial	No	No	
10	n/a	n/a	n/a	n/a	n/a	n/a	
11	No	No	No	No	No	No	
12	Partial	Partial	Partial	Partial	Partial	Partial	
13	No	Partial	Partial	Partial	Partial	Yes	
14	Yes	Yes	Yes	Yes	Yes	Yes	
15	Partial	Yes	Partial	Yes	Partial	Partial	
16	Yes	Yes	Yes	Yes	Partial	Partial	
17	Partial	Yes	Yes	Yes	Yes	Yes	

Table 45 – 4RT: Identification Based on Thermal Data of Delaminations

* Deficiency number corresponds to the traditional inspection findings sketch

	First (10)/29/21)	Second (1	LO/22/21)	Third (1/19/22)		
Data Set	Original Image	Post Processed	Original Image	Post Processed	Original Image	Post Processed	
# Detected	2	6	3	5	2	4	
% Detected	15.38%	46.15%	23.08%	38.46%	15.38%	30.77%	
# Partially Detected	4	5	5	6	4	5	
% Partially Detected	30.77%	38.46%	38.46%	46.15%	30.77%	38.46%	
# Not Detected	7	2	5	2	7	4	
% Not Detected	53.85%	15.38%	38.46%	15.38%	53.85%	30.77%	

Table 46 – 4RT: Summary of Findings for Thermal Data of Delaminations

Based on the summary of findings, the mean percentages for detection and partial detection follow:

- Full Detection = 17.95% with original imagery; 38.46% with post processing
- Partial Detection = 33.33% with original imagery; 41.03% with post processing
- Combined Full and Partial Detection = 51.28% with original imagery; 79.49% with post processing

In general, the detection rate for delaminations increased when the imagery was post processed. The post processing generally focused on manually adjusting the temperature span to be a smaller range (typically around 10 degrees). None of the drones tested provided full manual control of the temperature span. However, the field tested Flir thermal cameras were able to set the temperature span manually during data collection which could potentially eliminate the need for post processing of the data.

Review of Weather Conditions and Temperatures

The temperature changes for these data sets varied between 7 and 14.5 degrees in the 6 hours before data collection. This resulted in approximately 50% of delaminations being identified either fully or partially for both identification of delamination without any pre-existing deficiency locations and for thermal imagery of all pre-identified delaminations. The detection rate was likely impacted by the relatively minor nature of most of the delaminations that were present. Table 47 provides the Time, Temperature, and Atmospheric Conditions during Data Collection.

Date	10/19/2021	10/22/2021	1/19/2022
Start Time	10:36 AM	11:39 AM	10:23 AM
End Time	11:26 AM	12:00 PM	10:40 AM
Temp at Start (°F)	55	70	35
Temp at End (°F)	57	70	36
Avg. Temp. (°F)	56	70	35.5
Temp 6 Hr Prior (°F)	47	63	21
Δ Temp 6 Hr (°F)	9	7	14.5
Temp 3 Hr Prior (°F)	49	67	24
Δ Temp 3 Hr (°F)	7	3	11.5
Temp 2 Hr Prior (°F)	51	69	27
Δ Temp 2 Hr (°F)	5	1	8.5
Temp 1 Hr Prior (°F)	55	70	33
Δ Temp 1 Hr (°F)	1	0	2.5
Dew Point (°F)	36	49	23
Humidity (%)	47	47	57
Wind Speed (mph)	17	15	17
Date of Last Rainfall	10/5/2021	10/5/2021	1/18/2022

Table 47 - 4RT: Time, Temperature, and Atmospheric Conditions during Data Collection

The thermal imagery for the third data set on 1/19/22 could have been affected by the recent rainfall the day before. However, the results seem in line with previous data sets so that affect was likely minimal.

Conclusions

The field testing of commercially available handheld and UAV-mounted thermal cameras was performed at five bridge sites in Massachusetts and Rhode Island. Varying approaches for data collection and analysis were utilized at each bridge in order to establish different experiences to use as a basis for guidelines and protocols for the implementation of these technologies, which will be developed as part of Task 3 of this research project. Some key takeaways from the data collection and analysis task include:

- Handheld thermal cameras offer much more control of data collection settings than drone mounted thermal cameras thus reducing the need for post processing and increasing the likelihood of correct defect detection in the field.
- Temperature differentials in thermal imagery caused by delaminations do not always line up with the limits as determined by manual sounding.
- Experience with interpreting thermal imagery is important to reduce the likelihood of false positive identification of defects. False positives can be easily triggered by a variety of factors causing temperature differentials in thermal imagery.
- Thermal imagery should be cross checked with visual imagery whenever possible to reduce the likelihood of false positive identification. However, visual cross check can be limited based on sun glare, contrast caused by shadows, and overall lighting conditions.
- Even under ideal conditions, it is possible that not all delaminations along the underside of bridge decks will be detected by thermal imaging. Delaminations that are minor, small in size, or deeper within the deck may not be detected. However, the thermal data for BINs 114 and 4RT identified more areas of delamination than were noted as part of the most recent bridge inspection reports.

Appendix A

Bridge S-17-039 (BIN 4E5)

SOUTHBOUND OFF-RAMP (LMS1-LMS5) NOT

🛛 – Hollow Area

NOTES:

the deck.

- 🛛 Spall
- P Patch
 - Diaphraam

— Utility Bracket

- 🔆 Overhead Light
- 🕀 Drain

DEFICIENCIES:

- 1. 16" long x up to 19" wide hollow area (18" wide at south end, 8" wide at north end).
- 2'-1" long (avg.) x 2'-9" wide spall exposed rebar and adjacent up to 10" long (6" avg) x 18" wide hollow area and 14" long x 4" wide hollow area.
- Hollow sounding area with moderate efflorescence, honey combing, cracking, and discoloration.
- Two hollow areas in sloped portion; 7" long x 3" wide and 14" long x up to 5" wide (3" wide avg).
- 5. $10\frac{1}{2}$ " long x 2'- $2\frac{1}{2}$ " wide minor hollow area.
- 6. $7\frac{1}{2}$ " long x 12" wide hollow area.
- 7. Patched area with 5" long x 17" wide hollow area due to void.
- 8. Eight up to 12"ø patches within bay.
- 9. Up to 10" long x 2'-2" wide hollow area.
- 10. 2'-4" long x up to 18" wide hollow area.
- 11. 6" long \times 9" wide hollow sounding patch.
- 12. 2" long x 6" wide hollow area.
- 13. 10" long x 23" wide spall with exposed rebar and adjacent 20" long x 18" wide hollow area.
- 14. 2'-11" long x 20" wide hollow area.
- 15. 3'-0" long x 21" wide hollow area.
- 16. 2'-3" long x 10" wide hollow area.
- 17. 4" long x 6" wide hollow area in haunch.
- 18. 5" long x 23" wide hollow area/void in patch due to void with adjacent 8" long x 7" wide hollow area in the haunch.
- 19. 8" long x 3'-3" wide hollow area/void in patch. The west edge of the patch has a spall/void extending behind the patch.
- 20. 8" long x 4'-2" wide hollow area/void in patch.
- 21. 21" long x 18" wide hollow area (up to 21" wide for 9" length).
- 22. 2'-4" long x 15" wide minor hollow area.
- 23. 20" long \overline{x} 7" wide hollow area.
- 24. Three patches up to 12"ø. Sound unless otherwise noted.
- 25. Seven patches up to 12" within bay. Sound unless otherwise noted.
- 26. Seven patches up to 12"ø within bay. Sound unless otherwise noted.

1. This inspection was limited to the mainline portion of Span

L-M. The off-ramp portion (LMS1-LSM5) was omitted as

the ramp deck separate from the mainline. 2. Diaphragm, Utility Bracket, Drain and Overhead Light

3. The sketch shows the results of the initial traditional inspection using hammer sounding along the underside of

locations are approximate.

4E5, Location 1

Deficiency Description:

Hollow sounding area measuring 16" long by up to 19" wide (8" wide at north end, 19" wide near middle, 18" wide near south end)

Visually Identifiable as Delamination?

No, the crack could suggest delamination but hammer sounding was necessary to confirm.

Appendix A-2

4E5, Location 2

Deficiency Description:

Spall measuring 2'-1" long (average) x 2'-9" wide with two adjacent hollow sounding areas measuring up to 10" long (6" long average) x 18" wide and 14" long x 4" wide.

Visually Identifiable as Delamination?

No, adjacent spalling suggested delamination but hammer sounding was necessary to confirm.

Appendix A-2

4E5, Location 3

Deficiency Description:

Minor hollow sounding area measuring 10 $\frac{10}{2}$ long x 26 $\frac{10}{2}$ wide

Visually Identifiable as Delamination?

No, this location was only identified through random hammer sounding of the deck.

4E5, Location 4

Deficiency Description:

Hollow sounding area measuring up to 10" long x 26" wide

Visually Identifiable as Delamination?

No, the crack could suggest delamination but hammer sounding is necessary to confirm.

Key Plan for Span L-M

Appendix A-2

4E5, Location 5

Deficiency Description:

Spall measuring 10" long x 23" wide with adjacent hollow sounding area measuring 20" long x 18" wide

Visually Identifiable as Delamination?

Yes, there is separation cracking that is visible although the limits of the delamination required hammer sounding to determine.

4E5, Location 6

Deficiency Description:

Minor hollow sounding area measuring 2'-11" long x 1'-8" wide

Visually Identifiable as Delamination?

No, cracking and poor consolidation can suggest delamination but hammer sounding was necessary to confirm. Additionally, the delamination was very minor and might not be noted by all inspectors due to the atypical tone produced when sounding.

Key Plan for Span L-M

Appendix A-2

4E5, Location 7

Deficiency Description:

Two adjacent hollow sounding areas. South area (orange outline): hollow sounding area measuring 3'-0" long x 21" wide containing two hollow sounding patches. North area (red outline): hollow sounding area measuring 2'-3" long x 10" wide containing hollow sounding patch

Visually Identifiable as Delamination?

No, rust staining, cracking, and patches suggest possible delamination but hammer sounding was necessary to confirm.

Key Plan for Span L-M

Appendix A-2

Appendix A-2

4E5, Location 8

Deficiency Description:

Previous repair has hollow sounding area/void measuring 8" long x 4'-2" wide. Deck has hollow sounding area measuring 21" long x 18" wide (up to 21" wide).

Visually Identifiable as Delamination?

No, rust staining and cracking suggest delamination but hammer sounding is necessary to confirm.

Appendix A-2

4E5, Location 9

Deficiency Description:

Hollow sounding area measuring up to 30" long x 42" wide containing spalling 16" long x 3" deep

Visually Identifiable as Delamination?

Yes, there is separation cracking that is visible although the limits of the delamination required hammer sounding to determine.

4E5, Location 10

Deficiency Description:

Hollow sounding area measuring 64" long x up to 48" wide

Visually Identifiable as Delamination?

No, discoloration and efflorescence could suggest delamination but hammer sounding was necessary to confirm.

4E5, Location 11

Deficiency Description:

Hollow sounding area measuring up to 60" long x 48" wide with adjacent spalling measuring up to 6" wide x 25" long and dampness

Visually Identifiable as Delamination?

No, discoloration and efflorescence could suggest delamination but hammer sounding was necessary to confirm.

4E5, Location 12

Deficiency Description: None

Visually Identifiable as Delamination? No delamination present.

Note:

This location is intended to serve as a control for thermal imagery at a location with no delamination that was detected by hammer sounding.

Flir E96

E96_Loc1_01_FLIR0011

E96_Loc1_02_FLIR0079

E96_Loc1_03_FLIR0213

E96_Loc1_06_FLIR0427

E96_Loc1_04_FLIR0267

E96_Loc1_07_FLIR0543

E96_Loc1_10_FLIR0965

E96_Loc1_11_FLIR1015

E96_Loc1_12_FLIR1085

E96_Loc1_13_FLIR1525

E96_Loc1_14_FLIR1573

E96_Loc1_15_FLIR1913

E96_Loc1_16_FLIR1967

E96_Loc1_17_FLIR2037

E96_Loc1_18_FLIR2119

81.3

E96_Loc1_21_FLIR2313

E96_Loc1_22_FLIR2363

E96_Loc1_23_FLIR2675

E96_Loc1_24_FLIR2947

67.5

60.1

E96_Loc1_25_FLIR2997

\$FLIR

54.2

\$FLIR

54.6

73.4

\$FLIR

E96_Loc1_27_FLIR3107

E96_Loc1_28_FLIR3153

E96_Loc1_29_FLIR3268

E96_Loc1_30_FLIR3394

E96_Loc1_31_FLIR0020

Flir E96

E96_Loc2_01_FLIR0016

- E96_Loc2_02_FLIR0089
- E96_Loc2_03_FLIR0221

E96_Loc2_04_FLIR0271

E96_Loc2_05_FLIR0323

E96_Loc2_06_FLIR0437

E96_Loc2_07_FLIR0547

E96_Loc2_08_FLIR0613

E96_Loc2_09_FLIR0923

E96_Loc2_10_FLIR0969

E96_Loc2_11_FLIR1019

E96_Loc2_12_FLIR1089

E96_Loc2_13_FLIR1529

E96_Loc2_14_FLIR1577

E96_Loc2_15_FLIR1919

E96_Loc2_16_FLIR1971

E96_Loc2_17_FLIR2041

E96_Loc2_18_FLIR2123

E96_Loc2_19_FLIR2211

E96_Loc2_20_FLIR2263

E96_Loc2_21_FLIR2317

E96_Loc2_22_FLIR2373

E96_Loc2_23_FLIR2679

E96_Loc2_24_FLIR2951

E96_Loc2_25_FLIR3001

E96_Loc2_26_FLIR3053

E96_Loc2_27_FLIR31117

E96_Loc2_28_FLIR3157

E96_Loc2_29_FLIR3278

70.4

E96_Loc2_31_FLIR0030

E96_Loc2_32_FLIR0450

Flir E96

E96_Loc3_02_FLIR0099 E96_Loc3_03_FLIR0225

E96_Loc3_01_FLIR0022

E96_Loc3_06_FLIR0447

E96_Loc3_07_FLIR0551

E96_Loc3_08_FLIR0617

E96_Loc3_09_FLIR0927

E96_Loc3_10_FLIR0973

E96_Loc3_11_FLIR1023

E96_Loc3_12_FLIR1093

E96_Loc3_13_FLIR1533

E96_Loc3_14_FLIR1581

E96_Loc3_15_FLIR1923

E96_Loc3_16_FLIR1975

E96_Loc3_18_FLIR2127

E96_Loc3_21_FLIR2321

E96_Loc3_22_FLIR2383

E96_Loc3_23_FLIR2683

E96_Loc3_24_FLIR2955

Appendix A-3-1

E96_Loc3_25_FLIR3005

E96_Loc3_26_FLIR3057

E96_Loc3_27_FLIR3115

60.1

52.7

E96_Loc3_31_FLIR0038

E96_Loc3_28_FLIR3161

E96_Loc3_32_FLIR0454

E96_Loc3_29_FLIR3288

A.24

E96_Loc4_10_FLIR0977

E96_Loc4_11_FLIR1027

E96_Loc4_12_FLIR1097

E96_Loc4_05_FLIR0343

E96_Loc4_06_FLIR0457

E96_Loc4_04_FLIR0279

E96_Loc4_02_FLIR0109

86.2 °F

\$FLIR

63.4

78.8 °F

E96_Loc4_03_FLIR0229

\$FLIR

82.7 °F

75.4 °F

E96_Loc4_13_FLIR1537

E96_Loc4_14_FLIR1585

E96_Loc4_15_FLIR1927

E96_Loc4_16_FLIR1979

E96_Loc4_17_FLIR2049

E96_Loc4_22_FLIR2393

E96_Loc4_23_FLIR2687

E96_Loc4_24_FLIR2959

E96_Loc4_25_FLIR3009

E96_Loc4_26_FLIR3061

E96_Loc4_27_FLIR3119

E96_Loc4_28_FLIR3165

E96_Loc4_29_FLIR3298

E96_Loc4_30_FLIR3406

E96_Loc4_31_FLIR0046

E96_Loc4_32_FLIR0458

Appendix A-3-1

E96_Loc5_03_FLIR0233

E96_Loc5_01_FLIR0032

E96_Loc5_02_FLIR0119

E96_Loc5_07_FLIR0559

E96_Loc5_09_FLIR0935

E96_Loc5_10_FLIR0981

E96_Loc5_11_FLIR1031

E96_Loc5_12_FLIR1101

E96_Loc5_13_FLIR1541

E96_Loc5_14_FLIR1589

E96_Loc5_15_FLIR1931

E96_Loc5_16_FLIR1983

E96_Loc5_17_FLIR2053

E96_Loc5_18_FLIR2135

E96_Loc5_20_FLIR2275

E96_Loc5_22_FLIR2403

E96_Loc5_23_FLIR2691

E96_Loc5_24_FLIR2963

Appendix A-3-1

E96_Loc5_25_FLIR3013

E96_Loc5_26_FLIR3065

E96_Loc5_27_FLIR3123

E96_Loc5_28_FLIR3169

E96_Loc5_29_FLIR3308

70.5

63.2

E96_Loc5_31_FLIR0056

Appendix A-3-1

\$FLIR

83.0 °F

81.1 °F

73.8 °F

75.1 °F

E96_Loc6_02_FLIR0129

82.8 °F

75.5 °F

\$FLIR

E96_Loc6_03_FLIR0237

69.9 °F

E96_Loc6_04_FLIR0287

E96_Loc6_06_FLIR0477

E96_Loc6_05_FLIR0365

E96_Loc6_08_FLIR0629

E96_Loc6_09_FLIR0939

E96_Loc6_10_FLIR0985

E96_Loc6_11_FLIR1035

E96_Loc6_12_FLIR1105

E96_Loc6_13_FLIR1545

E96_Loc6_14_FLIR1593

E96_Loc6_15_FLIR1935

E96_Loc6_16_FLIR1987

E96_Loc6_18_FLIR2139

E96_Loc6_22_FLIR2413

E96_Loc6_23_FLIR2695

E96_Loc6_24_FLIR2967

E96_Loc6_25_FLIR3017

E96_Loc6_26_FLIR3069

E96_Loc6_27_FLIR3127

E96_Loc6_28_FLIR3173

E96_Loc6_29_FLIR3320

70.7

63.3

E96_Loc6_30_FLIR3414

E96_Loc6_31_FLIR0066

A.33

E96_Loc7_10_FLIR0989

E96_Loc7_11_FLIR1039

E96_Loc7_12_FLIR1109

E96_Loc7_06_FLIR0487

\$FLIR

E96_Loc7_01_FLIR0040

81.1 °F

E96_Loc7_05_FLIR0375

E96_Loc7_02_FLIR0139

88.3 °F

81.0 °F

E96_Loc7_03_FLIR0241

E96_Loc7_13_FLIR1549

E96_Loc7_14_FLIR1597

E96_Loc7_15_FLIR1939

E96_Loc7_16_FLIR1991

E96_Loc7_17_FLIR2061

E96_Loc7_18_FLIR2143

E96_Loc7_19_FLIR2231

E96_Loc7_20_FLIR2283

E96_Loc7_22_FLIR2423

E96_Loc7_23_FLIR2699

E96_Loc7_24_FLIR2971

E96_Loc7_25_FLIR3021

E96_Loc7_26_FLIR3073

E96_Loc7_27_FLIR3131

E96_Loc7_28_FLIR3177

E96_Loc7_29_FLIR3330

71.7

E96_Loc7_30_FLIR3418

E96_Loc7_31_FLIR0076

E96_Loc7_32_FLIR0470

Appendix A-3-1

 83.4 °F
 75.9 °F
 78.7 °F

 76.1 °F
 68.7 °F
 71.4 °F

E96_Loc8_01_FLIR0047

E96_Loc8_02_FLIR0149

E96_Loc8_04_FLIR0295

E96_Loc8_05_FLIR0385

E96_Loc8_06_FLIR0497

E96_Loc8_09_FLIR0947

E96_Loc8_10_FLIR0993

E96_Loc8_11_FLIR1043

E96_Loc8_12_FLIR1113

E96_Loc8_13_FLIR1553

E96_Loc8_14_FLIR1601

E96_Loc8_15_FLIR1943

E96_Loc8_16_FLIR1995

E96_Loc8_17_FLIR2065

E96_Loc8_19_FLIR2235

E96_Loc8_20_FLIR2287

E96_Loc8_21_FLIR2341

E96_Loc8_22_FLIR2433

E96_Loc8_23_FLIR2703

E96_Loc8_24_FLIR2975

E96_Loc8_25_FLIR3025

E96_Loc8_27_Skipped

61.7

E96_Loc8_28_FLIR3181

71.3

E96_Loc8_30_FLIR3422

E96_Loc8_31_FLIR0086

E96_Loc9_10_FLIR0997

E96_Loc9_11_FLIR1047

E96_Loc9_12_FLIR1117

E96_Loc9_02_FLIR0159

E96_Loc9_05_FLIR0395

E96_Loc9_06_FLIR0507

71.4

79.3 °F 72.0 °F **\$FLIR**

83.7 °F

76.4 °F

Flir E96

E96_Loc9_13_FLIR1557

E96_Loc9_14_FLIR1605

E96_Loc9_15_FLIR1947

E96_Loc9_16_FLIR1999

E96_Loc9_17_FLIR2069

E96_Loc9_18_FLIR2151

E96_Loc9_19_FLIR2239

E96_Loc9_21_FLIR2345

E96_Loc9_22_FLIR2443

E96_Loc9_23_FLIR2707

E96_Loc9_24_FLIR2979

Appendix A-3-1

E96_Loc9_25_FLIR3029

E96_Loc9_26_FLIR3081

E96_Loc9_27_FLIR3135

E96_Loc9_28_FLIR3185

E96_Loc9_29_FLIR3352

71.9

E96_Loc9_30_FLIR3426

E96_Loc9_31_FLIR0096

A.42

E96_Loc10_11_FLIR1051

E96_Loc10_12_FLIR1121

E96_Loc10_10_FLIR1001

64.1

\$FLIR

E96_Loc10_01_FLIR0057

E96_Loc10_03_FLIR0253

83.5 °F

76.2 °F

70.6	79.6	73.3

E96_Loc10_13_FLIR1561

E96_Loc10_14_FLIR1609

E96_Loc10_15_FLIR1951

E96_Loc10_16_FLIR2003

E96_Loc10_17_FLIR2073

E96_Loc10_18_FLIR2155

E96_Loc10_19_FLIR2243

E96_Loc10_20_FLIR2295

E96_Loc10_21_FLIR2349

E96_Loc10_22_FLIR2453

E96_Loc10_23_FLIR2711

E96_Loc10_24_FLIR2983

E96_Loc10_25_FLIR3033

E96_Loc10_26_FLIR3085

E96_Loc10_27_FLIR3139

E96_Loc10_28_FLIR3189

E96_Loc10_29_FLIR3362

E96_Loc10_30_FLIR3430

E96_Loc10_31_FLIR0106

E96_Loc10_32_FLIR0482

A.45

E96_Loc11_12_FLIR1125

\$FLIR

\$FLIR

74.6 °F 76.1 °F **\$FLIR** E96_Loc11_04_FLIR0307 78.6 °F 78.0 °F

CFLIR

70.7 °F

E96_Loc11_05_FLIR0415

E96_Loc11_06_FLIR0527

64.4

E96_Loc11_10_FLIR1005

71.3

NETC 20-3

Task 2 Interim Report

E96_Loc11_13_FLIR1565

E96_Loc11_15_FLIR1955

E96_Loc11_16_FLIR2007

E96_Loc11_17_FLIR2077

E96_Loc11_18_FLIR2161

E96_Loc11_19_FLIR2247

E96_Loc11_20_FLIR2299

E96_Loc11_21_FLIR2353

E96_Loc11_22_FLIR2463

E96_Loc11_23_FLIR2715

E96_Loc11_24_FLIR2987

Appendix A-3-1

E96_Loc11_25_FLIR3037

E96_Loc11_26_FLIR3089

E96_Loc11_27_FLIR3143

E96_Loc11_28_FLIR3193

E96_Loc11_29_FLIR3372

E96_Loc11_30_FLIR3434

E96_Loc11_31_FLIR0116

E96_Loc11_32_FLIR0486

E96_Loc12_19_FLIR2251

E96_Loc12_21_FLIR2357

E96_Loc12_22_FLIR2473

E96_Loc12_23_FLIR2719

E96_Loc12_24_FLIR2991

E96_Loc12_27_FLIR3147

E96_Loc12_28_FLIR3197

E96_Loc12_29_FLIR3382

E96_Loc12_30_FLIR3438

E96_Loc12_31_FLIR0126

E96_Loc12_32_FLIR0490

E86_Loc01_11_FLIR1247

E86_Loc01_12_FLIR1299

E86_Loc01_01_FLIR0027

E86_Loc01_04_FLIR0355

E86_Loc01_10_FLIR0979

Skipped

E86_Loc01_06_FLIR0587

E86_Loc01_03_FLIR0297

E86_Loc01_02_FLIR0159

Appendix A-3-2

E86_Loc01_13_FLIR1351

NETC 20-3

E86_Loc01_14_FLIR1407

E86_Loc01_15_FLIR1461

E86_Loc01_16_FLIR1517

E86_Loc01_17_FLIR1575

E86_Loc01_18_FLIR1709

E86_Loc01_19_FLIR1767

E86_Loc01_22_FLIR1977

E86_Loc01_20_FLIR1825

E86_Loc01_21_FLIR1883

Appendix A-3-2

E86_Loc02_01_FLIR0037

E86_Loc02_02_FLIR0169

E86_Loc02_03_FLIR0301

E86_Loc02_04_FLIR0367

E86_Loc02_05_FLIR0475

E86_Loc02_06_FLIR0591

E86_Loc02_07_FLIR0823

E86_Loc02_08_Skipped

E86_Loc02_09_FLIR0927

E86_Loc02_10_FLIR0983

E86_Loc02_11_FLIR1251

E86_Loc02_12_FLIR1303

84.0 °F

76.6 °F

71.7 °F

\$FLIR

79.0 °F

E86_Loc02_15_FLIR1465

E86_Loc02_13_FLIR1355

E86_Loc02_16_FLIR1521

E86_Loc02_14_FLIR1411

E86_Loc02_17_FLIR1585

E86_Loc02_18_FLIR1713

E86_Loc02_19_FLIR1771

E86_Loc02_22_FLIR1985

E86_Loc02_20_FLIR1829

E86_Loc02_21_FLIR1887

E86_Loc03_11_FLIR1255

E86_Loc03_12_FLIR1307

E86_Loc03_08_FLIR0879

E86_Loc03_07_FLIR0827

E86_Loc03_10_FLIR0987

E86_Loc03_05_FLIR0485

E86_Loc03_09_FLIR0931

\$FLIR

E86_Loc03_04_FLIR0377

E86_Loc03_02_FLIR0179

E86_Loc03_01_FLIR0047

\$FLIR

E86_Loc03_03_FLIR0305

83.1 °F

75.8 °F

84.7 °F

77.4 °F

72.2 °F

\$FLIR

E86_Loc03_15_FLIR1469

E86_Loc03_13_FLIR1359

E86_Loc03_16_FLIR1525

E86_Loc03_14_FLIR2127

E86_Loc03_17_FLIR1595

E86_Loc03_18_FLIR1717

E86_Loc03_19_FLIR1775

E86_Loc03_22_FLIR1995

E86_Loc03_20_FLIR1833

E86_Loc03_21_FLIR1891

E86_Loc04_11_FLIR1259

E86_Loc04_12_FLIR1311

65.3 °F

\$FLIR

73.8 °F 78.6 °F **\$FLIR** E86_Loc04_04_FLIR0389 71.6 °F 72.6 °F

E86_Loc04_06_FLIR0599

\$FLIR

73.1 °F

65.8 °F

\$FLIR

E86_Loc04_10_FLIR0991

64.2 °F

E86_Loc04_02_FLIR0189

E86_Loc04_03_FLIR0309

NETC 20-3 Task 2 Interim Report

Appendix A-3-2

\$FLIR

84.9 °F

81.9 °F

74.5 °F

\$FLIR

E86_Loc04_15_FLIR1473

E86_Loc04_14_FLIR1419

E86_Loc04_17_FLIR1605

E86_Loc04_16_FLIR1529

E86_Loc04_19_FLIR1779

E86_Loc04_22_FLIR2005

E86_Loc04_20_FLIR1837

E86_Loc04_18_FLIR1721

E86_Loc04_21_FLIR1895

A.58

E86_Loc05_11_FLIR1263

E86_Loc05_12_FLIR1315

E86_Loc05_07_FLIR0835

E86_Loc05_10_FLIR0995

72.6 °F 65.3 °F **\$FLIR**

E86_Loc05_08_FLIR0883

E86_Loc05_09_FLIR0939

E86_Loc05_01_FLIR0067

E86_Loc05_04_FLIR0399

E86_Loc05_02_FLIR0199

E86_Loc05_03_FLIR0313

E86_Loc05_05_FLIR0505 E86_Loc05_06_FLIR0603

84.7 °F

77.3 °F

79.6 °F

72.3 °F

\$FLIR

E86_Loc05_15_FLIR1477

E86_Loc05_13_FLIR1367

E86_Loc05_16_FLIR1533

E86_Loc05_14_FLIR1423

\$FLIR

E86_Loc05_17_FLIR1615

E86_Loc05_18_FLIR1725

E86_Loc05_19_FLIR1783

E86_Loc05_22_FLIR2015

E86_Loc05_20_FLIR1841

E86_Loc05_21_FLIR1899

A.60

E86_Loc06_11_FLIR1269

E86_Loc06_12_FLIR1319

\$FLIR

E86_Loc06_10_FLIR0999

72.5 °F E86_Loc06_06_FLIR0607

73.4 °F

66.0 °F

\$FLIR

81.4 °F 74.0 °F

E86_Loc06_01_FLIR0077

E86_Loc06_02_FLIR0209

\$FLIR

NETC 20-3

Task 2 Interim Report

Flir E86
Appendix A-3-2

E86_Loc06_13_FLIR1371

E86_Loc06_14_FLIR1427

E86_Loc06_15_FLIR1481

E86_Loc06_16_FLIR1537

E86_Loc06_17_FLIR1625

E86_Loc06_18_FLIR1729

E86_Loc06_19_FLIR1787

E86_Loc06_22_FLIR2025

E86_Loc06_20_FLIR1845

E86_Loc06_21_FLIR1903

Appendix A-3-2

E86_Loc07_01_FLIR0089

E86_Loc07_02_FLIR0225

E86_Loc07_03_FLIR0323

E86_Loc07_04_FLIR0421

E86_Loc07_05_FLIR0527

E86_Loc07_06_FLIR0613

E86_Loc07_07_FLIR0845

E86_Loc07_08_FLIR0897

E86_Loc07_09_FLIR0949

E86_Loc07_10_FLIR1005

E86_Loc07_11_FLIR1275

E86_Loc07_12_FLIR1325

Appendix A-3-2

E86_Loc07_13_FLIR1377

E86_Loc07_15_FLIR1487

E86_Loc07_16_FLIR1543

E86_Loc07_17_FLIR1637

E86_Loc07_18_FLIR1735

E86_Loc07_19_FLIR1793

E86_Loc07_22_FLIR2037

E86_Loc07_20_FLIR1851

E86_Loc07_21_FLIR1909

E86_Loc08_11_FLIR1279

E86_Loc08_12_FLIR1329

E86_Loc08_08_FLIR0901

E86_Loc08_06_FLIR0617

E86_Loc08_09_FLIR0953

☆FLIR

E86_Loc08_03_FLIR0327

E86_Loc08_01_FLIR0103

73.5 °F

66.1 °F

SFLIR

74.9 °F

CELU

E86_Loc08_04_FLIR0433

E86_Loc08_07_FLIR0849

E86_Loc08_10_FLIR1009

E86_Loc08_02_FLIR0237

Appendix A-3-2

84.5 °F

77.2 °F

72.8 °F

\$FLIR

E86_Loc08_15_FLIR1491

E86_Loc08_13_FLIR1381

E86_Loc08_16_FLIR1547

E86_Loc08_14_FLIR1437

\$FLIR

E86_Loc08_17_FLIR1649

E86_Loc08_18_FLIR1739

E86_Loc08_19_FLIR1797

E86_Loc08_22_FLIR2049

E86_Loc08_20_FLIR1855

E86_Loc08_21_FLIR1913

E86_Loc09_11_FLIR1283

E86_Loc09_12_FLIR1333

\$FLIR

E86_Loc09_10_FLIR1013

E86_Loc09_07_FLIR0853

E86_Loc09_08_FLIR0905

80.3 °F

73.0 °F

\$FLIR

E86_Loc09_04_FLIR0443

E86_Loc09_05_FLIR0551

E86_Loc09_06_FLIR0621

E86_Loc09_02_FLIR0247

\$FLIR

Flir E86

E86_Loc09_03_FLIR0333

83.6 °F

76.3 °F

72.0 °F

64.7 °F

78.9 °F

NETC 20-3 Task 2 Interim Report 84.5 °F

77.2 °F

E86_Loc09_13_FLIR1385

\$FLIR

E86_Loc09_14_FLIR1441

E86_Loc09_15_FLIR1495

E86_Loc09_16_FLIR1551

E86_Loc09_17_FLIR1659

E86_Loc09_18_FLIR1743

E86_Loc09_19_FLIR1801

E86_Loc09_22_FLIR2059

E86_Loc09_20_FLIR1859

E86_Loc09_21_FLIR1917

Appendix A-3-2

E86_Loc10_01_FLIR0123

E86_Loc10_02_FLIR0257

\$FLIR

E86_Loc10_03_FLIR0337

E86_Loc10_04_FLIR0453

E86_Loc10_05_FLIR0561

E86_Loc10_06_FLIR0625

E86_Loc10_09_FLIR0961

E86_Loc10_10_FLIR1017

E86_Loc10_11_FLIR1287

E86_Loc10_12_FLIR1337

83.2 °F 80.2 °F 77.0 °F 75.8 °F **\$FLIR**

E86_Loc10_13_FLIR1389

E86_Loc10_14_FLIR1445

E86_Loc10_15_FLIR1499

E86_Loc10_16_FLIR1555

E86_Loc10_17_FLIR1669

E86_Loc10_18_FLIR1747

E86_Loc10_19_FLIR1805

E86_Loc10_22_FLIR2069

E86_Loc10_20_FLIR1863

E86_Loc10_21_FLIR1921

Appendix A-3-2

76.9 °F

71.1 °F

\$FLIR

E86_Loc11_03_FLIR0345

E86_Loc11_01_FLIR0143

E86_Loc11_04_FLIR0465

E86_Loc11_02_FLIR0273

\$FLIR

E86_Loc11_05_FLIR0575

E86_Loc11_06_FLIR0635

E86_Loc11_07_FLIR0867

E86_Loc11_08_FLIR0917

E86_Loc11_09_FLIR0971

E86_Loc11_10_FLIR1025

E86_Loc11_11_FLIR1293

E86_Loc11_12_FLIR1345

Appendix A-3-2

E86_Loc11_13_FLIR1399

E86_Loc11_14_FLIR1455

E86_Loc11_15_FLIR1507

E86_Loc11_16_FLIR1565

E86_Loc11_17_FLIR1689

E86_Loc11_18_FLIR1757

E86_Loc11_19_FLIR1815

E86_Loc11_22_FLIR2085

E86_Loc11_20_FLIR1873

E86_Loc11_21_FLIR1931

82.0 °F 74.8 °F 80.4 °F 67.4 °F 74.7 °F **\$FLIR**

E86_Loc12_15_FLIR1511

\$FLIR

E86_Loc12_17_FLIR1697

E86_Loc12_18_FLIR1761

E86_Loc12_19_FLIR1819

E86_Loc12_20_FLIR1877

E86_Loc12_21_FLIR1935

E86_Loc12_22_FLIR2097

 B3.5 °F
 76.2 °F
 B3.3 °F

 76.2 °F
 66.9 °F
 66.9 °F

 76.2 °F
 66.9 °F
 0 FLIR

Flir E8

E8_Loc01_03_FLIR0248

E8_Loc01_01_FLIR0022

E8_Loc01_05_FLIR0468

E8_Loc01_06_FLIR0900

E8_Loc01_04_Skipped

E8_Loc01_07_FLIR0946

E8_Loc01_08_FLIR0994

E8_Loc01_09_FLIR1042

E8_Loc01_10_FLIR1356

E8_Loc01_11_FLIR1570

E8_Loc01_12_FLIR1616

E8_Loc01_13_FLIR1660

E8_Loc01_15_FLIR1756

E8_Loc01_16_FLIR1806

E8_Loc01_17_FLIR1970

E8_Loc01_18_FLIR2102

E8_Loc01_19_FLIR2152

E8_Loc01_20_FLIR2206

E8_Loc01_21_FLIR2282

Appendix A-3-3

85.3 °F

78.0 °F

69.8 °F

\$FLIR

E8_Loc02_03_FLIR0258

E8_Loc02_01_FLIR0032

E8_Loc02_04_FLIR0366

E8_Loc02_02_FLIR0144

CFLIR

E8_Loc02_05_FLIR0480

E8_Loc02_06_FLIR0904

E8_Loc02_07_FLIR0950

E8_Loc02_08_FLIR0998

E8_Loc02_09_FLIR1046

E8_Loc02_10_FLIR1360

E8_Loc02_11_FLIR1574

E8_Loc02_12_FLIR1620

68.7 °F

\$FLIR

E8_Loc02_13_FLIR1664

74.3 °F

E8_Loc02_14_FLIR1710

\$FLIR

E8_Loc02_15_FLIR1760

E8_Loc02_16_FLIR1816

E8_Loc02_17_FLIR1974

E8_Loc02_18_FLIR2106

E8_Loc02_19_FLIR2156

E8_Loc02_20_FLIR2210

E8_Loc02_21_FLIR2292

E8_Loc03_11_FLIR1578

E8_Loc03_12_FLIR1624

E8_Loc03_07_FLIR0954

E8_Loc03_10_FLIR1364

E8_Loc03_08_FLIR1002

E8_Loc03_09_FLIR1050

E8_Loc03_04_FLIR0376

E8_Loc03_05_FLIR0490

E8_Loc03_02_FLIR0154

E8_Loc03_06_FLIR0908

76.4 °F 81.2 °F 73.9 °F

E8_Loc03_13_FLIR1668

¢FLIR

E8_Loc03_14_FLIR1714

E8_Loc03_15_FLIR1764

E8_Loc03_16_FLIR1828

E8_Loc03_17_FLIR1978

E8_Loc03_18_FLIR2110

E8_Loc03_19_FLIR2160

E8_Loc03_20_FLIR2214

E8_Loc03_21_FLIR2302

E8_Loc04_10_FLIR1368

E8_Loc04_11_FLIR1582

E8_Loc04_12_FLIR1628

73.9 °F **SFLIF**

E8_Loc04_05_FLIR0500

E8_Loc04_06_FLIR0912

82.5 °F

E8_Loc04_03_FLIR0278

 80.5 °F
 77.0 °F
 83.2 °F

 73.2 °F
 69.7 °F
 €FLIR

E8_Loc04_13_FLIR1672

E8_Loc04_14_FLIR1718

E8_Loc04_15_FLIR1768

E8_Loc04_16_FLIR1838

E8_Loc04_17_FLIR1982

E8_Loc04_18_FLIR2114

E8_Loc04_19_FLIR2164

E8_Loc04_20_FLIR2218

E8_Loc04_21_FLIR2312

E8_Loc05_11_FLIR1586

E8_Loc05_12_FLIR1632

¢FLIR

\$FLIR

67.0 °F

E8_Loc05_05_FLIR0510

E8_Loc05_06_FLIR0916

E8_Loc05_01_FLIR0062 90.5 °F

E8_Loc05_10_FLIR1372

E8_Loc05_02_FLIR0174

81.4 °F

82.4 °I

73.9

\$FLIR

83.6 °F

83.2 °F

66.3 °F

76.5 °F 80.5 °F 82.9 °F 73.1 °F 69.2 °F 75.6 °F **\$FLIR \$FLIR**

E8_Loc05_13_FLIR1676

E8_Loc05_14_FLIR1722

Flir E8

E8_Loc05_15_FLIR1772

E8_Loc05_16_FLIR1848

E8_Loc05_17_FLIR1986

E8_Loc05_18_FLIR2118

E8_Loc05_19_FLIR2168

E8_Loc05_20_FLIR2222

E8_Loc05_21_FLIR2322

E8_Loc06_11_FLIR1590

E8_Loc06_12_FLIR1636

68.0 °F

E8_Loc06_02_FLIR0184

E8_Loc06_05FLIR0520

73.1 °F 65.9 °F €FLIR

E8_Loc06_06_FLIR0920

84.0 °F

73.7 °F

90.8 °F

E8_Loc06_10_FLIR1376

68.1 °F

E8_Loc06_01_FLIR0072

81.8 °F 74.5 °F

E8_Loc06_13_FLIR1680

E8_Loc06_15_FLIR1776

E8_Loc06_16_FLIR1858

E8_Loc06_17_FLIR1990

E8_Loc06_18_FLIR2122

E8_Loc06_19_FLIR2172

E8_Loc06_20_FLIR2226

E8_Loc06_21_FLIR2332

A.85

E8_Loc07_10_FLIR1380

E8_Loc07_11_FLIR1594

E8_Loc07_12_FLIR1640

E8_Loc07_04_FLIR0418

76.7 °F 69.4 °F

E8_Loc07_05_FLIR0530

\$FLIR

CFLIR

E8_Loc07_03_FLIR0308

NETC 20-3

Task 2 Interim Report

81.0 °F

73.7 °F

69.4 °F

\$FLIR

E8_Loc07_15_FLIR1780

E8_Loc07_13_FLIR1684

E8_Loc07_16_FLIR1868

E8_Loc07_14_FLIR1730

\$FLIR

E8_Loc07_17_FLIR1994

E8_Loc07_18_FLIR2126

E8_Loc07_21_FLIR2342

E8_Loc08_01_FLIR0092

¢FLIR

E8_Loc08_02_FLIR0204

E8_Loc08_03_FLIR0318

E8_Loc08_04_FLIR0428

E8_Loc08_05_FLIR0540

E8_Loc08_06_FLIR0928

E8_Loc08_07_FLIR0974

E8_Loc08_08_FLIR1022

E8_Loc08_09_FLIR1070

E8_Loc08_10_FLIR1384

E8_Loc08_11_FLIR1598

E8_Loc08_12_FLIR1644

Flir E8

80.4 °F		77.7 °F		84.0 °F	
73.1 °F	and the p	¢FLIR	¢ FLIR	75.0 °F	\$ FLI

Skipped

E8_Loc08_13_FLIR1688

E8_Loc08_17_FLIR1998

E8_Loc08_18_FLIR2130

E8_Loc08_19_FLIR2180

E8_Loc08_20FLIR2234

E8_Loc08_21_FLIR2352

A.89

E8_Loc09_11_FLIR1602

E8_Loc09_12_FLIR1648

E8_Loc09_07_FLIR0978 E8_Loc09_08_FLIR1026 E8_Loc09_09_FLIR1074 82.5 °F 83.9 °F 85.6 °F 76.6 °F 75.1 °F 78.3 °F **\$FLIR \$FLIR ŞFLI**R

E8_Loc09_10_FLIR1388

71.0 °F

78.3 °F

68.0 °F

\$FLIR

E8_Loc09_05_FLIR0550

89.3 °F

69.2 °F

E8_Loc09_02_FLIR0214

E8_Loc09_03_FLIR0328

69.4

E8_Loc09_06_FLIR0932

D

\$FLIR

E8_Loc09_13_FLIR1692

E8_Loc09_16_FLIR1878

E8_Loc09_17_FLIR2002

E8_Loc09_18_FLIR2134

E8_Loc09_19_FLIR2184

E8_Loc09_20_FLIR2238

E8_Loc09_21_FLIR2364

Appendix A-3-3

 03.0 °F
 78.0 °F
 02.3 °F

 76.4 °F
 71.5 °F
 0FLIR

E8_Loc10_01_FLIR0112

E8_Loc10_03_FLIR0338

E8_Loc10_04_FLIR0448

E8_Loc10_05_FLIR0560

E8_Loc10_06_FLIR0936

E8_Loc10_08_FLIR1030

E8_Loc10_09_FLIR1078

E8_Loc10_10_FLIR1392

E8_Loc10_11_FLIR1606

E8_Loc10_12_FLIR1652

\$FLIR

E8_Loc10_13_FLIR1696

\$FLIR

\$FLIR

E8_Loc10_16_FLIR1888

E8_Loc10_17_FLIR2006

E8_Loc10_18_FLIR2138

E8_Loc10_19_FLIR2188

E8_Loc10_20_FLIR2242

E8_Loc10_21_FLIR2374

Flir E8

E8_Loc11_01_FLIR0122

E8_Loc11_04_FLIR0458

E8_Loc11_05_FLIR0570

E8_Loc11_06_FLIR0940

E8_Loc11_07_FLIR0986

E8_Loc11_08_FLIR1034

E8_Loc11_09_FLIR1082

E8_Loc11_10_FLIR1396

E8_Loc11_11_FLIR1610

E8_Loc11_12_FLIR1656

Flir E8

E8_Loc11_13_FLIR1700

E8_Loc11_15_FLIR1796

E8_Loc11_16_FLIR1898

E8_Loc11_17_FLIR2010

E8_Loc11_18_FLIR2142

E8_Loc11_19_FLIR2192

E8_Loc11_20_FLIR2246

E8_Loc11_21_FLIR2384

 73.6 °F
 81.2 °F
 80.1 °F

 66.3 °F
 73.9 °F
 60.1 °F

E8_Loc12_14_FLIR1750

E8_Loc12_15_FLIR1800

E8_Loc12_16_FLIR1908

E8_Loc12_17_FLIR2014

E8_Loc12_18_FLIR2146

E8_Loc12_19_FLIR2196

E8_Loc12_20_FLIR2250

E8_Loc12_21_FLIR2394

C5_Loc01_10_FLIR1265

C5_Loc01_11_FLIR1313

A.96

C5_Loc01_12_FLIR1357

58.5 °F

C5_Loc01_08_FLIR0947

FLIR

C5_Loc01_09_FLIR1161

C5_Loc01_06_FLIR0751

C5_Loc01_05_FLIR0491

C5_Loc01_02_FLIR0119

C5_Loc01_03_FLIR0245

61.8 °F

73.0 °F

77.3 °F

C5_Loc01_13_FLIR1405

C5_Loc01_14_FLIR1457

C5_Loc01_15_FLIR1509

C5_Loc01_16_FLIR1805

C5_Loc01_17_FLIR1897

C5_Loc01_18_FLIR1945

C5_Loc01_19_FLIR1995

A.98

C5_Loc02_11_FLIR1317

C5_Loc02_10_FLIR1271

81.4 °F 70.3 °F **\$FLIR**

C5_Loc02_12_FLIR1363

C5_Loc02_07_FLIR0799

C5_Loc02_08_FLIR0953

C5_Loc02_09_FLIR1165

C5_Loc02_06_FLIR0755

C5_Loc02_05_FLIR0495

C5_Loc02_01_FLIR0015

C5_Loc02_02_FLIR0131

C5_Loc02_03_FLIR0255

C5_Loc02_13_FLIR1409

C5_Loc02_14_FLIR1461

C5_Loc02_15_FLIR1519

C5_Loc02_16_FLIR1811

C5_Loc02_17_FLIR1901

C5_Loc02_18_FLIR1949

C5_Loc02_19_FLIR2005

A.100

C5_Loc03_10_FLIR1275

C5_Loc03_11_FLIR1321

C5_Loc03_12_FLIR1367

C5_Loc03_07_FLIR0803

C5_Loc03_04_FLIR0387

C5_Loc03_05_FLIR0499

C5_Loc03_06_FLIR0759

C5_Loc03_01_FLIR0025

C5_Loc03_02_FLIR0141

81.4 °F 70.3 °F FLIR

C5_Loc03_03_FLIR0265

NETC 20-3

Task 2 Interim Report

C5_Loc03_13_FLIR1413

C5_Loc03_14_FLIR1465

C5_Loc03_15_FLIR1529

C5_Loc03_16_FLIR1815

C5_Loc03_17_FLIR1905

C5_Loc03_18_FLIR1953

C5_Loc03_19_FLIR2015

A.102

C5_Loc04_10_FLIR1279

C5_Loc04_11_FLIR1325

C5_Loc04_12_FLIR1371

C5_Loc04_07_FLIR0807

C5_Loc04_06_FLIR0763

C5_Loc04_05_FLIR0503

C5_Loc04_01_FLIR0035

C5_Loc04_02_FLIR0151

71.9 °F

¢FLIR

60.7 °F

\$FLIR

 72.3 °F
 80.4 °F
 80.4 °F

 61.2 °F
 69.3 °F
 69.3 °F

C5_Loc04_13_FLIR1417

C5_Loc04_14_FLIR1469

C5_Loc04_15_FLIR1539

C5_Loc04_16_FLIR1819

C5_Loc04_17_FLIR1909

C5_Loc04_18_FLIR1957

C5_Loc04_19_FLIR2025

A.104

C5_Loc05_10_FLIR1283

C5_Loc05_11_FLIR1329

C5_Loc05_12_FLIR1375

C5_Loc05_08_FLIR0965

C5_Loc05_06_FLIR0767

C5_Loc05_04_FLIR0407

C5_Loc05_05_FLIR0507

C5_Loc05_02_FLIR0167

C5_Loc05_03_FLIR0285

80.4 °F

74.0 °F

C5_Loc05_13_FLIR1421

C5_Loc05_14_FLIR1473

C5_Loc05_15_FLIR1549

C5_Loc05_16_FLIR1823

C5_Loc05_17_FLIR1913

C5_Loc05_18_FLIR1961

C5_Loc05_19_FLIR2035

C5_Loc06_10_FLIR1287

C5_Loc06_11_FLIR1333

C5_Loc06_12_FLIR1379

C5_Loc06_05_FLIR0511

C5_Loc06_06_FLIR0771

SFLIR

C5_Loc06_04_FLIR0419

C5_Loc06_01_FLIR0055

CFLIR

79.3 °F

68.2 °F

C5_Loc06_02_FLIR0175

83.5 °F 72.4 °F

74.0 °F

62.9 °F

C5_Loc06_03_FLIR0297

78.3 °F

67.2 °F

64.2 °F

75.3 °F 80.4 °F 81.4 °F

69.3 °F

\$FLIR

C5_Loc06_15_FLIR1559

C5_Loc06_13_FLIR1425

C5_Loc06_16_FLIR1827

C5_Loc06_14_FLIR1477

C5_Loc06_17_FLIR1917

66.3 °F

C5_Loc06_18_FLIR1965

C5_Loc06_19_FLIR2047

A.108

C5_Loc07_10_FLIR1291

C5_Loc07_11_FLIR1337

C5_Loc07_12_FLIR1383

C5_Loc07_07_FLIR0819

C5_Loc07_06_FLIR0775

C5_Loc07_04_FLIR0429

C5_Loc07_05_FLIR0515

C5_Loc07_01_FLIR0065

69.3 °F

C5_Loc07_02_FLIR0185

C5_Loc07_03_FLIR0307

80.4 °F

75.3 °F

64.2 °F

79.3 °F 81.4 °F

68.2 °F

FLIR

C5_Loc07_15_FLIR1569

C5_Loc07_13_FLIR1429

C5_Loc07_16_FLIR1831

C5_Loc07_17_FLIR1921

C5_Loc07_14_FLIR1481

C5_Loc07_18_FLIR1969

C5_Loc07_19_FLIR2057

A.110

C5_Loc08_10_FLIR1295

C5_Loc08_11_FLIR1341

C5_Loc08_12_FLIR1387

C5_Loc08_07_FLIR0823

C5_Loc08_06_FLIR0779

C5_Loc08_04_FLIR0439

C5_Loc08_05_FLIR0519

C5_Loc08_02_FLIR0199

C5_Loc08_13_FLIR1433

C5_Loc08_14_FLIR1485

C5_Loc08_15_FLIR1579

C5_Loc08_16_FLIR1835

C5_Loc08_17_FLIR1925

C5_Loc08_18_FLIR1973

C5_Loc08_19_FLIR2071

A.112

C5_Loc09_10_FLIR1299

C5_Loc09_11_FLIR1345

C5_Loc09_12_FLIR1391

C5_Loc09_07_FLIR1234

- C5_Loc09_08_FLIR0981
- C5_Loc09_09_FLIR1193

Skipped

C5_Loc09_05_FLIR0523

C5_Loc09_06_FLIR0783

C5_Loc09_04_FLIR0449

C5_Loc09_01_FLIR0085

C5_Loc09_02_FLIR0213

68.6 °F 57.5 °F **\$FLIR**

C5_Loc09_03_FLIR0333

OFL

76.2 °F 79.3 °F 77.2 °F 68.2 °F 66.1 °F 65.0 °F

C5_Loc09_13_FLIR1437

\$FLIR

C5_Loc09_14_FLIR1489

FLIR

C5_Loc09_15_FLIR1589

C5_Loc09_16_FLIR1839

C5_Loc09_17_FLIR1929

68.5 °F 57.4 °F FLIR

C5_Loc09_18_FLIR1977

C5_Loc09_19_FLIR2085

Appendix A-3-4

C5_Loc10_01_FLIR0095

C5_Loc10_02_FLIR0225

C5_Loc10_03_FLIR0345

C5_Loc10_04_FLIR0459

C5_Loc10_05_FLIR0527

C5_Loc10_06_FLIR0787

Skipped

79.3 °F

68.2 °F

C5_Loc10_08_FLIR0985

80.5

69.3

\$FLIR

C5_Loc10_09_FLIR1197

C5_Loc10_10_FLIR1303

C5_Loc10_11_FLIR1349

C5_Loc10_12_FLIR1395

78.3 °F

67.2 °F

68.2 °F

\$FLIR

C5_Loc10_13_FLIR1441

C5_Loc10_14_FLIR1493

C5_Loc10_15_FLIR1599

C5_Loc10_16_FLIR1843

C5_Loc10_17_FLIR1933

67.4 °F 56.3 °F

C5_Loc10_18_FLIR1981

C5_Loc10_19_FLIR2095

Appendix A-3-4

79.3 °F 79.9 °F 85.5 °F 68.2 °F 74.4 ° 68.9 °F **\$FLIR SFLIR**

C5_Loc11_01_FLIR0105

C5_Loc11_02_FLIR0235

C5_Loc11_03_FLIR0355

C5_Loc11_04_FLIR0469

C5_Loc11_05_FLIR0531

C5_Loc11_06_FLIR0791

Skipped

- C5_Loc11_08_FLIR0989
- C5_Loc11_09_FLIR1201

C5_Loc11_10_FLIR1307

C5_Loc11_11_FLIR1353

C5_Loc11_12_FLIR1399

C5_Loc11_13_FLIR1447

C5_Loc11_14_FLIR1499

C5_Loc11_15_FLIR1609

C5_Loc11_16_FLIR1847

C5_Loc11_17_FLIR1937

68.5 °F 57.4 °F €

C5_Loc11_18_FLIR1985

C5_Loc11_19_FLIR2105

C5_Loc12_13_FLIR1451

C5_Loc12_14_FLIR1503

C5_Loc12_15_FLIR1619

C5_Loc12_16_FLIR1853

C5_Loc12_17_FLIR1941

C5_Loc12_18_FLIR1989

C5_Loc12_19_FLIR2115

Fluke_Loc01_01_IR_00068

Fluke_Loc01_02_IR_00132

Fluke_Loc01_03_IR_00191

Fluke_Loc01_04_IR_00238

Fluke_Loc02_01_IR_00073

Fluke_Loc02_02_IR_00135

Fluke_Loc02_03_IR_00193

Fluke_Loc02_04_IR_00241

Fluke_Loc03_01_IR_00078

Fluke_Loc03_02_IR_00139

Fluke_Loc03_03_IR_00195

Fluke_Loc03_04_IR_00244

Fluke_Loc04_01_IR_00083

Fluke_Loc04_02_IR_00141

Fluke_Loc04_03_IR_00197

Fluke_Loc04_04_IR_00247

Fluke_Loc05_01_IR_00088

Fluke_Loc05_02_IR_00144

Fluke_Loc05_03_IR_00199

Fluke_Loc05_04_IR_00249

Fluke_Loc06_02_IR_00147

Fluke_Loc06_03_IR_00201

Fluke_Loc06_04_IR_00253

Fluke_Loc07_01_IR_00098

Fluke_Loc07_02_IR_00150

Fluke_Loc07_03_IR_00204

Fluke_Loc07_04_IR_00256

Fluke_Loc08_02_IR_00153

Fluke_Loc08_03_IR_00208

Fluke_Loc08_04_IR_00259

Fluke_Loc09_01_IR_00108

Fluke_Loc09_02_IR_00157

Fluke_Loc09_03_IR_00210

Fluke_Loc09_04_IR_00262

Fluke_Loc10_01_IR_00113

Fluke_Loc10_02_IR_00160

Fluke_Loc10_03_IR_00213

Fluke_Loc10_04_IR_00265

Fluke_Loc11_01_IR_00120

Fluke_Loc11_02_IR_00163

Fluke_Loc11_03_IR_00216

Fluke_Loc11_04_IR_00268

Seek_Loc01_01_20210914_004731_A Seek_Loc01_02_20210915_112658_A Seek_Loc01_03_20210918_131037_A

Seek_Loc01_04_20210923_133406_A Seek_Loc01_05_20210925_105528_A Seek_Loc01_06_20210925_192358_A

Seek_Loc01_09_20211006_095329_A

Seek_Loc01_08_20211001_103446_A

Seek_Loc01_07_20210930_112451_A

Seek_Loc02_01_20210914_004855_A Seek_Loc02_02_20210915_112813_A Seek_Loc02_03_20210918_131051_A

Seek_Loc02_04_20210923_133418_A Seek_Loc02_05_20210925_105540_A Seek_Loc02_06_20210925_192413_A

Seek_Loc02_09_20211006_095357_A

Seek_Loc02_08_20211001_103536_A

Seek_Loc02_07_20210930_112505_A

Seek_Loc03_01_20210914_005425_A Seek_Loc03_02_20210915_113032_A Seek_Loc03_03_20210918_131111_A

Seek_Loc03_04_20210923_133436_A Seek_Loc03_05_20210925_105556_A Seek_Loc03_06_20210925_192430_A

Seek_Loc03_07_20210930_112522_A

Seek_Loc03_09_20211006_095436_A

Seek_Loc04_01_20210914_005508_A Seek_Loc04_02_20210915_113126_A Seek_Loc04_03_20210918_131129_A

Seek_Loc04_04_20210923_133452_A Seek_Loc04_05_20210925_105611_A Seek_Loc04_06_20210925_192446_A

Seek_Loc04_07_20210930_112538_A

Seek_Loc04_09_20211006_095506_A

Seek_Loc05_01_20210914_010134_A Seek_Loc05_02_20210915_113239_A Seek_Loc05_03_20210918_131146_A

Seek_Loc05_04_20210923_133507_A Seek_Loc05_05_20210925_105626_A Seek_Loc05_06_20210925_192520_A

Seek_Loc05_09_20211006_095531_A

Seek_Loc05_08_20211001_103722_A

Seek_Loc05_07_20210930_112551_A

Seek_Loc06_01_20210914_010238_A Seek_Loc06_02_20210915_113351_A Seek_Loc06_03_20210918_131158_A

Seek_Loc06_04_20210923_133520_A Seek_Loc06_05_20210925_105640_A Seek_Loc06_06_20210925_192544_A

Seek_Loc06_08_20211001_103759_A Seek_Loc06_09_20211006_095602_A

Seek_Loc06_07_20210930_112603_A

Seek_Loc07_01_20210914_010717_A Seek_Loc07_02_20210915_113442_A Seek_Loc07_03_20210918_131213_A

Seek_Loc07_04_20210923_133535_A Seek_Loc07_05_20210925_105653_A Seek_Loc07_06_20210925_192605_A

Seek_Loc07_07_20210930_112615_A

Seek_Loc07_09_20211006_095627_A

Seek_Loc08_09_20211006_095656_A

Seek_Loc08_01_20210914_011300_A Seek_Loc08_02_20210915_113542_A Seek_Loc08_03_20210918_131226_A

Seek_Loc08_04_20210923_133548_A Seek_Loc08_05_20210925_105705_A Seek_Loc08_06_20210925_192620_A

Seek_Loc08_07_20210930_112628_A Seek_Loc08_08_20211001_103926_A

Seek_Loc09_01_20210914_011441_A Seek_Loc09_02_20210915_113728_A Seek_Loc09_03_20210918_131318_A

Seek_Loc09_04_20210923_133644_A Seek_Loc09_05_20210925_110049_A Seek_Loc09_06_20210925_192716_A

Seek_Loc09_09_20211006_095805_A

Seek_Loc09_08_20211001_104033_A

Seek_Loc09_07_20210930_112714_A

Seek_Loc10_01_20210914_011916_A Seek_Loc10_02_20210915_113851_A Seek_Loc10_03_20210918_131458_A

Seek_Loc10_04_20210923_133759_A Seek_Loc10_05_20210925_110139_A Seek_Loc10_06_20210925_192849_A

Seek_Loc10_07_20210930_112755_A

Seek_Loc10_08_20211001_104149_A

Seek_Loc11_01_20210914_012338_A

Seek_Loc11_02_20210915_114003_A

Seek_Loc11_03_20210918_131607_A

Seek_Loc11_04_20210923_133823_A Seek_Loc11_05_20210925_110206_A Seek_Loc11_06_20210925_192918_A

Seek_Loc11_07_20210930_112822_A

Seek_Loc11_08_20211001_104235_A

Seek_Loc12_05_20210925_110415_A

Seek_Loc12_06_20210925_193156_A

Seek_Loc12_07_20210930_113026_A

Seek_Loc12_08_20211001_104428_A Seek_Loc12_09_20211006_100138_A

				B	IN 4E5 - Flir	E96 - Time	e, Tempera	ture, and	Atmospher	ic Conditio	ons during	Data Colle	ction				
	Date	e and Time					Tempe	erature Cha	anges					Atmospheric Conditions			
Data Set	Date	Start Time	End Time	Temp at Time of Testing (°F)	Temp 6 Hrs Prior (°F)	∆ Temp 6 Hrs (°F)	Temp 3 Hrs Prior (°F)	∆ Temp 3 Hrs (°F)	Temp 2 Hr Prior (°F)	∆ Temp 2 Hrs (°F)	Temp 1 Hr Prior (°F)	∆ Temp 1 Hr (°F)	Dew Point (°F)	Humidity (%)	Wind Speed (mph)	Last Rainfall	
1	9/13/2021	1:40 PM	2:02 PM	82	70	12	78	4	78	4	79	3	57	45	9	6 hours prior	
2	9/14/2021	9:47 AM	10:05 AM	72	65	7	68	4	70	2	70	2	55	55	8	26 hours prior	
3	9/14/2021	11:23 AM	11:33 AM	72	66	6	70	2	72	0	72	0	55	53	9	30 hours prior	
4	9/15/2021	10:38 AM	10:46 AM	83	71	12	76	7	80	3	82	1	71	67	13	2 days prior	
5	9/15/2021	11:49 AM	12:11 PM	84	71	13	76	8	80	4	82	2	71	67	13	2 days prior	
6	9/15/2021	2:43 PM	3:03 PM	84	80	4	84	0	85	-1	85	-1	69	61	18	2 days prior	
7	9/16/2021	8:55 AM	9:03 AM	70	74	-4	68	2	68	2	68	2	64	81	7	1 hour prior	
8	9/16/2021	10:13 AM	10:20 AM	65	70	-5	64	1	69	-4	70	-5	65	84	7	2 hours prior	
9	9/18/2021	12:10 PM	12:19 PM	72	66	6	69	3	70	2	72	0	65	78	5	2 days prior	
10	9/18/2021	1:32 PM	1:41 PM	72	66	6	70	2	72	0	72	0	65	79	6	2 days prior	
11	9/18/2021	2:16 PM	2:23 PM	72	68	4	73	-1	72	0	72	0	65	78	8	2 days prior	
12	9/19/2021	7:49 PM	7:55 PM	64	71	-7	67	-3	65	-1	64	0	55	72	5	16 hours prior	
13	9/22/2021	1:02 PM	1:10 PM	76	70	6	77	-1	76	0	78	-2	67	74	20	3 days prior	
14	9/22/2021	2:08 PM	2:14 PM	77	72	5	76	1	80	-3	76	1	68	74	9	3 days prior	
15	9/23/2021	1:02 PM	1:09 PM	76	70	6	80	-4	80	-4	77	-1	67	74	7	Rain during data collection	
16	9/23/2021	7:47 PM	7:55 PM	70	81	-11	76	-6	72	-2	72	-2	66	87	13	7 hours prior	
17	9/23/2021	8:45 PM	8:50 PM	70	80	-10	72	-2	72	-2	70	0	66	87	10	8 hours prior	
18	9/24/2021	9:52 AM	10:04 AM	78	71	7	75	3	76	2	78	0	69	74	14	20 hours prior	
19	9/25/2021	10:24 AM	10:32 AM	73	67	6	66	7	66	7	69	4	52	48	5	2 days prior	
20	9/25/2021	11:06 AM	11:12 AM	73	66	7	66	7	69	4	73	0	50	44	8	2 days prior	
21	9/25/2021	6:52 PM	6:59 PM	65	73	-8	68	-3	66	-1	65	0	61	87	7	Rain during data collection	
22	9/25/2021	7:34 PM	7:51 PM	65	72	-7	68	-3	66	-1	65	0	61	87	7	Rain during data collection	
23	9/26/2021	7:59 PM	8:06 AM	67	75	-8	71	-4	69	-2	68	-1	46	47	13	13 hours prior	
24	9/30/2021	9:45 AM	9:51 AM	60	55	5	55	5	58	2	60	0	43	53	12	2 days prior	
25	9/30/2021	10:38 AM	10:45 AM	61	55	6	58	3	60	1	60	1	42	50	10	2 days prior	
26	9/30/2021	11:43 AM	11:49 AM	61	55	6	60	1	60	1	61	0	42	50	8	2 days prior	
27	9/30/2021	6:20 PM	6:27 PM	60	62	-2	61	-1	61	-1	61	-1	43	55	10	2 days prior	
28	9/30/2021	7:06 PM	7:14 PM	58	62	-4	61	-3	61	-3	60	-2	44	59	9	2 days prior	
29	10/1/2021	9:36 AM	9:51 AM	63	51	11.5	52	10.5	55	7.5	59	3.5	45	50	15	3 days prior	
30	10/1/2021	10:59 AM	11:05 AM	66	51	15	57	9	61	5	64	2	44	45	10	3 days prior	
31	10/6/2021	9:24 AM	9:45 AM	64	56	8	59	5.5	62	2	63	1	52	64	0	30 hours prior	

Weather data taken from Weather Underground - General Edward Lawrence Logan International Airport Weather Station

Reviewer: Tony Tieso

Role: Non-destructive Evaluation Technician

				E9	6 - Identific	ation of De	lamination					
Data Sot						Loca	ation					
Data Set	1	2	3	4	5	6	7	8	9	10	11	12
1	У	У	У	У	У	у	У	У	у	n	у	n/a
2	n	у	n	n	У	n	n	n	У	у	n	n/a
3	У	у	n	n	n	n	у	n	n	n	у	n/a
4	n	n	У	у	У	у	У	у	У	у	у	n/a
5	У	n	У	у	У	n	У	у	у	у	у	n/a
6	У	у	У	у	У	n	У	n	у	n	у	n/a
7	n	У	n	У	У	n	У	n	У	у	у	n/a
8	n	n	n	у	У	n	У	n	У	У	у	n/a
9	n	n	n	n	n	n	n	n	У	n	n	n/a
10	n	У	n	n	У	n	У	n	У	у	у	n/a
11	У	у	n	n	n	n	У	n	У	n	n	n/a
12	У	У	У	У	У	у	У	У	У	у	У	n/a
13	У	У	n	n	У	n	У	n	У	n	n	n/a
14	У	у	n	у	У	n	n	n	n	n	у	n/a
15	У	У	n	n	n	n	n	n	У	n	n	n/a
16	У	у	У	у	У	у	У	у	у	у	у	n/a
17	У	У	У	У	У	у	У	У	у	у	у	n/a
18	n	n	n	n	У	n	У	n	У	n	у	n/a
19	n	у	n	n	у	n	n	n	n	n	у	n
20	n	У	n	n	n	n	У	n	n	n	у	n
21	у	у	у	у	у	у	у	у	у	у	у	n
22	у	у	у	у	у	у	у	у	у	у	у	n
23	У	У	У	У	У	у	У	У	У	у	У	n
24	n	n	n	n	у	n	n	n	у	у	у	n
25	n	n	n	n	n	n	у	n	у	n	n	n
26	у	у	n	n	n	n	у	n	n	n	у	n
27	у	у	у	у	у	n	у	n/a	у	n	у	n
28	У	У	У	У	У	n	У	n	У	n	У	n
29	У	У	У	У	У	У	У	У	У	У	у	n
30	n	У	У	У	У	У	У	У	У	У	у	n
31	У	у	У	у	у	n	у	n	у	n	у	n
32	У	У	n	У	У	n	У	n	У	у	у	n

Reviewer: Kevin Ahearn

Role: Structural Engineer, Bridge Inspector

				E9	6 - Identific	ation of De	lamination					
Data Sat						Loca	ation					
Data Set	1	2	3	4	5	6	7	8	9	10	11	12
1	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	n/a
2	No	No	No	No	Yes	No	No	No	No	No	No	n/a
3	No	Yes	No	No	No	No	Yes	No	No	No	Yes	n/a
4	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	n/a
5	No	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	n/a
6	Yes	Yes	No	Yes	No	Yes	Yes	No	No	No	Yes	n/a
7	Yes	No	No	Yes	Yes	No	Yes	No	Yes	Yes	Yes	n/a
8	Yes	No	No	Yes	Yes	No	Yes	No	Yes	No	Yes	n/a
9	No	No	No	No	No	No	No	No	No	No	No	n/a
10	No	No	No	No	Yes	No	Yes	No	Yes	Yes	No	n/a
11	No	Yes	No	No	No	No	Yes	No	Yes	No	No	n/a
12	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	n/a
13	No	Yes	No	Yes	No	No	Yes	No	Yes	No	No	n/a
14	Yes	Yes	No	Yes	No	No	No	No	No	No	No	n/a
15	Yes	Yes	No	Yes	No	No	No	No	Yes	Yes	No	n/a
16	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	n/a
17	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	n/a
18	No	No	No	No	No	No	Yes	Yes	Yes	Yes	Yes	n/a
19	No	No	No	No	No	No	No	No	No	No	No	No
20	No	No	No	No	No	No	No	No	No	No	No	No
21	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No
22	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No
23	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No
24	No	No	No	No	No	No	No	No	Yes	Yes	Yes	No
25	No	No	No	No	No	No	Yes	No	No	Yes	Yes	No
26	Yes	Yes	No	No	No	No	No	No	No	Yes	No	No
27	Yes	Yes	Yes	Yes	Yes	Yes	Yes	n/a	Yes	Yes	Yes	No
28	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No
29	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No
30	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No
31	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No
32	Yes	No	No	No	No	No	Yes	No	Yes	No	No	No

Reviewer: Kevin Ahearn

Role: Structural Engineer, Bridge Inspector

				E9	6 - Identific	ation of De	lamination					
Data Sat						Loca	ation					
Data Set	1	2	3	4	5	6	7	8	9	10	11	12
1	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	n/a
2	No	No	No	No	Yes	No	No	No	No	No	No	n/a
3	No	Yes	No	No	No	No	Yes	No	No	No	Yes	n/a
4	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	n/a
5	No	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	n/a
6	Yes	Yes	No	Yes	No	Yes	Yes	No	No	No	Yes	n/a
7	Yes	No	No	Yes	Yes	No	Yes	No	Yes	Yes	Yes	n/a
8	Yes	No	No	Yes	Yes	No	Yes	No	Yes	No	Yes	n/a
9	No	No	No	No	No	No	No	No	No	No	No	n/a
10	No	No	No	No	Yes	No	Yes	No	Yes	Yes	No	n/a
11	No	Yes	No	No	No	No	Yes	No	Yes	No	No	n/a
12	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	n/a
13	No	Yes	No	Yes	No	No	Yes	No	Yes	No	No	n/a
14	Yes	Yes	No	Yes	No	No	No	No	No	No	No	n/a
15	Yes	Yes	No	Yes	No	No	No	No	Yes	Yes	No	n/a
16	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	n/a
17	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	n/a
18	No	No	No	No	No	No	Yes	Yes	Yes	Yes	Yes	n/a
19	No	No	No	No	No	No	No	No	No	No	No	No
20	No	No	No	No	No	No	No	No	No	No	No	No
21	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No
22	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No
23	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No
24	No	No	No	No	No	No	No	No	Yes	Yes	Yes	No
25	No	No	No	No	No	No	Yes	No	No	Yes	Yes	No
26	Yes	Yes	No	No	No	No	No	No	No	Yes	No	No
27	Yes	Yes	Yes	Yes	Yes	Yes	Yes	n/a	Yes	Yes	Yes	No
28	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No
29	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No
30	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No
31	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No
32	Yes	No	No	No	No	No	Yes	No	Yes	No	No	No

Reviewer: Kevin Ahearn

Role: Structural Engineer, Bridge Inspector

-				E8	6 - Identific	ation of De	lamination					
Data Set						Loca	ation					
Dala Sel	1	2	3	4	5	6	7	8	9	10	11	12
1	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	n/a
2	No	No	No	No	No	No	No	No	No	No	Yes	n/a
3	No	No	Yes	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	n/a
4	No	No	Yes	No	Yes	No	Yes	Yes	Yes	Yes	Yes	n/a
5	n/a	Yes	No	Yes	Yes	Yes	No	Yes	No	Yes	Yes	n/a
6	No	No	No	Yes	Yes	Yes	Yes	No	Yes	Yes	Yes	n/a
7	No	No	No	No	No	No	No	No	Yes	Yes	Yes	n/a
8	No	n/a	No	No	No	No	No	No	Yes	Yes	Yes	n/a
9	Yes	Yes	No	Yes	No	No	No	No	No	No	No	n/a
10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	n/a
11	Yes	Yes	No	Yes	No	No	No	No	No	Yes	No	n/a
12	Yes	Yes	No	Yes	Yes	No	No	No	No	No	No	n/a
13	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	n/a
14	No	No	No	No	Yes	No	Yes	No	Yes	Yes	Yes	n/a
15	No	No	No	No	Yes	No	No	No	No	No	No	No
16	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No
17	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No
18	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes	Yes	Yes	No
19	No	No	No	No	No	Yes	No	No	Yes	Yes	Yes	No
20	No	No	No	No	No	No	Yes	No	Yes	Yes	Yes	No
21	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No
22	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No

Reviewer: Kevin Ahearn

Role: Structural Engineer, Bridge Inspector

-				E	8 - Identific	ation of Del	amination					
Data Sot						Loca	ation					
Data Set	1	2	3	4	5	6	7	8	9	10	11	12
1	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	n/a
2	No	No	No	No	Yes	Yes	No	No	No	No	Yes	n/a
3	No	No	No	No	Yes	No	Yes	No	Yes	Yes	Yes	n/a
4	n/a	Yes	No	Yes	No	No	No	No	No	Yes	Yes	n/a
5	No	No	No	No	Yes	No	Yes	No	Yes	Yes	Yes	n/a
6	No	No	No	No	No	No	No	No	No	No	No	n/a
7	No	Yes	No	No	No	No	No	No	No	No	No	n/a
8	Yes	No	No	Yes	No	No	No	No	No	No	No	n/a
9	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	n/a
10	Yes	Yes	No	Yes	No	No	No	No	No	No	No	n/a
11	Yes	Yes	No	Yes	No	No	No	No	No	No	No	n/a
12	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	n/a
13	No	No	No	No	No	No	No	No	No	Yes	Yes	n/a
14	No	No	No	No	No	No	No	No	No	No	No	No
15	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No
16	Yes	Yes	Yes	Yes	Yes	Yes	Yes	n/a	Yes	Yes	Yes	No
17	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No
18	No	No	No	No	No	No	No	No	No	Yes	Yes	No
19	No	No	No	No	No	No	Yes	No	No	Yes	Yes	No
20	No	Yes	No	Yes	Yes	Yes	Yes	No	Yes	Yes	Yes	No
21	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No

Reviewer: Kevin Ahearn

Role: Structural Engineer, Bridge Inspector

	C5 - Identification of Delamination														
Data Sat						Loca	ation								
Dala Sel	1	2	3	4	5	6	7	8	9	10	11	12			
1	Yes	Yes	No	No	Yes	No	No	Yes	No	No	Yes	n/a			
2	No	No	No	No	No	No	No	No	No	No	No	n/a			
3	No	No	No	No	Yes	Yes	No	No	Yes	Yes	Yes	n/a			
4	No	No	No	Yes	No	No	No	No	No	No	No	n/a			
5	No	No	No	No	No	No	No	No	Yes	No	No	n/a			
6	No	No	No	No	Yes	Yes	No	No	Yes	No	No	n/a			
7	No	No	No	No	No	No	No	No	n/a	n/a	n/a	n/a			
8	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	n/a			
9	No	No	No	No	No	No	No	No	No	No	No	n/a			
10	No	No	No	No	No	No	No	No	No	No	No	n/a			
11	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes	Yes	n/a			
12	No	No	No	No	No	No	No	No	No	No	No	n/a			
13	No	No	No	No	No	No	No	No	No	Yes	No	n/a			
14	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No			
15	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No			
16	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No			
17	No	No	No	No	No	No	No	No	No	Yes	Yes	No			
18	No	No	Yes	Yes	Yes	No	No	Yes	Yes	Yes	Yes	No			
19	Yes	No	No	Yes	Yes	Yes	Yes	No	Yes	Yes	Yes	No			

4E5, Location 1 – Comparison of Camera Imagery

Ironbow Palette, Automatic Settings

C5_Loc01_01_FLIR0005

E8_Loc01_01_FLIR0022

4E5, Location 1 – Comparison of Camera Imagery

Grayscale Palette, Manual Settings

C5_Loc01_01_FLIR0005

E86_Loc01_01_FLIR0027

4E5, Location 2 – Comparison of Camera Imagery

Ironbow Palette, Automatic Settings

C5_Loc02_08_FLIR0953

4E5, Location 2 – Comparison of Camera Imagery

Grayscale Palette, Manual Settings

C5_Loc02_08_FLIR0953

E86_Loc02_10_FLIR0983

E96_Loc2_12_FLIR1089

4E5, Location 3 – Comparison of Camera Imagery

Ironbow Palette, Automatic Settings

C5_Loc03_16_FLIR1815

E8_Loc03_17_FLIR1978

4E5, Location 3 – Comparison of Camera Imagery

Grayscale Palette, Manual Settings

C5_Loc03_16_FLIR1815

E86_Loc03_18_FLIR1717

72.7 °F

4E5, Location 4 – Comparison of Camera Imagery

E86_Loc04_03_FLIR0309

Ironbow Palette, Automatic Settings

\$FLIR

\$FLIR

72.6 °F

E96_Loc4_04_FLIR0279

4E5, Location 4 – Comparison of Camera Imagery

Grayscale Palette, Manual Settings

C5_Loc04_03_FLIR0275

4E5, Location 5 – Comparison of Camera Imagery

Ironbow Palette, Automatic Settings

C5_Loc05_03_FLIR0285

4E5, Location 5 – Comparison of Camera Imagery

Grayscale Palette, Manual Settings

C5_Loc05_03_FLIR0285

E8_Loc05_03_FLIR0288

4E5, Location 6 – Comparison of Camera Imagery

Ironbow Palette, Automatic Settings

C5_Loc06_14_FLIR1477

4E5, Location 6 – Comparison of Camera Imagery

Grayscale Palette, Manual Settings

C5_Loc06_14_FLIR1477

E86_Loc06_17_FLIR1625

4E5, Location 7 – Comparison of Camera Imagery

Ironbow Palette, Automatic Settings

C5_Loc07_07_FLIR0819

E8_Loc07_08_FLIR1018

4E5, Location 7 – Comparison of Camera Imagery

Grayscale Palette, Manual Settings

C5_Loc07_07_FLIR0819

4E5, Location 8 – Comparison of Camera Imagery

Ironbow Palette, Automatic Settings

C5_Loc08_11_FLIR1341

4E5, Location 8 – Comparison of Camera Imagery

Grayscale Palette, Manual Settings

C5_Loc08_11_FLIR1341

E86_Loc08_13_FLIR1381

4E5, Location 9 – Comparison of Camera Imagery

Ironbow Palette, Automatic Settings

C5_Loc09_19_FLIR2085

Appendix A-7

4E5, Location 9 – Comparison of Camera Imagery

Grayscale Palette, Manual Settings

C5_Loc09_19_FLIR2085

E86_Loc09_22_FLIR2059

4E5, Location 10 – Comparison of Camera Imagery

Ironbow Palette, Automatic Settings

C5_Loc10_18_FLIR1981

4E5, Location 10 – Comparison of Camera Imagery

Grayscale Palette, Manual Settings

C5_Loc10_18_FLIR1981

4E5, Location 11 – Comparison of Camera Imagery

Ironbow Palette, Automatic Settings

SFLIR

C5_Loc11_05_FLIR0531

4E5, Location 11 – Comparison of Camera Imagery

Grayscale Palette, Manual Settings

C5_Loc11_05_FLIR0531

E86_Loc11_06_FLIR0635

4E5, Location 12 – Comparison of Camera Imagery

Ironbow Palette, Automatic Settings

C5_Loc12_13_FLIR1451

4E5, Location 12 – Comparison of Camera Imagery

Grayscale Palette, Manual Settings

C5_Loc12_13_FLIR1451

SOUTHBOUND OFF-RAMP (LMS1-LMS5) NOT INCLUDED WITHIN SCOPE OF INSPECTION

<u>SPAN L-M</u> Thermal Survey and Follow up Inspection

NOTES:

- This inspection was limited to the mainline portion of Span L-M. The off-ramp portion (LMS1-LSM5) was omitted as the ramp deck separate from the mainline.
 - The sketch shows additional areas of interest based on temperature differentials identified using the Flir E96 handheld thermal camera. An additional follow up inspection was performed to ascertain whether these areas of interest were additional delaminated areas that were not identified during the initial traditional inspection.
 Refer to the associated appendix for thermal and visual photos of the areas of interest.

Ð	_	Drain

LEGEND:

_

8

Ρ

Hollow Area

Spall

Diaphragm

- Utility Bracket

🔆 – Overhead Light

- Patch

LOCATION	IR IMAGE #	FOLLOW UP INSP. DESCRIPTION	IMAGE #	COMMENTS
А	2725	NO DELAMINATION FOUND	5100	NO APPARENT CAUSE FOR TEMPERATURE DIFFERENTIAL
В	2727	NO DELAMINATION FOUND	5101	NO APPARENT CAUSE FOR TEMPERATURE DIFFERENTIAL
с	2729	NO DELAMINATION FOUND	5102	NO APPARENT CAUSE FOR TEMPERATURE DIFFERENTIAL
D	2731	MINOR DELAMINATION MEASURING 25"W x UP TO 20" L	5122	DELAMINATION VERY HARD TO DISTINGUISH BY SOUNDING
E	2735	DELAMINATION IN DECK MEASURING 25"W x UP TO 26"L. DELAMINATION IN HAUNCH MEASURING 26"L x 5"W	5105	
F	2733	NO DELAMINATION FOUND	5103	NO APPARENT CAUSE FOR TEMPERATURE DIFFERENTIAL
G	2737	NO DELAMINATION FOUND	5107	MINOR DISCOLORATION OF DECK AT LOCATION
н	2739	NO DELAMINATION FOUND	5121	DISCOLORATION AND POOR CONSOLIDATION AT LOCATION
I	2739	NO DELAMINATION FOUND	5121	DISCOLORATION AND POOR CONSOLIDATION AT LOCATION
J	2739	MINOR DELAMINATION MEASURING 38"L x UP TO 15"W	5121	
к	2741	MINOR DELAMINATION MEASURING 19" W x UP TO 10"L	5109	
L	2749	NO DELAMINATION FOUND	5108	PATCHES, DISCOLORATION AND POOR CONSOLIDATION AT LOCATION
м	2749	NO DELAMINATION FOUND	5108	PATCHES, DISCOLORATION AND POOR CONSOLIDATION AT LOCATION
N	2747	MINOR DELAMINATION INCLUDING HOLLOW SOUNDING PATCHES MEASURING 31"L x UP TO 9" w AT SOUTH END; 7"W x UP TO 10"L HOLLOW SOUNDING PATCH AT CENTER; AND 7"W x UP TO 5"L HOLLOW SOUNDING PATCH AT NORTH END	5115	
0	2745	MINOR DELAMINATION BETWEEN HOLLOW SOUNDING PATCHES MEASURING 56"L X UP TO 9"W	5117	POTENTIALLY CAUSED BY POOR QUALITY REPAIR / POOR CONSOLIDATION
Р	2743	MINOR DELAMINATION MEASURING 8"W	5112	POTENTIALLY CAUSED BY POOR QUALITY REPAIR / POOR CONSOLIDATION
Q	2743	MINOR DELAMINATION MEASURING UP TO 8" W x 29" L	5111	POTENTIALLY CAUSED BY POOR QUALITY REPAIR / POOR CONSOLIDATION

FOLLOW UP INSPECTION FINDINGS

Appendix A-8-2

4E5, Thermal Survey Areas of Interest / Follow up Inspection Findings

- Refer to Associated AutoCAD Sketches for BIN 4E5, Span L-M for locations and descriptions.
- Thermal imagery was taken with the Flir E96 handheld thermal camera on 9/26/21. The follow up inspection to verify the thermal areas of interest was performed on 10/25/21.
- The follow up inspection used red lumber crayon to outline and hatch delaminated areas. This was to differentiate from the initial inspection, which used yellow lumber crayon.

NETC 20-3 Task 2 Interim Report

4E5, Thermal Survey Areas of Interest / Follow up Inspection Findings

5122

- Refer to Associated AutoCAD Sketches for BIN 4E5, Span L-M for locations and descriptions.
- Thermal imagery was taken with the Flir E96 handheld thermal camera on 9/26/21. The follow up inspection to verify the thermal areas of • interest was performed on 10/25/21.
- The follow up inspection used red lumber crayon to outline and hatch delaminated areas. This was to differentiate from the initial inspection, which used yellow lumber crayon.

NETC 20-3 Task 2 Interim Report

4E5, Thermal Survey Areas of Interest / Follow up Inspection Findings

- Refer to Associated AutoCAD Sketches for BIN 4E5, Span L-M for locations and descriptions.
- Thermal imagery was taken with the Flir E96 handheld thermal camera on 9/26/21. The follow up inspection to verify the thermal areas of interest was performed on 10/25/21.
- The follow up inspection used red lumber crayon to outline and hatch delaminated areas. This was to differentiate from the initial inspection, which used yellow lumber crayon.

Appendix A-8-2

4E5, Thermal Survey Areas of Interest / Follow up Inspection Findings

- Refer to Associated AutoCAD Sketches for BIN 4E5, Span L-M for locations and descriptions.
- Thermal imagery was taken with the Flir E96 handheld thermal camera on 9/26/21. The follow up inspection to verify the thermal areas of interest was performed on 10/25/21.
- The follow up inspection used red lumber crayon to outline and hatch delaminated areas. This was to differentiate from the initial inspection, which used yellow lumber crayon.

NETC 20-3 Task 2 Interim Report

4E5, Thermal Survey Areas of Interest / Follow up Inspection Findings

- Refer to Associated AutoCAD Sketches for BIN 4E5, Span L-M for locations and descriptions.
- Thermal imagery was taken with the Flir E96 handheld thermal camera on 9/26/21. The follow up inspection to verify the thermal areas of interest was performed on 10/25/21.
- The follow up inspection used red lumber crayon to outline and hatch delaminated areas. This was to differentiate from the initial inspection, which used yellow lumber crayon.

Appendix A-8-2

4E5, Thermal Survey Areas of Interest / Follow up Inspection Findings

2745

2746

5117

- Refer to Associated AutoCAD Sketches for BIN 4E5, Span L-M for locations and descriptions. ٠
- Thermal imagery was taken with the Flir E96 handheld thermal camera on 9/26/21. The follow up inspection to verify the thermal areas of • interest was performed on 10/25/21.
- The follow up inspection used red lumber crayon to outline and hatch delaminated areas. This was to differentiate from the initial inspection, which used yellow lumber crayon.

NETC 20-3 Task 2 Interim Report

4E5, Thermal Survey Areas of Interest / Follow up Inspection Findings

Location P, IR Image 2743

Location P, IR Camera Visual Image 2744

Location P, Follow Up Insp. Image 5112

Location Q, IR Image 2743

Location Q, IR Camera Visual Image 2744

Location Q, Follow Up Insp. Image 5111

- Refer to Associated AutoCAD Sketches for BIN 4E5, Span L-M for locations and descriptions.
- Thermal imagery was taken with the Flir E96 handheld thermal camera on 9/26/21. The follow up inspection to verify the thermal areas of interest was performed on 10/25/21.
- The follow up inspection used red lumber crayon to outline and hatch delaminated areas. This was to differentiate from the initial inspection, which used yellow lumber crayon.

<u>STAN L-W</u> Compiled Inspection Findings

of the deficiency description.

1. This inspection was limited to the mainline portion of

2. The sketch shows the traditional field inspection

Span L-M. The off-ramp portion (LMS1-LSM5) was

omitted as the ramp deck separate from the mainline.

findings and follow up inspection findings. Deficiencies

that were added or modified based on the areas of

interest have the alphabetical designation at the start

NOTES:

– Hollow Area

🛛 — Spall

LEGEND:

- P Patch
 - Diaphragm
 - Utility Bracket
- 🔆 Overhead Light
- 🕀 Drain

DEFICIENCIES:

- 1. 16" long x up to 19" wide hollow area (18" wide at south end, 8" wide at north end).
- 2'-1" long (avg.) x 2'-9" wide spall exposed rebar and adjacent up to 10" long (6" avg) x 18" wide hollow area and 14" long x 4" wide hollow area.
- 3. Hollow sounding area with moderate efflorescence, honey combing, cracking, and discoloration.
- 4. Two hollow areas in sloped portion; 7" long x 3" wide and 14" long x up to 5" wide (3" wide avg).
- 5. 10^{17}_2 long x 2'- 2^{17}_2 wide minor hollow area.
- 6. $7_2^{1^{"}}$ long x 12" wide hollow area.
 - 7. Patched area with 5" long x 17" wide hollow area due to void.
- 8. Eight up to 12"ø patches within bay.
- 9. Up to 10" long x 2'-2" wide hollow area.
- 10. 2'-4" long x up to 18" wide hollow area.
- 11. 6" long \times 9" wide hollow sounding patch.
- 12. 2" long x 6" wide hollow area.
- 13. 10" long x 23" wide spall with exposed rebar and adjacent 20" long x 18" wide hollow area.
- 14. 2'-11" long x 20" wide hollow area.
- 15. 3'-0" long x 21" wide hollow area.
- 16. 2'-3'' long x 10'' wide hollow area.
- 17. 4" long x 6" wide hollow area in haunch.
- 18. 5" long x 23" wide hollow area/void in patch due to void with adjacent 8" long x 7" wide hollow area in the haunch.
- 19. 8" long x 3'-3" wide hollow area/void in patch. The west edge of the patch has a spall/void extending behind the patch.
- 20. 8" long x 4'-2" wide hollow area/void in patch.
- 21. 21" long x 18" wide hollow area (up to 21" wide for 9" length).
- 22. 2'-4'' long x 15'' wide minor hollow area.
- 23. 20" long \times 7" wide hollow area.
- 24. Seven up to 12"ø patches within bay. Sound unless otherwise noted.
- 25. (o) 56" long x up to 9" wide minor hollow area containing three hollow sounding patches.
- 26. Seven patches up to 12"ø within bay. Sound unless otherwise noted.
- 27. (d) 25" wide x up to 20" long minor hollow area.
- 28. (e) 25" wide x up to 26" long hollow area in deck with adjacent 5" wide x 26" long hollow area in haunch.
 - 29. (i) 38" long x up to 15" wide minor hollow area.
- 30. (k) 19" wice x up to 10" long minor hollow area.
- 31. (n) 31" long x up to 9" wide minor hollow area with hollow sounding patches
- 32. (n) 7" wide x up to 10" hollow sounding patch
- 33. (n) 7" wide x up to 5" long hollow sounding patch
- 34. (p) 6" long x 8" wide minor hollow area.
- 35. (q) 29" long x up to 8" wide minor hollow area.

Appendix B

Bridge B-16-033 (BIN 4EU)

Appendix B-1

Deficiency 1

4EU, Flir E8, All Thermal Data

First Data Set

E8_01_01_IR_FLIR1404

Second Data Set

E8_02_01_IR_FLIR1482

Visual of Delamination

E8_01_01_RGB_FLIR1405

E8_02p_01_IR_FLIR1482

Appendix B-1

Deficiency 2

4EU, Flir E8, All Thermal Data

First Data Set

E8_01_02_IR_FLIR1410

Second Data Set

E8_02_02_IR_FLIR1492

Visual of Delamination

E8_01_02_RGB_FLIR1411

E8_02p_02_IR_FLIR1492

Appendix B-1

Deficiency 3

4EU, Flir E8, All Thermal Data

First Data Set

E8_01_03_IR_FLIR1416

Second Data Set

E8_02_03_IR_FLIR1486

Visual of Delamination

E8_01_03_RGB_FLIR1417

E8_02p_03_IR_FLIR1486

Appendix B-1

Deficiency 4

4EU, Flir E8, All Thermal Data

First Data Set

E8_01_04_IR_FLIR1422

Second Data Set

E8_02_04_IR_FLIR1504

Visual of Delamination

E8_01_04_RGB_FLIR1423

E8_02p_04_IR_FLIR1504

Appendix B-1

Deficiency 5

4EU, Flir E8, All Thermal Data

First Data Set

E8_01_05_IR_FLIR1430

Second Data Set

E8_02_05_IR_FLIR1494

Visual of Delamination

E8_01_05_RGB_FLIR1431

E8_02p_05_IR_FLIR1494

Appendix B-1

Deficiency 6

4EU, Flir E8, All Thermal Data

First Data Set

E8_01_06_IR_FLIR1432

Second Data Set

E8_02_06_IR_FLIR1496

Visual of Delamination

E8_01_06-RGB_FLIR1433

E8_02p_06_IR_FLIR1496

Appendix B-1

Deficiency 7

4EU, Flir E8, All Thermal Data

First Data Set

E8_01_07_FLIR1434

Second Data Set

E8_02_07_IR_FLIR1498

Visual of Delamination

E8_01_07_RGB_FLIR1435

E8_02p_07_IR_FLIR1498

Appendix B-1

Deficiency 8

4EU, Flir E8, All Thermal Data

First Data Set

E8_01_08_IR_FLIR1444

Second Data Set

E8_02_08_IR_FLIR1508

Visual of Delamination

E8_01_08_RGB_FLIR1445

E8_02p_08_IR_FLIR1508

Appendix B-1

4EU, Flir E8, All Thermal Data

Deficiency 9

E8_01_09_RGB_FLIR1447

Second Data Set – Post Processed

First Data Set

E8_01_09_IR_FLIR1446

Second Data Set

E8_02_09_IR_FLIR1520

Appendix B-1

Deficiency 10

4EU, Flir E8, All Thermal Data

First Data Set

E8_01_10_IR_FLIR1452

Second Data Set

E8_02_10_IR_FLIR1514

Visual of Delamination

E8_01_10_RGB_FLIR1453

E8_02p_10_IR_FLIR1514

Appendix B-1

Deficiency 11

4EU, Flir E8, All Thermal Data

First Data Set

E8_01_11_IR_FLIR1470

Second Data Set

E8_02_11_IR_FLIR1522

Visual of Delamination

E8_01_11_RGB_FLIR1471

E8_02p_11_IR_FLIR1522

Appendix B-1

4EU, Flir E8, All Thermal Data

Deficiency 12

First Data Set

E8_01_12_IR_FLIR1454

Second Data Set

E8_02_12_IR_FLIR1516

Visual of Delamination

E8_02p_12_IR_FLIR1516

Appendix B-1

4EU, Flir E8, All Thermal Data

Deficiency 13

E8_01_13_RGB_FLIR1463

Second Data Set – Post Processed

First Data Set

E8_01_13_IR_FLIR1462

Second Data Set

E8_02_13_IR_FLIR1538

Appendix B-1

Deficiency 14

4EU, Flir E8, All Thermal Data

First Data Set

E8_01_14_IR_FLIR1456

Second Data Set

E8_02_14_IR_FLIR1532

Visual of Delamination

E8_01_14_RGB_FLIR1457

E8_02p_14_IR_FLIR1532

Appendix B-1

Deficiency 15

4EU, Flir E8, All Thermal Data

First Data Set

E8_01_15_IR_FLIR1458

Second Data Set

E8_02_15_IR_FLIR1536

Visual of Delamination

E8_01_15_RGB_FLIR1459

E8_02p_15_IR_FLIR1536

Appendix B-1

Deficiency 16

4EU, Flir E8, All Thermal Data

First Data Set

E8_01_16_IR_FLIR1474

Second Data Set

E8_02_16_IR_FLIR1540

Visual of Delamination

E8_01_16_RGB_FLIR1475

E8_02p_16_IR_FLIR1540

Appendix B-2

Deficiency 1

4EU, Flir E96, All Thermal Data

First Data Set

E96_01_01_IR_FLIR1685

Second Data Set

E96_02_01_IR_FLIR1749

Visual of Delamination

E96_01_01_RGB_FLIR1686

E96_02p_01_IR_FLIR1749

Appendix B-2

4EU, Flir E96, All Thermal Data

Deficiency 2

First Data Set

E96_01_02_IR_FLIR1695

Second Data Set

E96_02_02_IR_FLIR1753

Visual of Delamination

E96_01_02_RGB_FLIR1696

E96_02p_02_IR_FLIR1753

Appendix B-2

4EU, Flir E96, All Thermal Data

Deficiency 3

First Data Set

E96_01_03_IR_FLIR1691

Second Data Set

E96_02_03_IR_FLIR1767

Visual of Delamination

E96_01_03_RGB_FLIR1692

E96_02p_03_IR_FLIR1767

Appendix B-2

4EU, Flir E96, All Thermal Data

Deficiency 4

E96_01_04_RGB_FLIR1714

Second Data Set – Post Processed

E96_02p_04_IR_FLIR1773

First Data Set

E96_01_04_IR_FLIR1713

Second Data Set

E96_02_04_IR_FLIR1773

Appendix B-2

Deficiency 5

4EU, Flir E96, All Thermal Data

First Data Set

Second Data Set

E96_02_05_IR_FLIR1755

Visual of Delamination

E96_02_05_RGB_FLIR1756

E96_02p_05_IR_FLIR1755

Appendix B-2

4EU, Flir E96, All Thermal Data

Deficiency 6

E96_01_06_RGB_FLIR1700

Second Data Set – Post Processed

E96_02p_06_IR_FLIR1759

First Data Set

E96_01_06_IR_FLIR1699

Second Data Set

E96_02_06_IR_FLIR1759
Appendix B-2

4EU, Flir E96, All Thermal Data

Deficiency 7

First Data Set

E96_01_07_IR_FLIR1701

Second Data Set

E96_02_07_IR_FLIR1783

Visual of Delamination

E96_01_07_RGB_FLIR1702

E96_02p_07_IR_FLIR1783

Appendix B-2

4EU, Flir E96, All Thermal Data

Deficiency 8

E96_01_08_IR_FLIR1717

Second Data Set

E96_02_08_IR_FLIR1789

E96_01_08_RGB_FLIR1718

E96_02p_08_IR_FLIR1789

Appendix B-2

4EU, Flir E96, All Thermal Data

Deficiency 9

E96_01_09_IR_FLIR1721

Second Data Set

E96_02_09_IR_FLIR1799

E96_01_09_RGB_FLIR1722

E96_02p_09_IR_FLIR1799

Appendix B-2

4EU, Flir E96, All Thermal Data

Deficiency 10

First Data Set

E96_01_10_IR_FLIR1725

Second Data Set

E96_02_10_IR_FLIR1803

Visual of Delamination

E96_01_10_RGB_FLIR1726

E96_02p_10_IR_FLIR1803

Deficiency 11

4EU, Flir E96, All Thermal Data

Second Data Set

E96_02_11_IR_FLIR1791

Visual of Delamination

E96_02_11_RGB_FLIR1792

E96_02p_11_IR_FLIR1791

Appendix B-2

4EU, Flir E96, All Thermal Data

Deficiency 12

First Data Set

E96_01_12_IR_FLIR1727

Second Data Set

E96_02_12_IR_FLIR1805

Visual of Delamination

E96_01_12_RGB_FLIR1728

E96_02p_12_IR_FLIR1805

Appendix B-2

Deficiency 13

4EU, Flir E96, All Thermal Data

First Data Set

E96_01_13_IR_FLIR1737

Second Data Set

E96_02_13_IR_FLIR1811

Visual of Delamination

E96_01_13_RGB_FLIR1738

E96_02p_13_IR_FLIR1811

Appendix B-2

4EU, Flir E96, All Thermal Data

Deficiency 14

E96_01_14_RGB_FLIR1732

Second Data Set – Post Processed

E96_02p_14_IR_FLIR1807

First Data Set

E96_01_14_IR_FLIR1731

Second Data Set

E96_02_14_IR_FLIR1807

Appendix B-2

Deficiency 15

4EU, Flir E96, All Thermal Data

Visual of Delamination

E96_01_15_RGB_FLIR1734

Second Data Set – Post Processed

E96_02p_15_IR_FLIR1809

First Data Set

E96_01_15_IR_FLIR1733

Second Data Set

E96_02_15_IR_FLIR1809

Appendix B-2

4EU, Flir E96, All Thermal Data

Deficiency 16

First Data Set

E96_01_16_IR_FLIR1745

Second Data Set

E96_02_16_IR_FLIR1815

Visual of Delamination

E96_01_16_RGB_FLIR1746

E96_02p_16_IR_FLIR1815

Bridge 07001

Washington Bridge (07001), Span 2, Traditional Inspection Findings											
Bay / Corbel / Beam	Element (Deck, Beam, Corbel, or Cant.)	Location	Deficiencies	Comment(s)	Use for Thermal Testing (Yes / No)	Deficiency # for Thermal Chart					
North Overhang	Deck	Over West Corbel	Active deck joint leakage	Leakage, not included as part of thermal testing	N	-					
A	Deck	West of West Corbel	1'-8"W x 8"L hollow area adjacent to repair		Y	1					
A	Corbel A	West Corbel, East Face	Upper section, north side - 1'W x 2'H hollow area	Not visible from ground due to bridge geometry	N	-					
A	Corbel A	West Corbel, East Face	Lower section, north side - 1'W x 1'-4"H hollow area		Y	2					
A	Beam A	West Corbel, North Face	Web at beam end - Up to 2'L x 1'-11"H hollow area with 8"L x 1'-2"H x 3"D spall with exposed rebar	Not visible from ground due to bridge geometry	N	-					
A	Deck	East of West Corbel	1'W x up to 8"L (5"L avg) minor hollow area with minor rust/leakage staining		Y	3					
A	Deck	West of Midspan	1'-2"W x 4"L avg hollow area with adjacent 10"W x up to 5"L x 1/2"D spall with rust staining		Y	4					
A	Deck	West of Midspan	Adjacent to beam B - 1'-2"W x 4"L hollow area		Y	5					
A	Deck	East of Midspan	4"L x 1'W hollow area with adjacent 1"L x 1'W spall	Red hatching for limits of delamination, yellow is incorrect	Y	6					
A	Beam A	North Face at East Corbel	Web at beam dapped end - 17"H x 16"W x 1"D spall with exposed rebar	Not visible from ground due to bridge geometry	N	-					
A	Beam A	North Face at East Corbel	Hidden by steel repair plate - Previously noted as web over bearing - full height x 7"L hollow area and a 1'L x 1'-2"H 'L-shaped' hollow area	Hidden	N	-					
A	Corbel A	East Corbel, West Face	Hidden by steel repair plate - Previously noted as lower section, north side - 27"H x 1'W x 2"D spall with exposed rebar	Hidden	N	-					
A	Corbel A	East Corbel, West Face	Hidden by steel repair plate - Previously noted as lower section, south side - Patched - 1'-2"H x 1'-2"W x 1-1/2"D spall with exposed anchor plate	Hldden	N	-					
A	Corbel A	East Corbel, Underside	North end - 8"L x 5"W hollow area with 10"L x 3"W spall		Y	7					
A	Corbel A	East Corbel, Underside	South end - 2'-8"L x 1'-2"W hollow area extending up to 1'-2"H onto south face		Y	8					
В	Corbel B	West Corbel, East Face	Lower section, north side - 1'-1"W x 10"H minor hollow area		Y	9					
С	Corbel C	West Corbel, East Face	Hidden by steel repair plate - Previously noted as 1'-8"W x 1'H x 1"D spall with exposed anchor plate	Hidden	N	-					
С	Beam C	North Face at East Corbel	Web at beam end - 8"W x 6"H x 1"D spall with exposed rebar	Spall, not included as part of thermal testing	N	-					
С	Corbel C	East Corbel, West Face	North side - 1'-2"W x 1'H spall	Spall, not included as part of thermal testing	N	-					
С	Corbel C	East Corbel, West Face	Lower section, south side - 1'-2"L x 1'-3"W spall on west with 1'H x 5"W hollow area on south		Ŷ	10					
С	Corbel C	East Corbel, South Face	South side - 16"L hairline vertical crack	Crack, not included as part of thermal testing	N	-					
С	Corbel C	East Corbel, Underside	South edge - 18"L x 1'-2"W hollow area and 5"L x 10"W hollow area		Y	11					
D	Deck	West of West Corbel	2-8"W x up to 8"L hollow area adjacent to previous repair		Y	12					

Washington Bridge (07001), Span 2, Traditional Inspection Findings										
Bay / Corbel / Beam	Element (Deck, Beam, Corbel, or Cant.)	Location	Deficiencies	Comment(s)	Use for Thermal Testing (Yes / No)	Deficiency # for Thermal Chart				
D	Corbel D	West Corbel, East Face	Behind drop-in beam, north side - 1'W x 8"H x 5"D spall that extends up to the bearing pad edge	Not visible from ground due to bridge geometry	Ν	-				
D	Deck	West of East Corbel	1'-10"W x 7"L hollow patch		Y	13				
D	Corbel D	East Corbel, West Face	North side - 32"W x up to 1'H spall that extends 2" onto the north face	Spall, not included as part of thermal testing	N	-				
D	Corbel D	East Corbel, West Face	Upper section, north side - 2'W x 2'H spall/hollow area with 1/8"W boundary cracks, efflorescence, and rust staining	Not visible from ground due to bridge geometry	Ν	-				
E	Corbel E	West Corbel, East Face	Top of lower section, south side - $1'-3"W \times 8"H \times 1"D$ spall in front of bearing with an adjacent 2'-6"H x 1'W hollow area on south lower face	Partially hidden by beam	Y	14				
E	Corbel E	West Corbel, Underside	Upper section, south side - 1'-8"W x 24"H hollow area.	Not visible due to geometry	N	-				
Ш	Beam E	West Quarter Point	6"L x 3"H x 1/2"D spall	Spall, not included as part of thermal testing	Ν	-				
E	Deck	East Quarter Point	Patch with 1" diameter hollow area		Y	15				
E	Deck	East of Midspan	1'-8"L x 1'-1"W hollow area		Y	16				
Ш	Corbel E	East Corbel, West Face	North side, behind diaphragm - 1'W x 8"H hollow area	Not visible from ground due to bridge geometry	Ν	-				
E	Corbel E	East Corbel, West Face	South side, behind diaphragm - 1'W x 8"H hollow area	Not visible from ground due to bridge geometry	Ν	-				
Ш	Corbel E	East Corbel, West Face	North end - 1'W x 1'H hollow area		Y	17				
E	Corbel E	East Corbel, West Face	South end - 1'W x 1'H spall	Spall, not included as part of thermal testing	Ν	-				
E	Deck	East of East Corbel	1'L x 1'-7"W hollow area with rust staining along cantilever F		Y	18				
E	Deck	East of East Corbel	3'-11"W x up to 1'-8"L hollow area with rust staining		Y	19				
F	Corbel F	West Corbel, East Face	Upper section, south side - 1'-4"W x 1'H x 1"D spall with exposed anchor plate at the south end	Spall, not included as part of thermal testing	N	-				
F	Corbel F	West Corbel, East Face	Lower section, south side - 4"W x 1'H hollow area		Y	20				
F	Corbel F	West Corbel, South Face	3'-4"L x 1/16"W diagonal crack with efflorescence	Crack, not included as part of thermal testing	Ν	-				
F	Corbel F	West Corbel, Underside	1-1"L x 1'-2"W hollow area with adjacent spalling 1'L x 10"W x up to 2"D		Y	21				
F	Beam F	South Face at West Corbel	Web at beam end - 3"W x 10"H hollow area with 1/2"D spalling that extends full width across the back face	Not visible from ground due to bridge geometry	N	-				
F	Beam F	South Face at West Corbel	Web at dapped end, behind bearing - 3"W x 5"H x 1/2"D spall at top	Spall, not included as part of thermal testing	Ν	-				
F	Beam F	South Face at East Corbel	Web over bearing - 2'L x 1'-2"H hollow area at top; 27"L x up to 2'H x 2"D spall with three (3) exposed stirrups and the bearing area reduced by 1"W x 1'L at bottom. 9"L x full height x 5"D spall with one (1) exposed stirrup at beam end beyond bearing.	Spall, not included as part of thermal testing	N	-				
F	Corbel F	East Corbel, West Face	Lower section, north side & south side - 1'-2"W x 13"H x 1.5"D spall with exposed anchor plate.	Spall, not included as part of thermal testing	N	-				
F	Cantilever F	East Cantilever Underside, near Pier	Patched with up to 1'-2"W x 1'-6"L hollow area extending 1 1/2" onto north face with separation crack		Y	22				

Deficiency 1

Visual of Delamination

07001, Flir E96, All Thermal Data

07001_E96_01_01_RGB_FLIR0203

First Data Set

07001 E96 01 01 IR FLIR0202

Second Data Set – Post Processed 1

07001_E96_02_01_IRp1_FLIR0256

07001_Def_01_DSCF0597

Second Data Set

07001_E96_02_01_IR_FLIR0256

Second Data Set – Post Processed 2

07001_E96_02_01_IRp2_FLIR0256

Visual Close-up

Appendix C-2

07001, Flir E96, All Thermal Data

Visual of Delamination

07001_E96_01_02_RGB_FLIR0227 First Data Set

07001_E96_01_02_IR_FLIR0226

Second Data Set – Post Processed 1

07001_E96_02_02_IRp1_FLIR0280

07001_Def_02_DSCF0603 Second Data Set

07001_E96_02_02_IR_FLIR0280

Second Data Set – Post Processed 2

07001_E96_02_02_IRp2_FLIR0280

Visual Close-up

Deficiency 3

07001, Flir E96, All Thermal Data

Visual of Delamination

07001_E96_01_03_RGB_FLIR0205

First Data Set

Visual Close-up

07001_Def_03_DSCF0599 Second Data Set

07001_E96_01_03_IR_FLIR0204

Second Data Set – Post Processed 1

07001_E96_02_03_IRp1_FLIR0258

07001_E96_02_03_IR_FLIR0258 Second Data Set – Post Processed 2

07001, Flir E96, All Thermal Data

Visual of Delamination

07001_E96_01_04_RGB_FLIR0207 First Data Set

07001_E96_01_04_IR_FLIR0206

Second Data Set – Post Processed 1

07001_E96_02_04_IRp1_FLIR0260

07001_Def_04_DSCF0600 Second Data Set

07001_E96_02_04_IR_FLIR0260

Second Data Set – Post Processed 2

07001_E96_02_04_IRp2_FLIR0260

Visual Close-up

Appendix C-2

Deficiency 5

07001, Flir E96, All Thermal Data

Visual of Delamination

07001_E96_01_05_RGB_FLIR0209 First Data Set

07001_Def_05_DSCF0601 Second Data Set

07001_E96_01_05_IR_FLIR0208

Second Data Set – Post Processed 1

07001_E96_02_05_IRp1_FLIR0262

07001_E96_02_05_IR_FLIR0262

Second Data Set – Post Processed 2

07001_E96_02_05_IRp2_FLIR0262

Appendix C-2

Deficiency 6

07001, Flir E96, All Thermal Data

Visual of Delamination

07001_E96_01_06_RGB_FLIR0211 First Data Set

07001_E96_01_06_IR_FLIR0210

Second Data Set – Post Processed 1

07001_E96_02_06_IRp1_FLIR0264

Visual Close-up

07001_Def_06_DSCF0652 Second Data Set

07001_E96_02_06_IR_FLIR0264

Second Data Set – Post Processed 2

07001_E96_02_06_IRp2_FLIR0264

Appendix C-2

Deficiencies 7,8

07001, Flir E96, All Thermal Data

Visual of Delamination

07001_E96_01_07,08_RGB_FLIR0239 First Data Set

07001_Def_07,08_FLIR0291 Second Data Set

07001_E96_01_07,08_IR_FLIR0238

Second Data Set – Post Processed 1

07001_E96_02_07,08_IRp1_FLIR0290

07001_E96_02_07,08_IR_FLIR0290

Second Data Set – Post Processed 2

07001_E96_02_07,08_IRp2_FLIR0290

Appendix C-2

Deficiency 9

07001, Flir E96, All Thermal Data

Visual of Delamination

07001_E96_01_09_RGB_FLIR0229 First Data Set

Visual Close-up

07001_Def_09_DSCF0602 Second Data Set

07001_E96_01_09_IR_FLIR0228

Second Data Set – Post Processed 1

07001_E96_02_09_IRp1_FLIR0282

07001_E96_02_09_IR_FLIR0282

Second Data Set – Post Processed 2

07001_E96_02_09_IRp2_FLIR0282

Appendix C-2

Deficiency 10

07001, Flir E96, All Thermal Data

Visual of Delamination

07001_E96_01_10_RGB_FLIR0245

First Data Set

07001_Def_10_DSCF0641

Second Data Set

07001_E96_01_10_IR_FLIR0244

Second Data Set – Post Processed 1

07001_E96_02_10_IRp1_FLIR0294

07001_E96_02_10_IR_FLIR0294

Second Data Set – Post Processed 2

07001_E96_02_10_IRp2_FLIR0294

07001, Flir E96, All Thermal Data

Visual of Delamination

07001_E96_01_11_RGB_FLIR0243

First Data Set

07001_E96_01_11_IR_FLIR0242

Second Data Set – Post Processed 1

07001_E96_02_11_IRp1_FLIR0292

Deficiency 11

Visual Close-up

07001_Def_11_DSCF0643

Second Data Set

07001_E96_02_11_IR_FLIR0292

Second Data Set – Post Processed 2

07001_E96_02_11_IRp2_FLIR0292

07001, Flir E96, All Thermal Data

Visual of Delamination

07001_E96_01_12_RGB_FLIR0215 First Data Set

07001_E96_01_12_IR_FLIR0214

Second Data Set – Post Processed 1

07001_E96_02_12_IRp1_FLIR0268

07001_Def_12_DSCF0608

Second Data Set

07001_E96_02_12_IR_FLIR0268

Second Data Set – Post Processed 2

07001_E96_02_12_IRp2_FLIR0268

Deficiency 12

Visual Close-up

07001, Flir E96, All Thermal Data

Visual of Delamination

07001_E96_01_13_RGB_FLIR0213

First Data Set

07001_E96_01_13_IR_FLIR0212

Second Data Set – Post Processed 1

07001_E96_02_13_IRp1_FLIR0266

07001_Def_13_DSCF0626

Second Data Set

07001_E96_02_13_IR_FLIR0266

Second Data Set – Post Processed 2

07001_E96_02_13_IRp2_FLIR0266

Visual Close-up

Deficiency 14

07001, Flir E96, All Thermal Data

Visual of Delamination

07001_E96_01_14_RGB_FLIR0235

Visual Close-up

07001_Def_14_DSCF0611

Second Data Set

07001_E96_01_14_IR_FLIR0234

Second Data Set – Post Processed 1

07001_E96_02_14_IRp1_FLIR0284

07001_E96_02_14_IR_FLIR0284

07001_E96_02_14_IRp2_FLIR0284

Appendix C-2

07001, Flir E96, All Thermal Data

Visual of Delamination

07001_E96_01_15_RGB_FLIR0221

First Data Set

07001_E96_01_15_IR_FLIR0220

Second Data Set – Post Processed 1

07001_E96_02_15_IRp1_FLIR0274

07001_Def_15_DSCF0651

Second Data Set

07001_E96_02_15_IR_FLIR0274

Second Data Set – Post Processed 2

07001_E96_02_15_IRp2_FLIR0274

Visual Close-up

Deficiency 16

07001, Flir E96, All Thermal Data

Visual of Delamination

07001_E96_01_16_RGB_FLIR0219 First Data Set

07001_E96_01_16_IR_FLIR0218

Second Data Set – Post Processed 1

07001_E96_02_16_IRp1_FLIR0272

Visual Close-up

07001_Def_16_DSCF0649

Second Data Set

07001_E96_02_16_IR_FLIR0272

Second Data Set – Post Processed 2

07001_E96_02_16_IRp2_FLIR0272

07001, Flir E96, All Thermal Data

Deficiency 17 Visual Close-up

07001_E96_01_17_RGB_FLIR0247

First Data Set

07001_Def_17_DSCF0636

07001_E96_01_17_IR_FLIR0246

Second Data Set – Post Processed 1

07001_E96_02_17_IRp1_FLIR0296

07001_E96_02_17_IR_FLIR0296

Second Data Set – Post Processed 2

07001_E96_02_17_IRp2_FLIR0296

07001, Flir E96, All Thermal Data

Visual of Delamination

07001_E96_01_18_RGB_FLIR0225

First Data Set

07001_Def_18_DSCF0632

Second Data Set

07001_E96_01_18_IR_FLIR0224

Second Data Set – Post Processed 1

07001_E96_02_18_IRp1_FLIR0278

07001_E96_02_18_IR_FLIR0278

Second Data Set – Post Processed 2

07001_E96_02_18_IRp2_FLIR0278

07001, Flir E96, All Thermal Data

Visual of Delamination

07001_E96_01_19_RGB_FLIR0223

First Data Set

Visual Close-up

07001_Def_19_DSCF0633

Second Data Set

07001_E96_01_19_IR_FLIR0222

Second Data Set – Post Processed 1

07001_E96_02_19_IRp1_FLIR0276

07001_E96_02_19_IR_FLIR0276

Second Data Set – Post Processed 2

07001_E96_02_19_IRp2_FLIR0276

07001, Flir E96, All Thermal Data

Visual of Delamination

07001_E96_01_20_RGB_FLIR0233

07001_Def_20_DSCF0618

Second Data Set

07001_E96_01_20_IR_FLIR0232

Second Data Set – Post Processed 1

07001_E96_02_20_IRp1_FLIR0288

07001_E96_02_20_IR_FLIR0288

Deficiency 21

07001, Flir E96, All Thermal Data

Visual of Delamination

07001_E96_01_21_RGB_FLIR0237 First Data Set

07001_E96_01_21_IR_FLIR0236

Second Data Set – Post Processed 1

07001_E96_02_21_IRp1_FLIR0286

Visual Close-up

07001_Def_21_DSCF0615

Second Data Set

07001_E96_02_21_IR_FLIR0286

07001 E96 02 21 IRp2 FLIR0286

Appendix C-2

Deficiency 22

07001, Flir E96, All Thermal Data

Visual of Delamination

07001_E96_01_22_RGB_FLIR0251 First Data Set

07001_E96_01_22_IR_FLIR0250

Second Data Set – Post Processed 1

07001_E96_02_22_IRp1_FLIR0300

07001_Def_22_DSCF0630

Second Data Set

07001_E96_02_22_IR_FLIR0300

Appendix D

Bridge S-24-083 (BIN 114)

Patch

1. Detailed deficiency descriptions and measurements are included on the following sketch.
Appendix D-1-1

SPAN_K4 TRADITIONAL INSPECTION FINDINGS

DEFICIENCIES

- 1. 66" wide x 9" long hollow sounding area (HSA)
- 2. 9" wide x 13" long HSA
- 3. 26" wide x 30" long spall
- 4. 12" wide x 12" long HSA
- 5. 14" wide x 10" long HSA
- 6. 45" wide x 9" long HSA
- 7. 24" wide x 4" long HSA with adjacent $2\frac{1}{2}$ " wide x 16" long spall
- 8. 50" wide x 21" long (18" long average) minor HSA
- 9. $9\frac{1}{2}$ wide x 10" long minor HSA
- 10. $6\overline{1}$ " wide x up to $2\overline{3}$ " long spall
- 11. 33" wide x 14" long HSA
- 12. 60" wide x up to 34" long HSA
- 13. 41" wide x 22" long spall
- 14. 6" wide x 4" high HSA in haunch
- 15. 30" wide x up to 27" long HSA
- 16. 6" wide x 10" long minor HSA
- 17. 13" wide x 14" long HSA

- 18. $1\frac{1}{2}$ wide x 14 long spall
- 19. Up to 3" wide x 20" long spall
- 20. 38" wide x 46" long HSA
- 21. 21" wide x 12" long spall
- 22. 18" wide x 9" long spall
- 23. 7" wide x 14" long HSA
- 24. 30" wide x 10" long spall with two adjacent HSA measuring 14" wide x 3" long and 20" wide x up to 5" long
- 25. 6" wide x 17" long HSA
- 26. 16" wide x 11" long HSA
- 27. 28" wide x up to 31" long HSA
- 28. 25" wide x 13" long HSA
- 29. 5" wide x 6" long HSA

<u>NOTES</u>

- 1. AREAS INDICATED ON THIS SKETCH ARE TEMPERATURE DIFFERENTIALS BELIEVED TO BE DELAMINATIONS ALONG THE UNDERSIDE OF BRIDGE DECK. LOCATIONS, SIZES, AND SHAPES ARE APPROXIMATED BASED ON THE THERMAL IMAGERY.
- 2. TEMPERATURE DIFFERENTIALS WERE CROSS CHECKED WITH VISUAL IMAGERY TO REMOVE FALSE-POSITIVES DURING DATA COLLECTION.

Appendix D-1-3

114, Span K4, Thermal Data

Thermal Deficiency 1

Thermal

114_Sp4_Def01_IR_DJI_0682_R

Visual Image

114_Sp4_Def01_RGB_DJI_0683

114_Sp4_Def01_IR_pDJI_0682_R

Appendix D-1-3

114, Span K4, Thermal Data

Thermal Deficiencies 2,3

Thermal

114_Sp4_Def02,03_IR_DJI_0684_R

Visual Image

114_Sp4_Def02,03_RGB_DJI_0685

114_Sp4_Def02,03_IRp_DJI_0684_R

114, Span K4, Thermal Data

Thermal

114_Sp4_Def04,05,06_IR_DJI_0696_R

Visual Image

114_Sp4_Def04,05,06_RGB_DJI_0697

Thermal Deficiencies 4, 5, 6 Thermal – Post Processed

114_Sp4_Def04,05,06_IRp_DJI_0696_R

Appendix D-1-3

Thermal Deficiency 7

114, Span K4, Thermal Data

Thermal

114_Sp4_Def07_IRDJI_0674_R

Visual Image

114_Sp4_Def07_RGB_DJI_0675

Thermal – Post Processed

114_Sp4_Def07_IRp_DJI_0674_R

Appendix D-1-3

114, Span K4, Thermal Data

Thermal

114_Sp4_Def08,09_IR_DJI_0682_R

Visual Image

114_Sp4_Def08,09_RGB_DJI_0683

Thermal Deficiencies 8, 9

114_Sp4_Def08,09_IRp_DJI_0682_R

Appendix D-1-3

Thermal Deficiency 10

114, Span K4, Thermal Data

Thermal

114_Sp4_Def10_IR_DJI_0686_R

Visual Image

114_Sp4_Def10_RGB_DJI_0687

Thermal – Post Processed

114_Sp4_Def10_IRpDJI_0686_R

114, Span K4, Thermal Data

Thermal

114_Sp4_Def11,12,13_IR_DJI_0696_R

Visual Image

114_Sp4_Def11,12,13_RGB_DJI_0697

Thermal Deficiencies 11, 12, 13

Thermal – Post Processed

114_Sp4_Def11,12,13_IRp_DJI_0696_R

Appendix D-1-3

Thermal Deficiency 14

114, Span K4, Thermal Data

Thermal

114_Sp4_Def14_IR_DJI_0700_R

Visual Image

114_Sp4_Def14_RGB_DJI_0701

Thermal – Post Processed

114_Sp4_Def14_IRp_DJI_0700_R

Appendix D-1-3

Thermal Deficiency 15

114, Span K4, Thermal Data

Thermal

114_Sp4_Def15_IR_DJI_0676_R

Visual Image

114_Sp4_Def15_RGB_DJI_0677

Thermal – Post Processed

114_Sp4_Def15_IRp_DJI_0676_R

114, Span K4, Thermal Data

Thermal

114_Sp4_Def16,17_IR_DJI_0680_R

Visual Image

114_Sp4_Def16,17_RGB_DJI_0681

Thermal Deficiencies 16, 17

Thermal – Post Processed

114_Sp4_Def16,17_IRp_DJI_0680_R

114, Span K4, Thermal Data

Thermal

114_Sp4_Def18,19_IR_DJI_0694_R

Visual Image

114_Sp4_Def18,19_RGB_DJI_0695

Thermal Deficiencies 18, 19

Thermal – Post Processed

114_Sp4_Def18,19_IRp_DJI_0694_R

Appendix D-1-3

Thermal Deficiency 20

114, Span K4, Thermal Data

Thermal

114_Sp4_Def20_IR_DJI_0702_R

Visual Image

114_Sp4_Def20_RGB_DJI_0703

Thermal – Post Processed

114_Sp4_Def20_IRp_DJI_0702_R

Appendix D-1-3

Thermal Deficiency 21

114, Span K4, Thermal Data

Thermal

114_Sp4_Def21_IR_DJI_0678_R

Visual Image

114_Sp4_Def21_RGB_DJI_0679

Thermal – Post Processed

114_Sp4_Def21_IRp_DJI_0678_R

114, Span K4, Thermal Data

Thermal

114_Sp4_Def22,23_IR_DJI_0688_R

Visual Image

114_Sp4_Def22,23_RGB_DJI_0689

Thermal Deficiencies 22, 23

Thermal – Post Processed

114_Sp4_Def22,23_IRp_DJI_0688_R

Appendix D-1-3

Thermal Deficiency 24

114, Span K4, Thermal Data

114_Sp4_Def24_IR_DJI_0692_R

Visual Image

114_Sp4_Def24_RGB_DJI_0693

Thermal – Post Processed

114_Sp4_Def24_IRp_DJI_0692_R

Appendix D-1-3

Thermal Deficiency 25

114, Span K4, Thermal Data

Thermal

114_Sp4_Def25_IR_DJI_0704_R

Visual Image

114_Sp4_Def25_RGB_DJI_0705

Thermal – Post Processed

114_Sp4_Def25_IRp_DJI_0704_R

SPAN K5 TRADITIONAL INSPECTION FINDINGS PROJECTED VIEW

<u>NOTE:</u> 1. Detailed deficiency descriptions and measurements are included on the following sketch.

<u>SPAN K5</u> <u>TRADITIONAL INSPECTION FINDINGS</u> <u>PROJECTED VIEW</u>

DEFICIENCIES

- 1. 28" wide x up to 7" long hollow sounding area (HSA)
- 2. 7" wide x 26" long spall
- 3. 20" wide x 30" long HSA
- 4. 20" wide x 12" long HSA
- 5. 5" wide x 2" long HSA
- 6. 8" wide x 18" long HSA
- 7. 12" wide x 9" long HSA
- 8. 26" wide x 12" long spall
- 9. 14" wide x 4" long HSA
- 10. 34" wide x 8" long HSA extending into shielded area
- 11. Shielded area (area not inspected)
- 12. 32" wide x up to 28" long HSA
- 13. 20" wide x 11" long spall
- 14. 22" wide x 22" long spall
- 15. 6" wide x 15" long HSA
- 16. 8" wide x 5" long HSA
- 17. Up to 22" wide x 24" long spall
- 18. Up to 9" wide x 19" long HSA
- 19. 6" wide x 12" long HSA (overpour)

20. 12" wide x 14" long HSA 21. 26" wide x 18" long spall 22. 38" wide x 42" long spall 23. 25" wide x up to 30" long HSA 24. 15" wide x 10" long HSA 25. 32" wide x 32" long spall 26. 6" wide x 8" long HSA 27. 40" wide x 23" long HSA 28. 34" wide x 14" long spall 29. 38" wide x 18" long spall with adjacent 17" long x 36" wide HSA 30. 26" wide x 15" long HSA 31. 22" wide x up to 20" long HSA 32. 15" wide x 12" long spall 33. 27" wide x up to 26" long HSA 34. 5" wide x 5" long HSA

¢ PIER K4

Appendix D-2-2 ♀ PIER K5

<u>MATRICE 210 WITH XT2 SENSOR</u> PROJECTED VIEW

<u>NOTES</u>

- 1. AREAS INDICATED ON THIS SKETCH ARE TEMPERATURE DIFFERENTIALS BELIEVED TO BE DELAMINATIONS ALONG THE UNDERSIDE OF BRIDGE DECK. LOCATIONS, SIZES, AND SHAPES ARE APPROXIMATED BASED ON THE THERMAL IMAGERY.
- 2. TEMPERATURE DIFFERENTIALS WERE CROSS CHECKED WITH VISUAL IMAGERY TO REMOVE FALSE-POSITIVES DURING DATA COLLECTION.

Appendix D-2-3

114, Span K5, Thermal Data

Thermal Deficiency 1

Thermal

114_Sp5_Def01_IR_DJI_0185_R

Visual Image

114_Sp5_Def01_RGB_DJI_0186

114_Sp5_Def01_IRp_DJI_0185_R

Appendix D-2-3

Thermal Deficiency 2

114, Span K5, Thermal Data

Thermal

114_Sp5_Def02_IR_DJI_0187_R

Visual Image

114_Sp5_Def02_RGB_DJI_0188

Thermal – Post Processed

114_Sp5_Def02_IRp_DJI_0187_R

Appendix D-2-3

Thermal Deficiency 3

114, Span K5, Thermal Data

Thermal

114_Sp5_Def03_IR_DJI_0183_R

Visual Image

114_Sp5_Def03_RGB_DJI_0184

Thermal – Post Processed

114_Sp5_Def03_IRp_DJI_0183_R

Appendix D-2-3

Thermal Deficiency 4

114, Span K5, Thermal Data

Thermal

114_Sp5_Def04_IR_DJI_0171_R

Visual Image

114_Sp5_Def04_RGB_DJI_0172

Thermal – Post Processed

114_Sp5_Def04_IRp_DJI_0171_R

Appendix D-2-3

114, Span K5, Thermal Data

Thermal Deficiency 5

Thermal

114_Sp5_Def05_IR_DJI_0157_R

Visual Image

114_Sp5_Def05_RGB_DJI_0158

Thermal – Post Processed

114_Sp5_Def05_IRp_DJI_0157_R

Appendix D-2-3

114, Span K5, Thermal Data

Thermal Deficiency 6

Thermal

114_Sp5_Def06_IR_DJI_0155_R

Visual Image

114_Sp5_Def06_RGB_DJI_0156

Thermal – Post Processed

114_Sp5_Def06_IRp_DJI_0155_R

Appendix D-2-3

Thermal Deficiency 7

114, Span K5, Thermal Data

Thermal

114_Sp5_Def07_IR_DJI_0189_R

Visual Image

114_Sp5_Def07_RGB_DJI_0190

Thermal – Post Processed

114_Sp5_Def07_IRp_DJI_0189_R

Appendix D-2-3

Thermal Deficiencies 8,9

114, Span K5, Thermal Data

Thermal

114_Sp5_Def08,09_IR_DJI_0181_R

Visual Image

114_Sp5_Def08,09_RGB_DJI_0182

Thermal – Post Processed

114_Sp5_Def08,09_IRp_DJI_0181_R

Appendix D-2-3

Thermal Deficiency 10

114, Span K5, Thermal Data

Thermal

114_Sp5_Def10_IR_DJI_0173_R

Visual Image

114_Sp5_Def10_RGB_DJI_0174

Thermal – Post Processed

114_Sp5_Def10_IRp_DJI_0173_R

114, Span K5, Thermal Data

Thermal

114_Sp5_Def11,12,13_IR_DJI_0169_R

Visual Image

114_Sp5_Def11,12,13_RGB_DJI_0170

Thermal Deficiencies 11, 12, 13

Thermal – Post Processed

114_Sp5_Def11,12,13_IRp_DJI_0169_R

Appendix D-2-3

Thermal Deficiency 14

114, Span K5, Thermal Data

Thermal

114_Sp5_Def14_IR_DJI_0159_R

Visual Image

114_Sp5_Def14_RGB_DJI_0160

Thermal – Post Processed

114_Sp5_Def14_IRp_DJI_0159_R

Appendix D-2-3

Thermal Deficiency 15

114, Span K5, Thermal Data

Thermal

114_Sp5_Def15_IR_DJI_0179_R

Visual Image

114_Sp5_Def15_RGB_DJI_0180

Thermal – Post Processed

114_Sp5_Def15_IRp_DJI_0179_R

Appendix D-2-3

Thermal Deficiency 16

114, Span K5, Thermal Data

Thermal

114_Sp5_Def16_IR_DJI_0175_R

Visual Image

114_Sp5_Def16_RGB_DJI_0176

Thermal – Post Processed

114_Sp5_Def16_IRp_DJI_0175_R

Appendix D-2-3

Thermal Deficiency 17

114, Span K5, Thermal Data

Thermal

114_Sp5_Def17_IR_DJI_0177_R

Visual Image

114_Sp5_Def17_RGB_DJI_0178

Thermal – Post Processed

114_Sp5_Def17_IRp_DJI_0177_R

114, Span K5, Thermal Data

Thermal

114_Sp5_Def18,19_IR_DJI_0167_R

Visual Image

114_Sp5_Def18,19_RGB_DJI_0168

Thermal Deficiencies 18, 19

Thermal – Post Processed

114_Sp5_Def18,19_IRp_DJI_0167_R
114, Span K5, Thermal Data

Thermal

114_Sp5_Def20,21,22_IR_DJI_0161_R

Visual Image

114_Sp5_Def20,21,22_RGB_DJI_0162

Thermal Deficiencies 20, 21, 22

Thermal – Post Processed

114_Sp5_Def20,21,22_IRp_DJI_0161_R

Appendix D-2-3

Thermal Deficiency 23

114, Span K5, Thermal Data

Thermal

114_Sp5_Def23_IR_DJI_0163_R

Visual Image

114_Sp5_Def23_RGB_DJI_0164

Thermal – Post Processed

114_Sp5_Def23_IRp_DJI_0163_R

Appendix D-2-3

Thermal Deficiency 16

114, Span K5, Thermal Data

Thermal

114_Sp5_Def24_IR_DJI_0165_R

Visual Image

114_Sp5_Def24_RGB_DJI_0166

Thermal – Post Processed

114_Sp5_Def24_IRp_DJI_0165_R

- 7. 36" wide x 48" high patch (mostly sound) containing 22" wide x 13" high hollow sounding area at bottom corner
- 8. 22" wide x up to 5" high hollow sounding area

Spall

Appendix D-3-1

- hollow sounding area
- 14. Up to 23" wide x 45" high hollow sounding area
- 15. 13" wide x up to $11\frac{1}{2}$ " high hollow sounding area 16. Up to 27" wide x 23" high hollow sounding area

NOTES

- AREAS INDICATED ON THIS SKETCH ARE TEMPERATURE DIFFERENTIALS BELIEVED TO BE DELAMINATIONS ALONG THE UNDERSIDE OF BRIDGE DECK. LOCATIONS, SIZES, AND SHAPES ARE APPROXIMATED BASED ON THE THERMAL IMAGERY.
 TEMPERATURE DIFFERENTIALS WERE CROSS CHECKED WITH VISUAL IMAGERY TO REMOVE FALSE-POSITIVES DURING DATA COLLECTION.

114, Pier K3 South Column, Thermal Data

114_K3S_Def01,02,03,04_IR_DJI_0736_R

Visual Image

114_K3S_Def01,02,03,04_RGB_DJI_0737

Thermal Deficiencies 1, 2, 3, 4

Thermal – Post Processed

114_K3S_Def01,02,03,04_IRp_DJI_0736_R

Appendix D-3-3

Thermal Deficiencies 5, 6

114, Pier K3 South Column, Thermal Data

114_K3S_Def05,06_IR_DJI_0730_R

Visual Image

114_K3S_Def05,06_RGB_DJI_0731

Thermal – Post Processed

114_K3S_Def05,06_IRp_DJI_0730_R

Thermal Deficiencies 7,8

114, Pier K3 South Column, Thermal Data

Thermal

114_K3S_Def07,08_IR_DJI_0732_R

Visual Image

114_K3S_Def07,08_RGB_DJI_0733

Thermal – Post Processed

114_K3S_Def07,08_IRp_DJI_0732_R

Thermal Deficiency 9

114, Pier K3 South Column, Thermal Data

Thermal

114_K3S_Def09_IR_DJI_0734_R

Visual Image

114_K3S_Def09_RGB_DJI_0735

Thermal – Post Processed

114_K3S_Def09_IRp_DJI_0734_R

Thermal Deficiency 10

114, Pier K3 South Column, Thermal Data

114_K3S_Def10_IR_DJI_0722_R

Visual Image

114_K3S_Def10_RGB_DJI_0723

Thermal – Post Processed

114_K3S_Def10_IRp_DJI_0722_R

114, Pier K3 South Column, Thermal Data

Thermal

114_K3S_Def11,12,13_IR_DJI_0724_R

Visual Image

114_K3S_Def11,12,13_RGB_DJI_0725

Thermal Deficiencies 11, 12, 13

Thermal – Post Processed

114_K3S_Def11,12,13_IRp_DJI_0724_R

Thermal Deficiency 14

114, Pier K3 South Column, Thermal Data

114_K3S_Def14_IR_DJI_0726_R

Visual Image

114_K3S_Def14_RGB_DJI_0727

Thermal – Post Processed

114_K3S_Def14_IRp_DJI_0726_R

Thermal Deficiency 15

114, Pier K3 South Column, Thermal Data

Thermal

114_K3S_Def15_IR_DJI_0728_R

Visual Image

114_K3S_Def15_RGB_DJI_0729

Thermal – Post Processed

114_K3S_Def15_IRp_DJI_0728_R

Appendix E

B-16-369 (BIN 4RT)

NOTE:

1. Detailed deficiency descriptions and measurements are included on the following sketch.

BIN 4RT, SPAN 6 TRADITIONAL INSPECTION FINDINGS

DEFICIENCIES

- 13" long x full width x 3" deep spall with rebar and full width x 4" long hollow sounding area (HSA).
- 2. 29" long x 19" wide HSA
- 3. 1" wide x 4" long x 1" deep spall.
- 4. 13" long x 4" wide x 2" deep spall.
- 5. 15" long x 7" wide HSA.
- 6. 10" long x 8" wide HSA.
- 7. 17" long x 11" wide HSA, 12" long x 5" wide HSA, 29" long x 25" wide HSA.
- 8. 8" long x full depth x full width spall.
- 9. 19" long x 7" wide HSA.
- 10. Formwork left in place.

- 11. 4" x 4" HSA.
- 12. Up to 36" long x 19" wide HSA, 10" long x 7" wide HSA, 38" long x up to 20" wide HSA.
- 13. 24" long x full width x 1" deep spall with two HSA's measuring 9" long x full width and 38" long x full width
- 14. 16" long x 16" wide HSA.
- 15. 30" long x 20" wide HSA.
- 16. 16" wide x 5" long HSA with a 16" wide x 5" long spall.
- 17. 17" long x 20" wide HSA.

BIN 4RT, SPAN 6, FIRST DATA SET

MATRICE 210 WITH ZENMUSE XT2 (10/19/21) LOCATING DEFICIENCIES WITH NO PREVIOUS INFORMATION PROJECTED VIEW

NOTES:

- 1. AREAS INDICATED ON THIS SKETCH ARE TEMPERATURE DIFFERENTIALS BELIEVED TO BE DELAMINATIONS ALONG THE UNDERSIDE OF THE BRIDGE DECK. LOCATIONS, SIZES, AND SHAPES ARE APPROXIMATED BASED ON THE THERMAL IMAGERY.
- 2. TEMPERATURE DIFFERENTIALS WERE CROSS CHECKED WITH VISUAL IMAGERY TO REMOVE FALSE POSITIVES DURING DATA COLLECTION.

4RT, UAV-IR Survey, First Data Set (10/19/21)

4RT_XT2_Sp6_01_01_IR_DJI_0222_R

4RT_XT2_Sp6_01_01_IRp_DJI_0222_R

Thermal Deficiencies 1, 2

Visual Image

4RT_XT2_Sp6_01_01_RGB_DJI_0223

4RT_XT2_Sp6_01_02_IR_DJI_0220_R

4RT_XT2_Sp6_01_02_IRp_DJI_0220_R

4RT_XT2_Sp6_01_02_RGB_DJI_0221

4RT, UAV-IR Survey, First Data Set (10/19/21)

4RT_XT2_Sp6_01_03_IR_DJI_0224_R

Post Processed

4RT_XT2_Sp6_01_03_IRp_DJI_0224_R

Visual Image

4RT_XT2_Sp6_01_03_RGB_DJI_0225

4RT_XT2_Sp6_01_04_IR_DJI_0226_R

4RT_XT2_Sp6_01_04_IRp_DJI_0226_R

4RT_XT2_Sp6_01_04_RGB_DJI_0227

4RT, UAV-IR Survey, First Data Set (10/19/21)

4RT_XT2_Sp6_01_05_IR_DJI_0228_R

Post Processed

4RT_XT2_Sp6_01_05_IRp_DJI_0228_R

Visual Image

4RT_XT2_Sp6_01_05_RGB_DJI_0229

4RT_XT2_Sp6_01_06_IR_DJI_0230_R

4RT_XT2_Sp6_01_06_IRp_DJI_0230_R

4RT_XT2_Sp6_01_06_RGB_DJI_0231

NOTES:

- 1. AREAS INDICATED ON THIS SKETCH ARE TEMPERATURE DIFFERENTIALS BELIEVED TO BE DELAMINATIONS ALONG THE UNDERSIDE OF THE BRIDGE DECK. LOCATIONS, SIZES, AND SHAPES ARE APPROXIMATED BASED ON THE THERMAL IMAGERY.
- 2. TEMPERATURE DIFFERENTIALS WERE CROSS CHECKED WITH VISUAL IMAGERY TO REMOVE FALSE POSITIVES DURING DATA COLLECTION.

4RT, UAV-IR Survey, Second Data Set (10/22/21)

Automatic Settings

4RT_XT2_Sp6_02_01_IR_DJI_0615_R

Post Processed

4RT_XT2_Sp6_02_01_IRp_DJI_0615_R

Thermal Deficiencies 1, 2

Visual Image

4RT_XT2_Sp6_02_01_RGB_DJI_0616

4RT_XT2_Sp6_02_02_IR_DJI_0613_R

4RT_XT2_Sp6_02_02_IRp_DJI_0613_R

4RT_XT2_Sp6_02_02_RGB_DJI_0614

4RT, UAV-IR Survey, Second Data Set (10/22/21)

4RT_XT2_Sp6_02_03_IR_DJI_0611_R

Post Processed

4RT_XT2_Sp6_02_03_IRp_DJI_0611_R

Visual Image

4RT_XT2_Sp6_02_03_RGB_DJI_0612

4RT_XT2_Sp6_02_04_IR_DJI_0603_R

4RT_XT2_Sp6_02_04_IRp_DJI_0603_R

4RT_XT2_Sp6_02_04_RGB_DJI_0604

4RT, UAV-IR Survey, Second Data Set (10/22/21)

Automatic Settings

4RT_XT2_Sp6_02_05_IR_DJI_0605_R

4RT_XT2_Sp6_02_05_IRp_DJI_0605_R

Thermal Deficiencies 5, 6

Visual Image

4RT_XT2_Sp6_02_05_RGB_DJI_0606

4RT_XT2_Sp6_02_06_IR_DJI_0607_R

4RT_XT2_Sp6_02_06_IRp_DJI_0607_R

4RT_XT2_Sp6_02_06_RGB_DJI_0608

BIN 4RT, SPAN 6, THIRD DATA SET

MATRICE 300 WITH ZENMUSE XT2 (1/19/22) LOCATING DEFICIENCIES WITH NO PREVIOUS INFORMATION PROJECTED VIEW

NOTES:

- 1. AREAS INDICATED ON THIS SKETCH ARE TEMPERATURE DIFFERENTIALS BELIEVED TO BE DELAMINATIONS ALONG THE UNDERSIDE OF THE BRIDGE DECK. LOCATIONS, SIZES, AND SHAPES ARE APPROXIMATED BASED ON THE THERMAL IMAGERY.
- 2. TEMPERATURE DIFFERENTIALS WERE CROSS CHECKED WITH VISUAL IMAGERY TO REMOVE FALSE POSITIVES DURING DATA COLLECTION.

Automatic Settings

4RT_XT2_Sp6_03_01_IR_DJI_0885_R

Post Processed

4RT_XT2_Sp6_03_01_IRp_DJI_0885_R

Visual Image

4RT_XT2_Sp6_03_01_RGB_DJI_0886

4RT_XT2_Sp6_03_02_IR_DJI_0883_R

4RT_XT2_Sp6_03_02_IRp_DJI_0883_R

4RT_XT2_Sp6_03_02_RGB_DJI_0884

Automatic Settings

4RT_XT2_Sp6_03_03_IR_DJI_0881_R

Post Processed

4RT_XT2_Sp6_03_03_IRp_DJI_0881_R

Visual Image

4RT_XT2_Sp6_03_03_RGB_DJI_0882

4RT_XT2_Sp6_03_04_IR_DJI_0879_R

4RT_XT2_Sp6_03_04_IRp_DJI_0879_R

4RT_XT2_Sp6_03_04_RGB_DJI_0880

4RT_XT2_Sp6_03_05_IR_DJI_0877_R

Post Processed

4RT_XT2_Sp6_03_05_IRp_DJI_0877_R

Visual Image

4RT_XT2_Sp6_03_05_RGB_DJI_0878

4RT_XT2_Sp6_03_06_IR_DJI_0871_R

4RT_XT2_Sp6_03_06_IRp_DJI_0871_R

4RT_XT2_Sp6_03_06_RGB_DJI_0872

Automatic Settings

4RT_XT2_Sp6_03_07_IR_DJI_0873_R

Post Processed

4RT_XT2_Sp6_03_07_IRp_DJI_0873_R

Thermal Deficiencies 7, 8

Visual Image

4RT_XT2_Sp6_03_07_RGB_DJI_0874

4RT_XT2_Sp6_03_08_IR_DJI_0869_R

4RT_XT2_Sp6_03_08_IRp_DJI_0869_R

4RT_XT2_Sp6_03_08_RGB_DJI_0870

Automatic Settings

4RT_XT2_Sp6_03_09_IR_DJI_0867_R

Post Processed

4RT_XT2_Sp6_03_09_IRp_DJI_0867_R

Thermal Deficiency 9

Visual Image

4RT_XT2_Sp6_03_09_RGB_DJI_0868

4RT, IR of Delaminations, First Data Set (10/19/21)

Deficiencies 1, 2

4RT_XT2_Sp6_VEN_01_01_IR_DJI_0242_R

Post Processed

4RT_XT2_Sp6_VEN_01_01_IRp_DJI_0242_R

Visual Image

4RT_XT2_Sp6_VEN_01_01_RGB_DJI_0243

4RT_XT2_Sp6_VEN_01_02_IR_DJI_0240_R

4RT_XT2_Sp6_VEN_01_02_IRp_DJI_0240_R

4RT_XT2_Sp6_VEN_01_02_RGB_DJI_0241

4RT, IR of Delaminations, First Data Set (10/19/21)

Deficiencies 5, 6

4RT_XT2_Sp6_VEN_01_05_IR_DJI_0238_R

Post Processed

4RT_XT2_Sp6_VEN_01_05_IRp_DJI_0238_R

Visual Image

4RT_XT2_Sp6_VEN_01_05_RGB_DJI_0239

4RT_XT2_Sp6_VEN_01_06_IR_DJI_0236_R

4RT_XT2_Sp6_VEN_01_06_IRp_DJI_0236_R

4RT_XT2_Sp6_VEN_01_06_RGB_DJI_0237

4RT, IR of Delaminations, First Data Set (10/19/21)

Deficiencies 7, 9

Appendix E-3-1

4RT_XT2_Sp6_VEN_01_07_IR_DJI_0234_R

Post Processed

4RT_XT2_Sp6_VEN_01_07_IRp_DJI_0234_R

Visual Image

4RT_XT2_Sp6_VEN_01_07_RGB_DJI_0235

4RT_XT2_Sp6_VEN_01_09_IR_DJI_0244_R

4RT_XT2_Sp6_VEN_01_09_IRp_DJI_0244_R

4RT_XT2_Sp6_VEN_01_09_RGB_DJI_0245

4RT, IR of Delaminations, First Data Set (10/19/21)

Automatic Settings

4RT_XT2_Sp6_VEN_01_11_IR_DJI_0246_R

Post Processed

4RT_XT2_Sp6_VEN_01_11_IRp_DJI_0246_R

Deficiencies 11, 12

Appendix E-3-1

Visual Image

4RT_XT2_Sp6_VEN_01_11_RGB_DJI_0247

4RT_XT2_Sp6_VEN_01_12_IR_DJI_0248_R

4RT_XT2_Sp6_VEN_01_12_IRp_DJI_0248_R

4RT_XT2_Sp6_VEN_01_12_RGB_DJI_0249

4RT, IR of Delaminations, First Data Set (10/19/21)

.) Deficiencies 13, 14

Visual Image

4RT_XT2_Sp6_VEN_01_13_RGB_DJI_0259

Automatic Settings

4RT_XT2_Sp6_VEN_01_13_IR_DJI_0258_R

4RT_XT2_Sp6_VEN_01_14_IR_DJI_0256_R

Post Processed

4RT_XT2_Sp6_VEN_01_13_IRp_DJI_0258_R

4RT_XT2_Sp6_VEN_01_14_RGB_DJI_0257

Note: Deficiency numbers correspond to the traditional inspection findings sketch. Only delaminations are included as part of this sketch.

\$FLIR

4RT_XT2_Sp6_VEN_01_14_IRp_DJI_0256_R

Deficiencies 15, 16, 17

4RT, IR of Delaminations, First Data Set (10/19/21)

Visual Image Post Processed **Automatic Settings** \$FLIR 4RT_XT2_Sp6_VEN_01_15_IR_DJI_0250_R 4RT_XT2_Sp6_VEN_01_15_IRp_DJI_0250_R 4RT_XT2_Sp6_VEN_01_15_RGB_DJI_0251

4RT_XT2_Sp6_VEN_01_16,17_IR_DJI_0252_R

4RT_XT2_Sp6_VEN_01_16,17_IRp_DJI_0252_R

4RT_XT2_Sp6_VEN_01_16,17_RGB_DJI_0253
Deficiencies 1, 2

4RT_XT2_Sp6_VEN_02_01_IR_DJI_0645_R

4RT_XT2_Sp6_VEN_02_01_IRp_DJI_0645_R

Visual Image

4RT_XT2_Sp6_VEN_02_01_RGB_DJI_0646

4RT_XT2_Sp6_VEN_02_02_IR_DJI_0643_R

4RT_XT2_Sp6_VEN_02_02_IRp_DJI_0643_R

4RT_XT2_Sp6_VEN_02_02_RGB_DJI_0644

Deficiencies 5, 6

4RT_XT2_Sp6_VEN_02_05_IR_DJI_0639_R

Post Processed

4RT_XT2_Sp6_VEN_02_05_IRp_DJI_0639_R

Visual Image

4RT_XT2_Sp6_VEN_02_05_RGB_DJI_0640

4RT_XT2_Sp6_VEN_02_06_IR_DJI_0637_R

4RT_XT2_Sp6_VEN_02_06_IRp_DJI_0637_R

4RT_XT2_Sp6_VEN_02_06_RGB_DJI_0638

Deficiencies 7, 9

Automatic Settings

4RT_XT2_Sp6_VEN_02_07_IR_DJI_0635_R

Post Processed

4RT_XT2_Sp6_VEN_02_07_IRp_DJI_0635_R

Visual Image

4RT_XT2_Sp6_VEN_02_07_RGB_DJI_0636

4RT_XT2_Sp6_VEN_02_09_IR_DJI_0627_R

4RT_XT2_Sp6_VEN_02_09_IRp_DJI_0627_R

4RT_XT2_Sp6_VEN_02_09_RGB_DJI_0628

Deficiencies 11, 12

Automatic Settings

4RT_XT2_Sp6_VEN_02_11_IR_DJI_0629_R

Post Processed

4RT_XT2_Sp6_VEN_02_11_IRp_DJI_0629_R

Visual Image

4RT_XT2_Sp6_VEN_02_11_RGB_DJI_0630

4RT_XT2_Sp6_VEN_02_12_IR_DJI_0631_R

4RT_XT2_Sp6_VEN_02_12_IRp_DJI_0631_R

4RT_XT2_Sp6_VEN_02_12_RGB_DJI_0632

Deficiencies 13, 14

Visual Image

4RT_XT2_Sp6_VEN_02_13_RGB_DJI_0626

4RT_XT2_Sp6_VEN_02_13_IRp_DJI_0625_R

Automatic Settings

4RT_XT2_Sp6_VEN_02_13_IR_DJI_0625_R

4RT_XT2_Sp6_VEN_02_14_IR_DJI_0623_R

4RT_XT2_Sp6_VEN_02_14_IRp_DJI_0623_R

4RT_XT2_Sp6_VEN_02_14_RGB_DJI_0624

Deficiencies 15, 16, 17

Automatic Settings

4RT_XT2_Sp6_VEN_02_15,16,17_IR_DJI_0621_R

Post Processed

4RT_XT2_Sp6_VEN_02_15,16,17_IRp_DJI_0621_R

Visual Image

4RT_XT2_Sp6_VEN_02_15,16,17_RGB_DJI_0622

4RT, IR of Delaminations, Third Data Set (1/19/22)

Deficiencies 1, 2

Appendix E-3-3

Post Processed

4RT_XT2_Sp6_VEN_03_01_IRp_DJI_0917_R

Visual Image

4RT_XT2_Sp6_VEN_03_01_RGB_DJI_0918

4RT_XT2_Sp6_VEN_03_02_IR_DJI_0915_R

4RT_XT2_Sp6_VEN_03_02_IRp_DJI_0915_R

4RT_XT2_Sp6_VEN_03_02_RGB_DJI_0916

4RT, IR of Delaminations, Third Data Set (1/19/22)

Deficiencies 5, 6

4RT_XT2_Sp6_VEN_03_06_IR_DJI_0907_R

4RT_XT2_Sp6_VEN_03_06_IRp_DJI_0907_R

4RT_XT2_Sp6_VEN_03_06_RGB_DJI_0908

4RT, IR of Delaminations, Third Data Set (1/19/22)

4RT_XT2_Sp6_VEN_03_07_IR_DJI_0905_R

Post Processed

4RT_XT2_Sp6_VEN_03_07_IRp_DJI_0905_R

Deficiencies 7, 9

Appendix E-3-3

Visual Image

4RT_XT2_Sp6_VEN_03_07_RGB_DJI_0906

4RT_XT2_Sp6_VEN_03_09_IR_DJI_0897_R

4RT_XT2_Sp6_VEN_03_09_IRp_DJI_0897_R

4RT_XT2_Sp6_VEN_03_09_RGB_DJI_0898

4RT, IR of Delaminations, Third Data Set (1/19/22)

Automatic Settings 4RT_XT2_Sp6_VEN_03_11_IR_DJI_0901_R 4RT_XT2_Sp6_VEN_03_11_IRp_DJI_0901_R 4RT_XT2_Sp6_VEN_03_11_RGB_DJI_0902

4RT_XT2_Sp6_VEN_03_12_IR_DJI_0903_R

Post Processed

Deficiencies 11, 12

Visual Image

4RT_XT2_Sp6_VEN_03_12_RGB_DJI_0904

Note: Deficiency numbers correspond to the traditional inspection findings sketch. Only delaminations are included as part of this sketch.

4RT_XT2_Sp6_VEN_03_12_IRp_DJI_0903_R

N42°21'28.49' W71°7'19.12"

4RT_XT2_Sp6_VEN_03_14_IR_DJI_0893_R

4RT_XT2_Sp6_VEN_03_14_IRp_DJI_0893_R

4RT_XT2_Sp6_VEN_03_14_RGB_DJI_0894

Note: Deficiency numbers correspond to the traditional inspection findings sketch. Only delaminations are included as part of this sketch.

Deficiencies 13, 14

Appendix E-3-3

Visual Image

Deficiencies 15, 16, 17

4RT, IR of Delaminations, Third Data Set (1/19/22)

Post Processed Visual Image **Automatic Settings** 4RT_XT2_Sp6_VEN_03_15_IR_DJI_0891_R 4RT_XT2_Sp6_VEN_03_15_IRp_DJI_0891_R 4RT_XT2_Sp6_VEN_03_15_RGB_DJI_0892

4RT_XT2_Sp6_VEN_03_16,17_IR_DJI_0889_R

4RT_XT2_Sp6_VEN_03_16,17_IRp_DJI_0889_R

4RT_XT2_Sp6_VEN_03_16,17_RGB_DJI_0890