NETC 18-2:

Framework of Asphalt Balanced Mix Design (BMD) for New England Transportation Agencies

Project Summary Thursday, February 18th 2021

Dr. Walaa S. Mogawer, P.E. UMass Dartmouth

Dr. Thomas Bennert Rutgers University

Project Objective

Synthesize existing information and to develop recommendations for a rational BMD approach for use by New England transportation agencies.

Gaps in testing and performance data will be identified through this project and an experimental plan for required future work will be developed.

Overview of Tasks

Task 1 - Identify typical pavement distresses in each of the New England states.

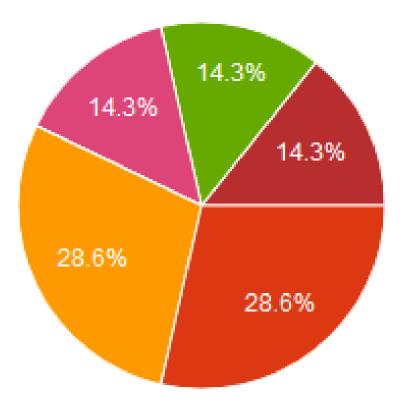
Task 2 - Identify candidate performance tests for each identified common distress.

Task 3 - Collect existing performance test data, available from recent state/regional projects, and related historical field performance data on the representative pavements.

Task 4 - Analyze test and field performance data in order to develop preliminary recommendations for a BMD approach.

Task 5 - Identify gaps in the test and performance data, and develop an experimental plan for future research with the goal to further refine the development, validation, and implementation of a BMD approach for New England states.

Task 1 – Internet Survey


Task 1: Survey

Survey & Response

> The total survey responses was seven.

Each New England state transportation agency responded to the survey with Vermont responding twice.

What are the predominant pavement distresses witnessed in your state?

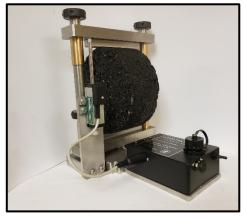
Task 2 – Candidate Performance Tests

Task 2 - Identify Candidate Performance Tests for each Identified Common Distress

Evaluate the pros and cons of different asphalt mixture performance tests and best match a performance test method to the state agency pavement distress(es) within a Balanced Mixture Design protocol.

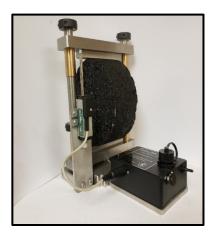
Identification of Asphalt Mixture Performance Testing for Various Pavement Distress Types

Cost and Time Estimates within Balanced Mixture Design (BMD) Framework and Quality Control Implementation


Current Availability of Equipment for Regional Leveraging and Roadblocks to Purchase/Calibrate

Task 2 - Identify Candidate Performance Tests for each **Identified Common Distress**

Rutting



Hamburg Wheel Tracking

HT-IDT/IDEAL-RT

Fatigue Cracking

IDEAL-CT

SCB Flexibility Index

Thermal Cracking

Moisture Damage

DC(T)

Hamburg Wheel Tracking

Collect existing performance test data, available from recent state/regional projects, and related historical field performance data on the representative pavements.

Task 4:

Analyze test and field performance data in order to develop preliminary recommendations for a BMD approach.

<u>Task 5:</u>

Identify gaps in the test and performance data, and develop an experimental plan for future research with the goal to further refine the development, validation, and implementation of a BMD approach for New England states.

Pavement Performance Collection

Requested pavement performance and laboratory performance data (if exists) at last update meeting

- Connecticut
 - PMS data provided
- >Vermont
 - PMS data download provided
 - Mixture test results
 - > 2017 & 2018 Hamburg Wheel Tracking (rutting)
 - > 2018 & 2019 SCB Flexibility Index (fatigue cracking)
- ≻Maine
 - > Provided PMS data for test sections where performance testing was conducted
 - Provided Hamburg Wheel Tracking (rutting) and IDEAL-CT Index (fatigue cracking)

Connecticut - Rutting

With no laboratory to field comparison, best method to initiate performance criteria is through testing field cores

Good and poor performance

	Good Rutting Performance (< 0.15 Inches)												
Traffic Level	RoadName	From To		ADT x % Trk	RUT_AVG	SURFACE_ YEAR							
	042 L	9.6	11.8	138	0.10	2016							
	082 L	17.6	20	198	0.08	2016							
Low	066 L	27.6	29.6	398	0.07	2018							
Low	011 L	10	13.4	441	0.10	2015							
	006 L	84	88	630	0.10	2016							
	0.58 L	0.2	3.4	716 0.10		2015							
	008 L&R	7.9	8.9	2944	0.11	2011/15							
	072 L	3.2	3.9	2463	0.13	2017							
Moderate	095 L	101.7	103.9	4335	0.07	2018							
Woderate	291 L&R	3.2	5.1	4357	0.13	2010							
	384 L&R	1.6	2.8	5345	0.09	2014/15							
	084 L&R	16.7	18.7	6500	0.13	2008							
	091 L&R	3.4	4.5	10479	0.13	2012							
	084 L&R	61.1	62.4	12110	0.12	2014							
High ¹	095 L	10	15	12848	0.10	2015/16							
	084 L&R	65	66.3	14540	0.09	2012							

	Poor Rutting Performance (> 0.3 Inches)													
Traffic Level	RoadName	From	То	ADT x % Trk	RUT_AVG	SURFACE YEAR ¹								
	201 L	15.5	17.7	68	0.43	2013								
	695 L	2.1	2.7	214	0.4	2018								
Low	167L	5.1	6.6	466	0.29	2018								
	004L	36.5	38	550	0.29	2013								
	044L	51.5	52.6	740	0.29	2014								
Moderate	072L	2	2.8	2843	0.28	2017								
High	084L	56.3	57.4	10688	0.33	2016								

¹ - Older the resurface, more aged asphalt binder

(rutting may have occurred much earlier than present condition)

¹ - Almost anywhere on 084, 091, and 095

Connecticut – Fatigue Cracking

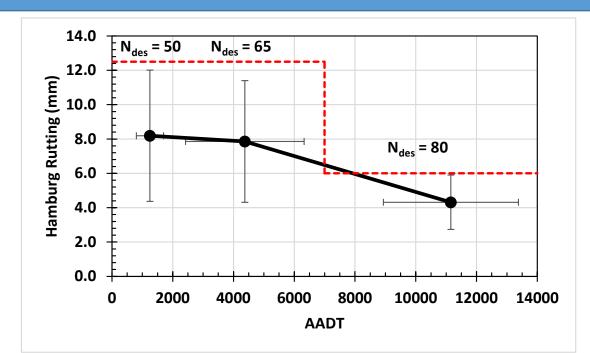
With no laboratory to field comparison, best method to initiate performance criteria is through testing field cores

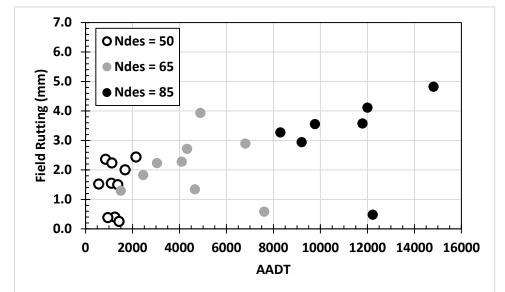
Good and poor performance – only Flexible Pavements Used (No Composite)

Goo	Good Cracking Performance (HPMS Crk Pct & WP+NWL Crk)												
Road Name	From	То	ADT x % Trk	HPMS Crk Pct	WP + NWL Crk	SURFACE YEAR							
001 L	14.2	15.8	618	0	4.9	2017							
001 L	28.2	20.4	633	0	5.2	2017							
009 L	0.6	4	1284	0	5.4	2011							
030 L	17.9	20.9	189	0	0.4	2017							
058 L	1	3.5	797	0	3.2	2015							
084 L	19.1	22.1	5956	0	22.6	2012							
091 L	39	42	12415	0	0.9	2015							
095 L	95	98	5700	0	11	2014							
198 L	8.2	11.9	88.2	0	2	2009							
244L	0	3	74.8	0	4.7	2014							
395 L	0.6	3.6	2398	0	8.3	2009							

Poo	Poor Cracking Performance (HPMS Crk Pct & WP+NWL Crk)												
Road Name	From	То	ADT x % Trk	HPMS Crk Pct	WP + NWL Crk	SURFACE YEAR							
030 L	2.0	3.5	374	32.5	213	2000							
045 L	2.2	3.7	78	32.8	180	1995							
083 L	19.5	21.9	219	33.5	218	1998							
179 L	5.0	8.0	118	25.6	145	1999							
201 L	7.6	9.2	50.4	22.8	99	1993							
305 L	1.0	3.0	566	19.0	132	1999							
534 L	0.5	3.5	182	29.7	193	1996							

AGENCY OF TRANSPORTATION


Vermont – Hamburg Wheel Tracking


- General Mixture Performance Yearly Comparison
 - > Lack of consistency can create issues when trying to establish performance criteria
 - > This is where PMS is very important
 - > Obvious differences in mixture performance from lab
 - > Are same differences found in field?
 - > Actually, very minimal field rutting for both! <u>All projects had good rutting performance!</u>

Year Produced	Project	Міх Туре	Producer	Rut Average (in.)	Ave. AADT	Ndes	PG Grade	Hamburg Rut Depth (mm)	Ave Pass	SIP	SIP Depth	Strip Slope	Creep Slope		
2017	Danville - St. Johnsbury	Type IVS	Pike IND (702) -	0.06	563	50	58-34	9.75	20000	13166	4.95	0.000499	0.000251		
2017	STP FPAV(9)	w/ 20%	Waterford, VT	0.06	503	50	58-34	12.5	17266	8885	5.26	0.000818	0.000367		
	Deading Windoor STD	Type IVS						3.49	20000	NA	NA	NA	0.000096		
2018	Reading - Windsor STP FPAV(11)	w/ 20%	w/20%	Pike IND (720) - 0.01	0.01 1427	7 50	70-28	2.6	20000	NA	NA	NA	0.000072		
	FPAV(11)	RAP	W Lebanon, NH					3.92	20000	NA	NA	NA	0.000106		
								4.17	20000	NA	NA	NA	0.000111		
								3.13	20000	NA	NA	NA	0.000086		
	Weathersfield - Reading	Type IVS						3.58	20000	NA	NA	NA	0.000093		
2018	STP FPAV(12)	w/ 20%	Pike IND (720) -	0.02	1256	50	70-28	2.57	20000	NA	NA	NA	0.000072		
	SIP FPAV(12)	RAP	W Lebanon, NH					4.41	20000	16845	3.94	0.000141	0.000119		
										3.5	20000	NA	NA	NA	0.000088
								3.61	20000	NA	NA	NA	0.000095		

Vermont – Hamburg Wheel Tracking

- Final performance criteria for Hamburg must include traffic
- Figure shows recommended initial criteria for different mixes
 - > $N_{des} = 50 \& N_{des} = 65 < 12.5 mm$ > $N_{des} = 80 < 6.0 mm$
- > When evaluating average Hamburg rutting for $N_{des} = 50 \& N_{des} = 65$, statistically equal
- AADT = 7,000 was selected at dividing area based on inflection point in Field Rutting vs AADT curve
- Emphasize: All projects had GOOD field rutting performance

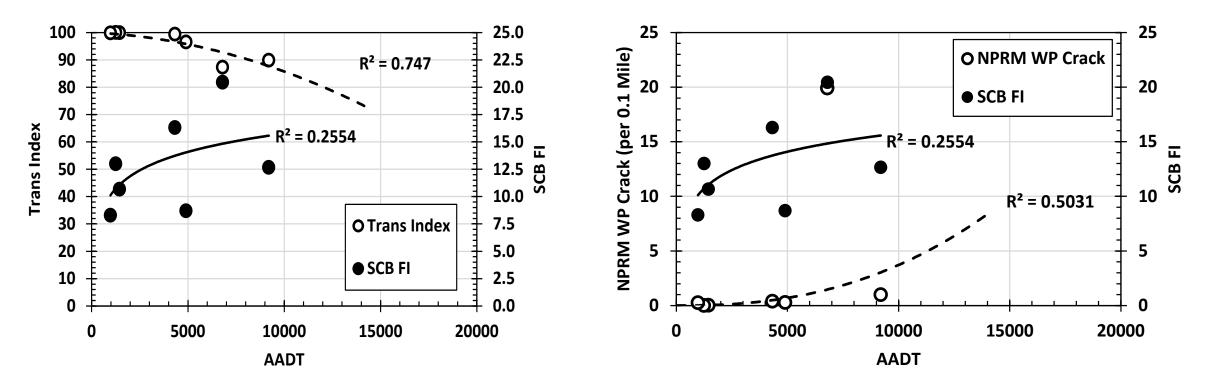
Vermont – Hamburg Wheel Tracking

> Table of Poor Rutting Performance

field performance

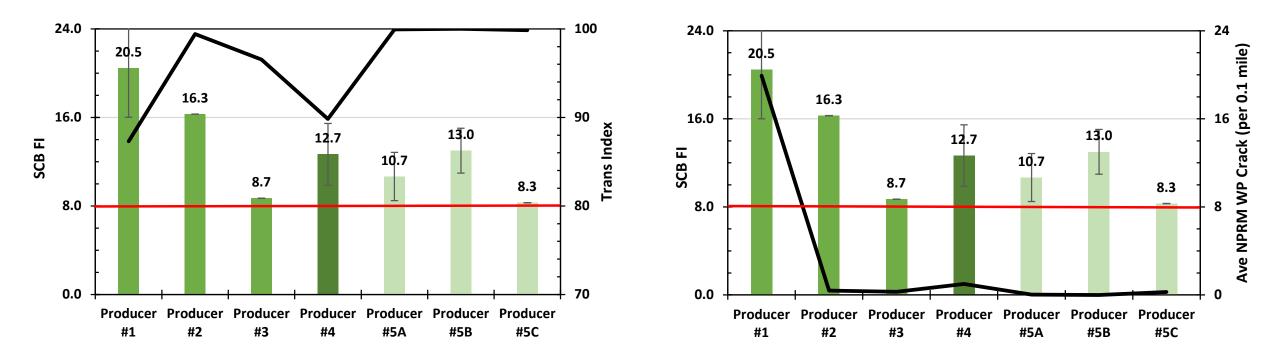
Limiting factor to this work is the fact that all of the projects where Hamburg was conducted, low pavement rutting

> Helps to have good and poor performing to develop criteria


Recommend field cores cut and tested to assess poor

	Poor Rutting Measurements													
Route Name	ETE_From	ETE_To	ETE_Road	Begin Town	AADT	Rut Average	Rut Index	Last Work Project Name	Last Work Project Number	Last Work Year				
VT 7A	21.4	25.2	V007A	MANCHESTER	6837	0.40	60.5	Manchester(CL S1*)	STP 2970(1)	2019				
VT 9	3.1	5.5	V009	BENNINGTON	6379	0.35	65.4	Bennington	NH 2966(1)	2018				
VT 11	3.6	6.6	V011	WINHALL	6789	0.72	28.4	Manchester- Peru	STP 2708(1)	2019				
VT 12	58.4	58.8	V012	MONTPELIER CITY	3300	0.64	35.58	Montpelier	STP 2950(1)	2018				
VT 67A	2.2	3.3	V067A	BENNINGTON	5950	0.28	72	Bennington	STP 2973(1)	2018				
VT 100	1.0	4.0	V100	STAMFORD	1451	0.44	55.7	Stamford	FPAV(23)	2019				
US 7	10.2	11.8	U007	BENNINGTON	8165	0.44	56	Bennington	NH 2966(1)	2018				

Vermont – SCB Flexibility Index


> Could not generate a simple relationship between SCB FI & Field Cracking

- Cracking typically later life distress only 2 years of field performance with SCB FI
 - > Looked at only trying to compare the 2018 data
 - PMS distress indices appear to be related to the traffic level (AADT) but still shows low magnitudes of cracking in the field

Because significant field cracking was not observed in pavement sections, recommend initial SCB Flexibility Index > 8.0

> Need to continue to review these sections over time

Vermont – SCB Flexibility Index – Poor Field Performance

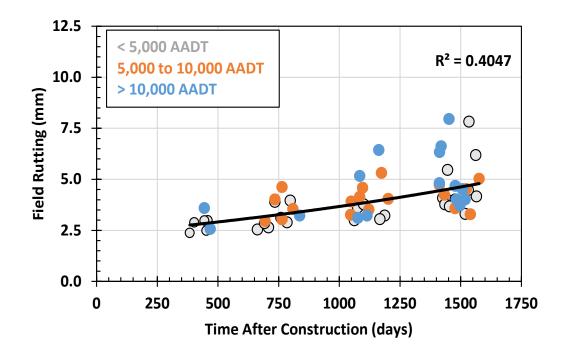
> Table of Poor Fatigue Performance

Recommend field cores cut and tested to assess relationship between SCB FI and poor field performance

> Will help to validate criteria

Route Name	ETE_From	ETE_To	ETE_Road	BeginTown	NPRM Condition CRK	NPRM WP Crack	Last Work Project Name	Last Work Project Number	Last Work Year
	101.2	101.3	U002	CABOT	POOR	34.15	District Paving	NE19PAV702	2018
	101.3	101.4	U002	DANVILLE	POOR	26	District Paving	NE19PAV702	2018
US 2	101.6	101.7	U002	DANVILLE	POOR	33.25	District Paving	NE19PAV702	2018
	101.7	101.8	U002	DANVILLE	POOR	35.75	District Paving	NE19PAV702	2018
	101.8	101.9	U002	DANVILLE	POOR	39.75	District Paving	NE19PAV702	2018
	186.8	186.9	U005	DERBY	POOR	30.38	District Paving	NE19PAV902	2018
US 5	187.5	187.6	U005	DERBY	POOR	30.67	District Paving	NE19PAV902	2018
	10.3	10.4	U007	BENNINGTON	POOR	21	Bennington	NH 2966(1)	2018
	10.4	10.5	U007	BENNINGTON	POOR	27.5	Bennington	NH 2966(1)	2018
	10.5	10.6	U007	BENNINGTON	POOR	21	Bennington	NH 2966(1)	2018
US 7	11.4	11.5	U007	BENNINGTON	POOR	56.75	Bennington	NH 2966(1)	2018
	11.5	11.6	U007	BENNINGTON	POOR	47	Bennington	NH 2966(1)	2018
	11.6	11.7	U007	BENNINGTON	POOR	41	Bennington	NH 2966(1)	2018
	145.9	146	U007	MILTON	POOR	32	District Paving	NE19PAV501	2018
	3.1	3.2	V009	BENNINGTON	POOR	24.75	Bennington	NH 2966(1)	2018
	3.5	3.6	V009	BENNINGTON	POOR	22.75	Bennington	NH 2966(1)	2018
	3.6	3.7	V009	BENNINGTON	POOR	31.75	Bennington	NH 2966(1)	2018
	3.7	3.8	V009	BENNINGTON	POOR	36	Bennington	NH 2966(1)	2018
VT 9	3.8	3.9	V009	BENNINGTON	POOR	23	Bennington	NH 2966(1)	2018
	4	4.1	V009	BENNINGTON	POOR	26.5	Bennington	NH 2966(1)	2018
	4.7	4.8	V009	BENNINGTON	POOR	20.75	Bennington	NH 2966(1)	2018
	5	5.1	V009	BENNINGTON	POOR	35.5	Bennington	NH 2966(1)	2018
	5.5	5.6	V009	BENNINGTON	POOR	42.75	Bennington	NH 2966(1)	2018
VT 44	93.3	93.4	V014	ALBANY	POOR	57.25	District Paving	NE19PAV901	2018
VT 14	93.4	93.5	V014	ALBANY	POOR	59	District Paving	NE19PAV901	2018
	2.2	2.3	V067A	BENNINGTON	POOR	36	Bennington	STP 2973(1)	2018
	2.6	2.7	V067A	BENNINGTON	POOR	29.25	Bennington	STP 2973(1)	2018
	2.7	2.8	V067A	BENNINGTON	POOR	31.75	Bennington	STP 2973(1)	2018
VT 67A	2.8	2.9	V067A	BENNINGTON	POOR	22.25	Bennington	STP 2973(1)	2018
	3	3.1	V067A	BENNINGTON	POOR	22.75	Bennington	STP 2973(1)	2018
	3.2	3.3	V067A	BENNINGTON	POOR	25	Bennington	STP 2973(1)	2018
	1.1	1.2	V131	CAVENDISH	POOR	41.5	District Paving	NE19PAV201	2018
	1.3	1.4	V131	CAVENDISH	POOR	51	District Paving	NE19PAV201	2018
VT 131	1.7	1.8	V131	CAVENDISH	POOR	42.25	District Paving	NE19PAV201	2018
1111	1.8	1.9	V131	CAVENDISH	POOR	34.25	District Paving	NE19PAV201	2018
	1.9	2	V131	CAVENDISH	POOR	53.25	District Paving	NE19PAV201	2018
	2.1	2.2	V131	CAVENDISH	POOR	42.75	District Paving	NE19PAV201	2018

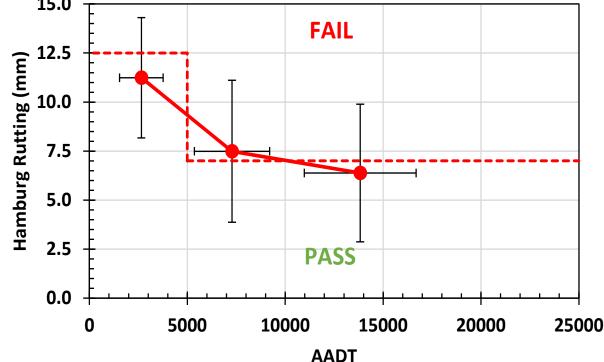
Poor Cracking Measurements (2018)



Maine - Rutting

Discussions with MaineDOT indicated that field rutting observed to continue well past first few years of field service

Separating field rutting results out by time after placement clearly confirmed field rutting continues into 4th year of service life – regardless of AADT!

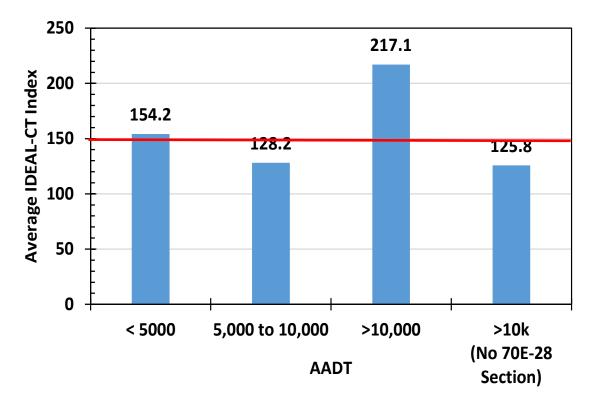

> Therefore, criteria developed only using 4th year

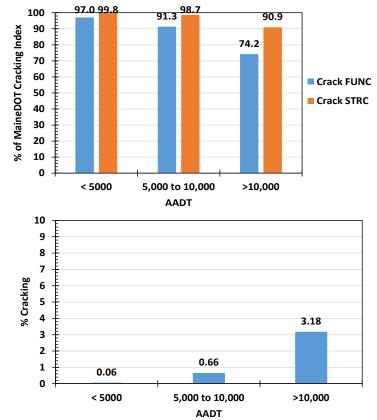
AADT	Age	Temp	Field Rutting (inches)	Field Rutting (mm)	HWT Rutting (mm)	HWT Passes	Stripping Slope	Creep Slope	Stripping	LC12 55	LC12 5C
1106	1488	45	0.176	4.47	12.50	4626	4.27	1.45	2.94	4614	4592
1346	1491	45	0.308	7.82	11.83	16823	1.34	0.35	3.81	17508	20142
1875	1409	45	0.156	3.96	11.53	10022	2.34	0.64	3.65	17425	17390
2225	1435	45	0.158	4.01	12.50	9702	3.05	0.38	8.06	9699	9676
2365	1403	45	0.215	5.46	11.41	11633	1.61	0.85	1.88	14000	15856
2766	1519	45	0.244	6.18	12.50	12487	1.82	0.44	4.11	12487	12487
2834	1383	45	0.161	4.09	12.50	4452	5.44	1.08	5.03	4448	4434
3427	1392	45	0.149	3.77	2.60	19891	0.08	0.12	0.65	99751	99751
4022	1476	45	0.130	3.30	12.50	4680	6.01	1.12	5.35	4680	4680
4567	1411	45	0.145	3.67	12.50	6252	3.17	0.82	3.88	6249	6240
4825	1522	45	0.164	4.17	12.50	7346	3.87	0.72	5.39	7344.5	7332
5348	1533	45	0.198	5.03	12.50	7141	3.99	0.49	8.18	7140	7130
5924	1480	45	0.178	4.52	5.21	19994	0.34	0.17	1.96	41666	62501
7444	1390	45	0.167	4.24	7.73	20000	0.47	0.18	2.55	60023	62908
9094	1497	45	0.130	3.29	5.75	19996	0.41	0.16	2.61	36267	62528
9160	1434	45	0.141	3.58	3.72	19967	0.15	0.14	1.07	77220	83335
9186	1369	45	0.186	4.72	5.03	19932	0.15	0.26	0.58	48420	48420
10175	1440	45	0.158	4.01	4.12	19984	0.17	0.09	1.83	69131	110055
11999	1369	45	0.190	4.82	5.20	18620	0.72	0.19	3.87	52703.6	75457.3
12632	1377	45	0.261	6.62	7.91	16726	1.04	0.23	4.52	51310	51291
12793	1454	45	0.147	3.72	3.55	19943	0.13	0.15	0.87	79968.67	81595
13088	1464	45	0.178	4.52	3.85	19954	0.13	0.16	0.83	73570	73570
13298	1409	45	0.313	7.95	12.50	3074	8.00	1.20	6.65	3073	3066
13604	1476	45	0.158	4.01	2.84	19909	0.10	0.10	0.97	105189	115616
17347	1435	45	0.184	4.67	11.38	14791	1.63	0.42	3.86	18007	21051.2
19549	1370	45	0.250	6.34	6.12	19988	0.44	0.17	2.58	34352	57008

Maine - Rutting

- Using an average of AADT and Hamburg rutting for the <u>3 different AADT</u> <u>divisions</u>, results indicate very similar performance for intermediate and high AADT
 - Resulted in 2 thresholds above and below 5,000 AADT
 - Since field rutting was 0.15 to 0.3 inches, average Hamburg results were selected for criteria

Maine – Fatigue Cracking


- Divided MaineDOT performance based on 3 AADT Levels;
 < 5,000 AADT; 5,000 to 10,000 AADT; and > 10,000 AADT
- Field performance does show that as the AADT divisions increase in magnitude, greater field distress is observed
 - >Therefore, need to make sure higher AADT levels achieve better IDEAL-CT Index


Maine – Fatigue Cracking

Final Recommendation

IDEAL-CT Index > 150 for all mixes at test temperature of 25°C

- Intermediate and higher AADT had more field cracking but lower IDEAL-CT when compared to the lower AADT
- Criteria would have resulted in 10 of 18 mixes failing (8 failing when considering two mixes resulted in IDEAL-CT Index of 145.0
 100 = 97.0 99.8
 91.3 98.7

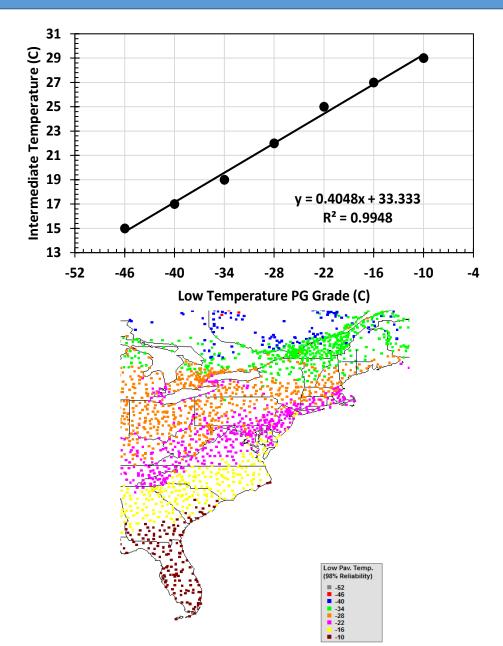
Gaps Needed to be Identified

- > Necessity for include aging in mixture evaluation
- > Test method/procedure selection to include testing during Quality Control
 - Pay adjustment
 - Sampling frequency
 - > Aging?
- Internal communication and data sharing/availability of state agency
 Materials Bureau, Pavement Design, and Pavement Management
- > Need or want for a regional test method(s)
 - Pro's = one set of test procedures; leveraging of equipment; round robins
 - Con's = may force state agency into a test method (develop database, equipment purchase, etc.)
- > Only 3 states participated in study at varying levels

NETC Future Recommendations

1. Criteria Validation - Performance Testing of Field Cores

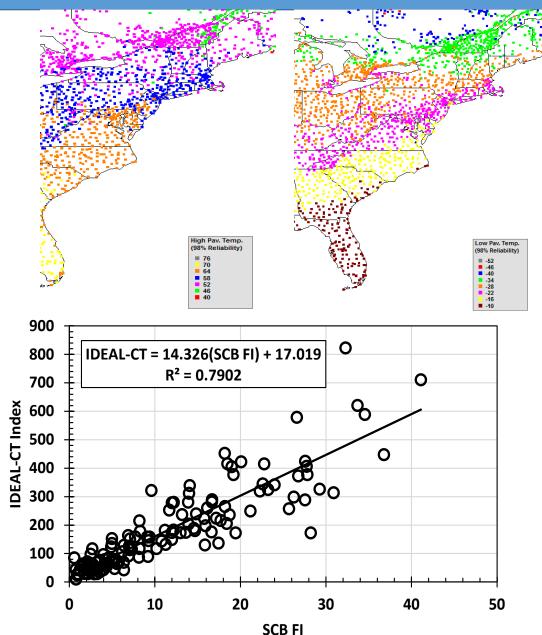
Proposed test sections will help validate criteriaGood and poor field performance


- >Things to be careful of when testing field cores
 - Influence of air voids on test results
 - > Fully dry prior to measurement (wet coring)
 - CoreDry
 - > To be taken away from distress areas
 - Between wheelpaths and outside of wheelpath
 - Minimum thickness/specimen size to confidently run test method
 - > Full depth cores can be used after cutting for Hamburg
 - Thickness correction for SCB and IDEAL-CT

2. Adjustment of Fatigue Cracking Test Temperature

- Maine and Vermont currently using test temperature of 25°C for IDEAL-CT and SCB FI, respectively
- Selected test temperatures may not represent regional intermediate temperature
 - Results in superior laboratory performance due to asphalt binder grade
- Recommend the states consider evaluating the recommended intermediate temperatures from NCHRP 9-59 project
 - Based on required low temperature PG grade at 98% reliability

3. Regional Test Parameter/Criteria Agreement


- Maine and Vermont using same rutting test (Hamburg) but different fatigue cracking tests
- May be beneficial for region by consolidating criteria and establishing "Regional" criteria due to similarities in climate/traffic

> Hamburg

- ➤ AADT < 6000: Rutting < 12.5 mm</p>
- ➤ AADT > 6000: Rutting < 6.5 mm</p>

Fatigue Cracking

- SCB FI $8.0 \approx$ IDEAL-CT Index 132
- > IDEAL-CT Index $150 \approx$ SCB FI 9.3

4. Evaluation of Other State Agencies in NETC

- Completed study included 3 states of different levels of data supplied
 - Connecticut PMS data only
 - Maine Performance data and respective field data
 - Vermont Performance data and complete PMS
- How are other states in NETC approaching BMD?
 - > MassDOT
 - > NHDOT
 - RIDOT
- > Areas of support needed?
 - Communication between Materials and PMS groups within state agencies

Thank you